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Abstract— With increasing numbers of mobile robots ar-
riving in real-world applications, more robots coexist in the
same space, interact, and possibly collaborate. Methods to
provide such systems with system size scalability are known,
for example, from swarm robotics. Example strategies are
self-organizing behavior, a strict decentralized approach, and
limiting the robot-robot communication. Despite applying such
strategies, any multi-robot system breaks above a certain
critical system size (i.e., number of robots) as too many robots
share a resource (e.g., space, communication channel). We
provide additional evidence based on simulations, that at these
critical system sizes, the system performance separates into
two phases: nearly optimal and minimal performance. We
speculate that in real-world applications that are configured
for optimal system size, the supposedly high-performing system
may actually live on borrowed time as it is on a transient
to breakdown. We provide two modeling options (based on
queueing theory and a population model) that may help to
support this reasoning.

I. INTRODUCTION

To scale up to larger and larger problems, robot tasks
in industry, environmental/infrastructure monitoring, and our
everyday lives will require larger and larger multi-robot
systems, acting in parallel and cooperating [1], [2]. With
an increasing number of robots sharing resources, such as
physical space and radio channels, scalability in system
size will become an increasing challenge [3]. Methods for
designing robot systems that scale (at least for fixed swarm
density) are developed and studied in swarm robotics [4].
Even robots that were not designed to interact and cooperate
may be required to do so in the future—further increasing
the necessity to develop scalable systems. [5].

Swarm robotics achieves scalability by enforcing a de-
centralized approach based on self-organizing behaviors,
local robot-robot interactions, and simple neighbor-based

VA was supported by the German Research Foundation within project
“Generic bifurcation structures in piecewise-smooth maps with extremely
high number of borders in theory and applications for power converter
systems – 2”. JK, AR, and HH acknowledge support from DFG through
Germany’s Excellence Strategy-EXC 2117-422037984. AR also acknowl-
edges support from the Belgian F.R.S.-FNRS.

1JK and HH are with the Department of Computer and Infor-
mation Science, University of Konstanz, 78457 Konstanz, Germany.
{jonas.kuckling, heiko.hamann}@uni-konstanz.de.

2 JK, AR, and HH are also with the Centre for the Advanced Study of
Collective Behaviour, University of Konstanz, Germany.

3RL is with the Institute of Computer Engineering, University of Lübeck,
Lübeck, Germany.

4VA is with the Institute for Systems Theory and Automatic Control,
University of Stuttgart, Stuttgart, Germany.

5AV is with the Department of Computer Science and the Department of
Electrical and Computer Engineering, Memorial University of Newfound-
land, St. John’s, Canada.
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communication [4]. Several studies have measured a certain
intuitive swarm performance (e.g., number of collected items
during a defined time interval in a foraging task [6]), usually
over swarm density ρ = N/A, for swarm size N and a
bounded operation area of size A [3], [7]–[9]. If area size A
is fixed, scaling swarm size N effectively modulates the
swarm density. Almost all studies that measure mean swarm
performance over swarm density (e.g., see [10]) show similar
curves characterized by three stages: an initial increase with
system size, reaching peak performance (at a critical system
size Nc), and for N > Nc decreasing system performance.
Interestingly, a diversity of systems from different fields of
research show similar scalability results (e.g., see [11]–[13]).
While measuring mean swarm performance is a good ap-
proach for an initial performance analysis, it is likely to hide
an important property. The measured swarm performance
may be bimodal showing two phases: an upper phase with
high performance (i.e., each robot operates efficiently most
of the time), a lower phase with minimal performance (i.e.,
most robots trapped in congestion etc.), and almost nothing
in between [14]. This is, however, a potentially dangerous
condition as swarm robotics systems often show linear or
even super-linear performance increases for low swarm den-
sities. By optimizing for performance, one may unknowingly
put the system on the edge, where model predictions and
real-world experience may catastrophically diverge. Also, the
robot system likely has a long transient at critical system size
with two implications. First, the system can actually be run
on ‘borrowed time’ if the transient is longer than what is
relevant in applications (i.e., potentially contradicting math-
ematical predictions built on assumed convergence). Second,
the system at runtime initially shows good performance but
then suddenly breaks down completely.

