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Abstract

Dans le domaine de la robotique en essaim, on considère généralement que des robots
coopératifs, malgré leurs capacités individuelles limitées, peuvent résoudre des problèmes
complexes en travaillant ensemble. Cependant, dans le contexte d’un essaim libre, où des
robots différents peuvent être ajoutés par des acteurs aux intérêts potentiellement con-
currents, la coopération apparâıt comme une stratégie parmi d’autres. Par conséquent,
nous envisageons dans ce rapport un marché d’échange d’informations, où des robots
peuvent acheter et vendre des informations à d’autres robots via des transactions en-
registrées et sécurisées par la blockchain, un système de paiement distribué, et où la
coopération et l’honnêteté sont encouragées par les mécanismes économiques sous-jacents.
Pour démontrer l’intérêt d’un tel dispositif, nous élaborons un simulateur informatique,
où des robots virtuels doivent chercher de la nourriture concentrée en un endroit et la
ramener à leur nid. Leur coopération, en achetant et vendant des informations à d’autres
robots, est un ingrédient indispensable afin d’effectuer cette tâche de manière efficace.
Par ailleurs, nous illustrons comment l’insertion d’un seul Byzantin, qui ment à propos de
l’information qu’il vend, est capable de lourdement perturber le système, et de compro-
mettre l’efficacité de l’ensemble du groupe. Dans cette optique, nous introduisons deux
mécanismes de protection. D’une part, en rendant les robots honnêtes plus sceptiques,
nous montrons qu’ils sont capables de détecter et d’ignorer les fausses informations, au
prix d’une efficacité plus faible dans un groupe complètement coopératif. D’autre part,
via l’instauration de principes économiques intelligents, nous montrons comment, dans un
essaim composé en majorité de robots honnêtes, vendre des informations authentiques est
plus rentable que de vendre de fausses informations. Ainsi, les robots honnêtes accumulent
plus d’argent que les Byzantins, et nous postulons que cette différence de richesse peut en-
suite être exploitée pour ignorer, voire excommunier, les robots Byzantins, et limiter leur
influence sur l’efficacité de l’essaim. Cette étude est la première à utiliser des mécanismes
économiques pour encourager les comportements coopératifs dans des essaims de robots.
Nous pensons que ce travail peut ouvrir la voie à de la recherche future dans l’économie
appliquée à la robotique en essaim, en exploitant l’opportunité qu’offre la technologie de
la blockchain dans la conception de systèmes économiques décentralisés.



Abstract

Robot swarms are generally considered to be composed of cooperative agents that, de-
spite their limited individual capabilities, can achieve complex tasks by working together.
However, in contexts such as an open swarm, where different robots can be added to
the swarm by different parties with potentially competing interests, cooperation is but
one of many strategies. As such, we envision an information market where robots can
buy and sell information through transactions stored on a distributed blockchain, and
where cooperation and honesty are encouraged by the economy itself. As a proof of
concept, we design and build a multi-agent simulator where robots perform a classical
foraging task, and where cooperating by buying and selling information with other robots
is paramount to accomplish the task efficiently. We illustrate further that including even
a single Byzantine robot that lies to others can heavily disrupt the system and compro-
mise collective efficiency. Hence, we devise two protection mechanisms. On the one hand,
through increased skepticism, robots can detect and discard Byzantine information, at
the cost of a lower efficiency in a fully cooperative swarm. On the other hand, through
smart economic rules, we show how in a swarm primarily composed of honest robots, sell-
ing honest information is more profitable than selling false information, leading to honest
robots acquiring more wealth than Byzantines. We suggest this discrepancy on wealth
can then be used by the swarm to ignore or blacklist Byzantine robots and limit their
negative impact on the swarm’s efficiency. This is the first study that employs economic
mechanisms to encourage cooperative behavior in robot swarms. We believe that this
thesis can pave the way for further research in economic-based swarm robotics exploiting
the timely opportunity for decentralized economies offered by blockchain technology.
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Chapter 1

Introduction

1.1 Background

Drawing inspiration from nature and its flocks of birds or social insects, swarm robotics
deals with the design of systems where large groups of simple robots can collectively
achieve a task or solve a problem. In order to do so, they need to cooperate, but due to
environmental and/or hardware constraints, this can only happen through local interac-
tions and communication. This means there is no central authority dictating the robots
how to act but they are rather able to self-organize by observing their surroundings (other
robots or the environment itself) and following simple rules according to the information
they gather.

It is commonly accepted that robots are cooperative by nature, meaning that they
openly communicate with other robots and do not deliberately lie when sharing informa-
tion, since they are assumed to all be part of the same swarm sharing a common goal. In
this thesis we consider the new concept of an open swarm, where robots may be added to
the swarm by different, possibly competing, parties (e.g. different companies interested
in solving the same problem). Consequently, cooperation can be seen as one strategy
among others, whose main benefit comes from the swarm’s emergent self-organization. In
this context, we introduce the notion of an information market, a framework regulating
how robots may buy and sell information with their peers, where our goal is to provide
economic incentive for robots to be honest and cooperative. To do so, we specifically
study the impact of Byzantine robots (i.e. robots undermining the swarm’s operation,
either due to faultiness or malicious intent) on the swarm’s efficiency, and present the
information market as a tool to protect honest robots from being disrupted.

