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1 Problem description
The problem consists in defining the precise sequence of roto-
translations of a rigid holonomic object of arbitrary shape
that has to be transported from an initial to a final location
through a large, cluttered environment. We propose a dis-
tributed planning system modeled as a swarm of flying robots,
each equipped with a camera and wireless communications,
that are initially deployed in the environment and take static
positions at the ceiling, forming a distributed camera network.

As reference models for the robots we consider the eye-bot
robots, that have been developed in the Swarmanoid project
(http://www.swarmanoid.org). Each robot is equipped with a
video camera pointing to the floor, and has an infrared sys-
tem for measuring the relative bearing and distance between
two robots and for wireless communications.

A scenario of the experiment. An example of the planned path.

2 Path planning
Our distributed planner is derived from the classical numerical
potential field technique for a single camera planner (Latombe
et al., 1991; Choset et al., 2005) which is computed using the
wave front expansion with skeleton on a bidimensional uniform
cell partitioning. This solution first spreads the potential over
a subset of the free space, called skeleton, which corresponds to
the Voronoi diagram; then the potential is computed in the rest
of the map. The potential descent is performed using A∗.

Diffusion of the potential field over the skeleton.

Diffusion of the potential field over the remaining free space.

3 The three phases of the process
The distributed algorithm has three phases:

1. Neighbor detection. Each robot builds a neighbor table, in
which the relative positions of nearby nodes are stored with
some estimation error.

2. Potential field diffusion. Each robot expands the potential
field on its part of the map, and sends to its neighbors the
frontier values.

3. Path calculation. The robot above the start position begins
path calculation. When the trajectory exits from its area of
view, the robot sends the object coordinates to a selected
neighbor. Then the process iterates from robot to robot until
the target position is reached.

3.1 Heuristics to reduce local minima attraction

Given the distributed nature of the approach, the same local
minimum in the potential field can negatively affect the path
calculation phase of multiple robots. We propose two sets of
heuristics: a first set for the detection and removal of local minima
from the map, and a second set for reducing the negative effects
of the local minima attraction (computational time and quality of
the trajectories).

Reference path from the
global planner

The path of the system
without heuristics

With Heuristics.

3.2 Local Adaptivity

An important advantage of our distributed system is that it
can locally and quickly detect and adapt to a change in the envi-
ronment (e.g., dynamic obstacles). A centralized system would
correct the Voronoi skeleton, repeat the potential field diffu-
sion and restart the path planning. In our distributed architec-
ture, the system can reduce the re-initialization costs by locally
replanning only a limited part of the path. A node that detects
a change in its local map informs the other nodes only if an
alternative local partial path cannot be found.

4 Implementation with real robots
The proposed approach was validated on a set of experiments
in a real setup. The holonomic object moving on the ground
is implemented through a set of 2 non-holonomic robots, the
e-pucks, interconnected by a rigid structure. In this way, they
form an object with a relatively large shape, which is able to
rotate and move in any direction. The size of the moving area
is 33 m2. The multi-robot system on the ceiling is implemented
with a set of 4 cameras connected to different computers. Each
camera is controlled by an independent process, which co-
operates and communicates with the other processes, locally
plans the path, and then directs the navigation of the e-puck
system through the ground area under its local field of view.

5 Experimental results

We studied in simulation the performance of the proposed
planning solutions in terms of: effectiveness, efficiency, scal-
ability, and robustness to alignment errors. As performance
metrics, we selected success ratio, the percentage of successful
runs, and path quality, the relative length of the path compared
to the path calculated by a centralized algorithm with complete
and perfect knowledge. We considered a set of 25 sample sce-
narios with varying area dimensions, position and number of
eye-bots, shapes of moving object, and obstacle positions.

5.1 Effect of heuristics vs. position errors

We assume that the partial view of neighbor robots overlaps,
in order to permit the sharing of the rigid object position.
However, the overlapping is subject to errors deriving from
errors in camera calibrations and in the measure of robots’ rel-
ative positioning. We studied the effect of the relative position-
ing error between nodes in terms of angle and distance error for
the algorithm with and without the heuristics.
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Performance vs. errors. The error values on the x-axis indicate the stan-
dard deviation of a zero mean Gaussian distribution used to sample the
distance/angle error between the robot pairs. For each scenario we ran 40
trials. Each data point represents the average of 25x40 experiments.

For relatively low errors the performance is always very close
to that of the centralized algorithm, while for increasing errors:

• The algorithm with heuristics degrades rapidly in terms of
success rate but slowly for path quality.

• The algorithm without heuristics behaves in opposite way.

In both cases, the system is relatively sensitive to errors on the
angle, while it is quite robust to distance errors.

5.2 Scalability performances

We study the performance of the distributed system with re-
spect to an increase of system’s resources. In the plots below
we show the effect of increasing the density of the nodes over a
fixed area while varying angle errors. Increasing node redun-
dancy allows the system to deliver a higher success ratio. This
effect is more marked in the experiments with larger errors, in
which the presence of a larger number of robots can balance
the effect of these errors to find alternative valid paths. On the
other hand, the increase in the density leads to longer paths.
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