As our main contribution, we show simulation results for a
large real-world multi-robot system in a warehouse and two
more, very different, academic and smaller scenarios (swarm
robotics object clustering and emergent taxis) indicating
clearly the two-phase situation. In addition, we provide
two modeling options that are able to qualitatively describe
this crucial two-phase system behavior. Which model may
prove to be best for modeling two-phase swarm performance
remains an open question at this point. It remains encourag-
ing that different modeling techniques are able to represent
the two-phase situation and yield quite similar predictions.
Besides the obvious conclusion that a swarm engineer wants
to avoid putting their robotic systems on the edge between
performing maximally and breaking down completely, there
are other immediate implications. For example, hysteresis



effects are possible that may have extreme effects on the
swarm performance at runtime. Known approaches of ‘robust
scalability,’ such as the online voluntary retreat of robots in
order to reduce swarm density [15] or of adapting algorithm
parameters autonomously in reaction to a currently measured
swarm density [16], may trigger sudden performance jumps
if the system operates close to a bifurcation point (see
Sec. IV-B).

II. THREE SCENARIOS

A. Warehouse

We consider an actual modern warehouse solution as
required, for example, by today’s online retailers of fashion
to maximize economy of scale. The system is based on
robots called ‘AFLE’ (German abbreviation for Autonomous
Driving Storage Units) that are currently under development
by the company EMHS GmbH (see Fig. 1a). The idea is to
build a large swarm (in the order of 105) of low-cost mobile
autonomous ‘hangers’ as a solution to traditional pocket
sorters instead of a dragging chain. Each AFLE carries a
bag forming a storage unit. The robots hang on a rail grid
that also provides power. By dividing the warehouse into
independent segments the system has high potential to scale.
To further enforce scalability, the system could combine
central coordination by global messaging with decentralized
approaches to coordinate pairs or small groups of AFLEs,
for example, at crossings of rails. Hence, the system at least
partially qualifies as a swarm robotics system.

The simulation software is focused on large-scale sim-
ulations of warehouses with more than 3000 AFLEs. The
warehouse is simplified to a grid world with grid cells that
can have an edge per cardinal direction and contain not
more than one robot. All traffic is one-way and organized in
‘highways’; the actual storage rail sections are not modeled.
Robots emerge on highways modeled by Poison distributions
(i.e., mimicking the rather unpredictable influx of orders).
The AFLE robots are routed with A∗. No physics is simu-
lated but we penalize robots doing turns as the real robots
would need to slow down.

B. Object Clustering

In the object clustering task a swarm of robots manipulate
objects, either bringing them to a pre-defined goal position,
or aggregating them in a self-organized manner (see Fig. 1b).
If the goal is pre-defined, then this task becomes synonymous
with foraging [17]. We test the lasso method for object
clustering as its performance as a function of swarm size
has already been partially explored [18]. This method relies
on an external scalar field which acts to guide the robots
around the environment while nudging objects towards the
global minimum of the field, located at the goal.

The control algorithm operates independently on each
robot. The most outlying visible puck is identified and the
value of this puck’s position on the scalar field is determined.
A control law drives the robot to reach and follow the contour
line defined by this value. We observe that the robots tend
to occupy the same contour line and travel clockwise around

it, nudging pucks inwards toward the goal. Thus, a ‘lasso’ is
formed that tightens around the objects until they are forced
to the goal position. Performance was found to increase
with swarm size up to a point, then decrease due to spatial
interference [18]. Fig. 1e shows results collected in a custom
simulator which models two-dimensional physics.1

C. Emergent Taxis

In the emergent taxis task [14], the objective is to move
the swarm towards a light beacon (see Fig. 1c). However,
the robots only have an omnidirectional beacon sensor to
identify the beacon. That is they can only perceive if their
line of sight to the beacon is unoccupied but no bearing
information is available. If a robot has a line of sight to
the beacon, it is referred to as illuminated otherwise it is
considered shadowed. The robots move straight, until they
approach a defined distance to another robot and trigger an
obstacle avoidance behavior. This avoid radius depends on
the state of the robot: if they are shadowed, the radius is
smaller than if they are illuminated. Thus, robots are biased
to move towards the light beacon. Additionally, a parameter
α controls the coherence of the swarm.

With increasing swarm size, the effect of increased number
of encounters influences the swarm performance. Initially,
the increased number of robots increases the density with
which shadowed robots form behind and approach illumi-
nated ones. This in turn increases the number of times that
an illuminated robot avoids a shadowed one and thus the
movement bias towards the light beacon becomes stronger.
However, if the required coherence forces the robots to
aggregate too tightly, the obstacle avoidance behavior might
be continuously triggered thus slowing down any movement.
Previous results showed that performance increased with
swarm size but a second phase of low performance emerged
at higher swarm densities [14].

III. RESULTS

Next, we present simulation results for each of the three
scenarios. We focus on swarm performance over swarm
size N . Swarm performance is throughput for the warehouse
scenario (i.e., how many autonomous hangers reach their
destination within a given total experiment time), average
distance between objects for the object clustering scenario,
and the speed of the swarm’s barycenter towards the light
for the emergent taxis scenario. As we keep the operation
area size A constant in all three cases, we effectively change
the swarm density ρ by varying swarm size N . In the case
of the warehouse, we vary the swarm size N of coexisting
robots indirectly via an arrival rate of how many robots are
requested to approach the packing station per hour.

A. Warehouse

Fig. 1d shows a 2d-histogram of the performance in
simulation in the warehouse scenario. We investigated dif-
ferent arrival rates with which new AFLEs are added to

1open-source code repository: https://github.com/avardy/
cwaggle_lasso, video: https://youtu.be/_KOU5SzpQBg.



(a) Warehouse prototype view (b) Object clustering overhead view (c) Emergent taxis schematic
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Fig. 1: Upper row (a-c): Representative illustration of the three scenarios. Lower row (d-f): histograms of the swarm
performance in simulation over swarm size (or arrival rate in the case of the warehouse scenario).

the warehouse. The performance is measured as throughput,
that is the number of AFLEs that reach their destination.
As AFLEs arrive and leave the warehouse during the ex-
periment, the swarm size fluctuates over time. However,
assuming a constant time that the AFLEs spend inside the
warehouse, the arrival rate can be an approximation for the
number of AFLEs in the warehouse. For each investigated
value of the arrival rate, 96 repetitions were performed. The
color value of a cell in the histogram indicates how often a
given arrival rate resulted in the corresponding throughput.

At low arrival rates, the system does not suffer from
congestion and the throughput increases linearly with the
arrival rate, as expected for a system with low density. At an
arrival rate of about 104 units per hour, interference effects
may cause the throughput to drop considerably in few runs.
This is caused by a congestion in the warehouse, when too
many AFLEs interfere with each other. When two AFLEs
are trying to traverse the same rail segment, they need to
negotiate the traversal order and AFLEs with lower priority
wait until AFLEs with higher priorities are passed. With
increased arrival rate, the number of experiments with con-
gestion increases until all repetitions suffer from congestion.
Note that there is a range of arrival rate values for which
part of the experiments operated properly, with maximum
performance, and the remaining experiments collapsed into
complete congestion with performance close to zero. As
a result, the distribution of the throughput splits into two
phases, one high performing and one low performing.

B. Object Clustering

Fig. 1e shows the performance of simulated swarms per-
forming the object clustering task for increasing swarm sizes,
from one to twenty robots. For each swarm size, we evaluated
the performance 1000 times. Initially, all robots and objects
were randomly distributed in the arena. The performance is

Goal

Fig. 2: The performance plot from Fig. 1e augmented with
snapshots of the final arena configuration. Robots are red.
Pucks are green. The goal position is depicted at top-left.

the normalized average distance of all objects to the target
location. A performance measure of 0 is the ideal, but is not
attainable due to physical interference between objects.

When the number of robots is too small, a small number
of objects is nudged towards the goal, resulting in poor col-
lective performance. Performance increases with increasing
swarm size, as predicted by theory with optimal performance
around 6 robots. For swarms with 10 or more robots, we ob-
served that the performance splits into two phases—roughly,
successful and unsuccessful. Fig. 2 provides examples of the
final arena configuration with 16 robots for different levels of
performance. The top example shows a successful outcome
in which all objects have been delivered to the goal. The
remaining examples represent situations where congestion
has occurred and severely reduced performance.



C. Emergent Taxis

Fig. 1f shows the performance in simulation of the swarm
in the emergent taxis task. This result was published before
and data was taken directly from the previous publica-
tion [14]. Each swarm size of N ∈ {2, 3, . . . , 40} robots
was evaluated 800 times. At the beginning of the experiment,
robots were distributed randomly on the far side of the arena.
The score of each evaluation was the speed with which
the barycenter of the robot swarm moved towards the light
during the experiment. For negative speeds, the barycenter
of the swarm moved away from the light.

For small swarm sizes, we did not observe any emergent
taxis behavior. However, with increasing swarm size, the
swarm started moving towards the light and the speed of
this taxis behavior also increased. At around a swarm size
of 15 robots, the maximum speed was reached and no
further improvement was found. At the same swarm size, we
observed the emergence of a second phase, in which only the
observed speed of the taxis behavior was low or sometimes
nonexistent. In the first phase, the swarm is still able to
function properly, whereas in the second case it becomes
pinned, with many obstacle avoidance maneuvers triggered
resulting in only slow movements.

IV. MODELS

Next, we propose two modeling approaches that capture
the two-phase character of swarm performance as observed
in real-world systems. The first is a simple method based on
queueing theory as an example of low model complexity
from computer science that is still capable of describing
key features. As second method we use our previously
published population model [3] that we introduced as a
generic approach to model multi-robot systems but also large
parallel computing systems. It comes with a lot of complexity
but also proves to be capable of catching key properties of
the swarm systems including predictions for transient times,
that is for example, how long a real-world robot system
would perform high despite sitting on the edge. We provide
a full discussion of the resulting nonlinear system in terms
of nonlinear dynamics. We believe that especially the model
predictions of transient times may prove to be relevant for
real-world applications. Hence, a deep understanding of all
the mathematical implications is essential for a complete
(future) understanding of scalability in robot swarms.

A. Queues

A simple approach of modeling the two-phase situation
of swarm performance can be based on queueing theory.
An intuitive and sophisticated model could be based on
queueing networks to explicitly represent the shared re-
sources, such as space and radio bandwidth (possibly also
truncated queues). However, a simpler approach is possible
by an unorthodox change of the standard M/M/1 queue
with exponential interarrival-time distribution λ exp (−λt),
exponential service time µ exp (−µt), one channel, infinite
capacity. Key change to the standard model is that we make
the service time dependent on the current queue length Nq(t)
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Fig. 3: Queuing model: throughput and queue length Nq

over arrival rate for modified M/M/1 queue (service time
dependent on queue length).

(i.e., a cost on keeping the queue) by setting mean service
time 1/µ(t) = 1/(c1 log(c2Nq(t)) + µc) for arbitrary con-
stants c1 = 0.3 and c2 = 0.2. For the following example
we set µc = 1. We simulate the queue for mean arrival
rates λ ∈ [0.4, 0.9] (500 samples each) for 2 × 106 time
steps and exclude data from the first 1 × 106 time steps as
transient. Resulting mean throughput and mean queue length
are shown in Fig. 3a and a histogram of the throughput in
Fig. 3b. It is to note that the curves shown in Fig. 3a resemble
those predicted by the population model (see Fig. 5a). This
queuing model is able to represent the linear increase and the
breakdown of the system at a critical arrival rate µc ≈ 0.65.

B. Population model and nonlinear dynamics analysis

In previous work, we have presented a population model
that grasps most of the relevant system features concerning
scalability [3]. Key advantages are that it is a general,
unified model that abstracts and describes scalability patterns
across different systems, including parallel supercomputers,
robot swarms, and wireless sensor networks, based on the
microscopic interactions between units. In this alternative
approach to model scalability we assume that each robot
can be assigned to one of three abstract robot states relevant
for scalability analysis. The system dynamics is based on
N robots that transit between these three operational states.
We assume robots can be in state solo (operating alone
without sharing communication and/or space resources with
others), in state grupo (sharing resources with other robots),
or in state fermo (interfering with others in the use of
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Fig. 4: Underlying schema for population model: transitions
for robots in state solo, grupo, and fermo [3].

resources). The model describes through seven transition
rates (k1, . . . , k7) the probability that robots change their
state as a consequence of independent actions or interactions
with other robots. As in any population model we make
assumptions, for example, that it is more likely for a solo
robot to approach a solo robot if the solo state currently
has a high percentage in the swarm. We assume also that
two solo robots approaching each other trigger transitions
to grupo robots and similar for any other interaction of two
robots (see Fig. 4). The model is expressed as a system of
ordinary differential equations (ODEs):

ds

dt
= −2k1s

2 − k2sg − k3sf + k4g

df

dt
= 2k5g

2 + k6gf − k7f ,

(1)

with g = N−s−f due to the robot conservation assumption.
The system variables s, g, and f represent the proportion
of robots in states solo, grupo, and fermo, respectively.
(s∗, g∗, f∗), the stable fixed point of system (1), describes the
long-term distribution of the robots among the three states.

In the numerical simulations presented below, we use the
following set of parameters, unless stated otherwise:

k1 = 0.005, k2 = 0.1, k3 = 0.06, k4 = 10,

k5 = 0.15, k6 = 0.3, k7 = 0.8
(2)

For a quick understanding of this model, we have an-
alyzed the stationary system behavior. Fig. 5a shows the
stationary states (s∗, f∗) of system (1) at the parameter set
specified in Eq. (2) under variation of swarm size N . For
completeness, the resulting value g∗ = N − s∗ − f∗ due
to robot conservation is shown, too. Fig. 5a shows, how
for small swarm sizes N , the number of solo robots s∗

grows almost linearly (most robots remain in solo, few in
fermo and grupo). For increasing swarm size N , a sudden
change of the system’s configuration occurs. The number
of solo robots reaches a maximum (here, N = 31) and
then decrease rapidly. Simultaneously, we get more fermo
robots, resulting eventually in their predominance. From a
nonlinear dynamics perspective, the shifted location of the
asymptotically stable fixed point is not a bifurcation as the
topological structure of the state space remains unchanged
under parameter variation. However, in practical applications
the sudden decrease of solo robots would have a significant
impact on system performance.

For other parameter values we may observe more sophisti-
cated dynamics. As an example, Fig. 5b shows the stationary
states of the system for the value k1 = 0.001 instead of
k1 = 0.005 (i.e., slower transition of solo robots to grupo
robots). As before, we observe an almost linear growth of

solo robots until it reaches a maximal value. However, soon
after, the stable solution (s∗1, f

∗
1 ) merges with an unstable

one (s∗2, f
∗
2 ) and disappears in a saddle-node bifurcation at

N = N
(2)
SN . The unstable stationary state (s∗2, f

∗
2 ) involved in

this bifurcation appears already before, via a different saddle-
node bifurcation which occurs at N = N

(1)
SN < N

(2)
SN and

gives rise to another asymptotically stable stationary state
(s∗3, f

∗
3 ). Thus, in the parameter interval N (1)

SN < N < N
(2)
SN ,

two stable stationary states (s∗1, f
∗
1 ), (s

∗
3, f

∗
3 ) coexist and the

system exhibits a bi-stable behavior, so that it may converge
either to the stationary state where solo robots prevail, or
to the one characterized by the prevalence of fermo robots,
depending on initial values s0 and f0.

In Fig. 6, we illustrate the system’s state space. As two
saddle-node bifurcations occurring at N = N

(1)
SN and N =

N
(2)
SN are connected by the unstable (saddle) point (s∗2, f

∗
2 ),

the basins of attraction of the stable stationary states are
separated from each other by the branches W s

± of the stable
manifold of the saddle (s∗2, f

∗
2 ). Here, the initial values

located above or below W s
± converge towards (s∗1, f

∗
1 ) or

(s∗3, f
∗
3 ), respectively.

Importantly for any application, the bi-stable dynamics
lead necessarily to a hysteresis effect. If we start from small
swarm sizes N and increase swarm size incrementally, then
the system follows the upper branch of the solutions, that is,
the stationary state (s∗1, f

∗
1 ) (see Fig. 5b). At the bifurcation

point N = N
(2)
SN , the system undergoes a sudden jump to the

lower branch (s∗3, f
∗
3 ) (the saddle-node bifurcation acts as a

so-called hard bifurcation, or a hard loss of stability [19]).
If one additional robot is introduced (N + 1), the system
undergoes a sudden change, which corresponds to a sudden
catastrophic loss of productivity. This roughly resembles the
Braess paradox from game theory [20] where the overall
performance of a system may decrease as an additional
resource is provided. Instead, if we start from a large swarm
size N and we switch off robots one by one, then the
system follows the lower branch of solutions (stationary state
(s∗3, f

∗
3 )) operating at low productivity until the bifurcation

point N = N
(1)
SN . Then, the system jumps to the upper branch

(s∗1, f
∗
1 ) and the productivity is suddenly increased.

Important for all applications is the transient time (i.e.,
time to converge—with a given accuracy—to the stationary
state). As an example, Fig. 5c shows the transient time on
logarithmic scale corresponding to the bifurcation diagram
in Fig. 5a. The transient time grows over-exponentially as
the system approaches the critical state NC. This behavior,
known as critical slowing down, is typically observed in a
neighborhood of a bifurcation point. This may be surprising,
since, as already mentioned, there is no bifurcation (in the
rigorous sense) in Fig. 5a. However, in Fig. 5b (different
parameter k1) we observe two saddle-node bifurcations.
Therefore, in the 2D parameter space (N, k1) there exists
a codimension-2 cusp-bifurcation point [21] from which two
saddle-node bifurcation points emerge, leading to bistability
and hysteresis. Hence, the long transient time close to the
critical state (see Fig. 5a) is indeed caused by the critical



(a) (b) (c)

Fig. 5: Stationary states of Eq. (1) under variation of N for (a) k1 = 0.005 and (b) k1 = 0.001, other parameters as in
Eq. (2). (b) Domain between the saddle-node bifurcation points N

(1)
SN , N (2)

SN associated with bi-stability, the non-physical
domain outside of 0 ≤ s, f, g ≤ N is shown in gray; (c) transient time Ttrans for fixed initial state (s0, f0) = (0, 0) and
convergence to stationary state (s∗1, f

∗
1 ) with accuracy 10−12; k1 = 0.005. Insets show the indicated rectangles magnified.

Fig. 6: fermo-solo state space in the bi-stable domain (N =
40); color-coded logarithmic transient time Ttrans, that is,
convergence towards stable stationary states (s∗1, f

∗
1 ) and

(s∗3, f
∗
3 ) with the same accuracy of 10−12. Also the saddle

point (s∗2, f
∗
2 ) and its stable and unstable manifolds (W s

± and
Wu

±, respectively) are shown. The inset shows the transient
times for initial values located at the path indicated with A.

slowing down in a neighborhood of a cusp bifurcation in
2D parameter space even if this bifurcation is not visible
in the bifurcation diagram shown in Fig. 5a. In addition,
the transient time Ttrans depends not exclusively on the
parameters but also on the initial values s0, and f0. The
transient time grows (over-exponentially, tending to infinity)
for initial values close to the boundary between the basins of
attraction of the coexisting stable fixed points (see Fig. 6).

V. DISCUSSION AND CONCLUSION

We have presented three multi-robot systems that show the
characteristic two-phase performance signature where, for a
critical swarm size, the phases of high and low performance

coexist. We have presented that for simulations of the AFLE
robot system by EMHS GmbH. Hence, our findings clearly
show that not only real-world implementations of robot
swarms but also real-world applications of actual productive
systems in existing industries show this same property in
their system size scaling (or in this case scaling with arrival
rates). We have also presented simulation results of an object
clustering scenario that was previously implemented on real
robots, showing the validity of the simulation [18]. Also
in this more academic example from swarm robotics, we
observe the same two-phase performance signature. As a
last example, we have reminded the reader of simulation
results for the well-known emergent taxis scenario that were
published before [14]. This original finding inspired the
presented research. To point to a possible interpretation of
these results, we have presented two modeling options based
on queueing theory and population models. The adapted
M/M/1 queue is able to catch most of the discussed scal-
ability features despite its simplicity. Our key contribution
in terms of modeling, however, is the population model and
especially its interpretation based on nonlinear dynamics.
These interpretations point to three important findings and
issues. (a) There is indeed a bifurcation in the system and
rapid changes in performance with small changes in swarm
size should be expected. (b) In the vicinity of bifurcation
points we should indeed expect extremely increased transient
times. (c) We should expect hysteresis effects depending on
swarm size that is increased or decreased online while oper-
ating. Swarm robotics systems that are optimized for swarm
performance may unknowingly be put on the edge with the
effect of unexpected, catastrophic performance breakdowns.
Long transients may either obscure this effect or may buy
the robot swarm time that is possibly long enough to survive
in high-performing states for the whole mission time. Future
research will hopefully provide more evidence of whether



the two-phase performance signature in scalability of swarm
robotics is real and relevant even in industrial applications.
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