1.2 Research Objective

The goal of this thesis is to provide a proof of concept for an information market in the
context of a social navigation task (more precisely: central place foraging), through the
elaboration of a multi-agent Python simulator. In our model, robots are represented as
point-like particles in a 2D plane, that keep track of their own movement through odo-
metric estimates and are deprived of any GPS or similar tools. Since these estimates
are subject to noise, robots frequently get lost. To find their goal they have the choice
between exploring the environment, or buying information on where they need to go from
other robots. We assume robots use a blockchain and execute smart contracts to respec-
tively record transactions and calculate information prices, in a secure and distributed
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manner. Since the technical implementation of a distributed blockchain with smart con-
tracts is outside the scope of this work, we implement a simplified centralized system that
emulates its properties.

Furthermore, to illustrate this proof of concept’s interest and usefulness, we use it to
study the effect of Byzantine robots selling false information to honest robots. We first
show how Byzantines can disrupt a swarm composed of simple naive robots. Secondly, we
introduce individual protection mechanisms, where robots can detect false information by
comparing information from multiple sources, to increase the swarm’s resiliency. Finally,
we explore ways to use the market to penalize false information with the ultimate goal of
using robots’ wealth as an indication of their trustworthiness.

1.3 Outline of the Thesis

The thesis is divided into three parts. In the first part we analyse state of the art sci-
entific literature for collective foraging, blockchain-based robot swarms and the resiliency
of robot swarms facing faulty or malicious agents. In the second part, we describe our
model for social navigation, robot behaviors, individual protection measures (by compar-
ing information from multiple sources), systemic protection measures (through the use of
the information market), and their technical implementation. In the third and final part,
we present and discuss our results pertaining to the individual and systemic protection
measures described in the second part, before ending with a description of what remains
to investigate in future work, and a conclusion.

2



Part I

State of the Art
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Chapter 2

Collective Foraging

In biology, foraging is the action of searching for resources, such as food, in the environ-
ment [5]. Collective foraging is thus the activity where a group of organisms collectively
searches for these resources in their environment. When resources are grouped in a central
location and have to be brought back to another central location (e.g. ants traveling back
and forth between some food and the colony), the field of study is known as central place
foraging [22].

2.1 Indirect Communication or Stigmergy

Many species of ants and other social insects tend to use an indirect form of communi-
cation, known as stigmergy, to signal they have found a food source [40]. Ants coming
back from the food source modify the environment by leaving in their trail a chemical
trace, or pheromone, that other ants can detect. Ants then tend to favour following
high-concentration pheromone trails, creating a positive feedback loop [33]. Using this
mechanism, ants are able to solve different types of problems. For example, by modulat-
ing the pheromone quantity deposited based on the food source quality, ants are able to
choose the best food source in the area [3, 28]. They can also converge on the shortest
path from the food source to the nest, since for a same number of ants, shorter paths will
accumulate pheromone more rapidly than longer paths [15].

Drawing inspiration from these natural phenomena, stigmergy has also been proposed
as a method of indirect communication to solve foraging tasks in robot swarms. How-
ever, the artificial replacement to chemical pheromones ants use is not straightforward.
Some research provides physical means to modify the robot’s environment analogously to
pheromones, such as phosphorescent paint [20], or ethanol [14]. Another approach is to use
a “smart” environment that can store virtual pheromone information and communicate it
with robots. Even though this would be difficult to implement in real-life applications, it
is a very popular approach to conduct research in the lab. Implementations of such smart
environments are for example based on radio-frequency identification technology (RFID)
[19], augmented reality (AR) [29], or other specialized hardware [37].

Regardless of its practical implementation, multiple studies have found that stigmergy
is an effective mechanism to reproduce the swarm organization observed in ants, to effec-
tively navigate between food and nest in a central place foraging context [20, 35, 18].

4



2.2 Direct Communication

Since using stigmergy in a robot swarm may not always be feasible due to environmental
or hardware constraints, some studies also propose direct communication as a means of
organization. In practice, robots can exchange messages or visual cues (such as through
the use of LEDs) to communicate information to other robots, to try to form a chain
between the food source and nest [7, 12, 16, 30, 13].

If the chain is static [7, 12, 16], the robots forming the chain, also known as beacons,
do not move and guide other mobile robots efficiently between the food and the nest. The
main drawbacks of this approach is that the beacons do not actively contribute to the
foraging task, may need to be very numerous in large environments, and may also restrict
the movement of other robots.

To mitigate these drawbacks, alternatives have been proposed where the chain is dy-
namic, and robots in the chain move between food and nest sites, both actively performing
the task (i.e. foraging) and guiding other robots [30, 13]. For example, in a first study
[30], robots simply signal their position with a blue LED other robots can detect. By
moving in circular paths (all clockwise), being attracted to the food or nest site when
in detection range, but dodging other robots by rotating counter-clockwise, the robots
are able to straighten their initial circular motion into a straight dynamic chain between
food and nest. In a second study [13], robots use a direct communication system to share
information about the last time they encountered a location. By moving towards robots
that saw the location more recently, the swam is also able to form an efficient dynamic
chain between food an nest, both in environments with and without obstacles.

The result of these studies shows direct communication can also be used for robot
swarms to self-organize and efficiently accomplish a central place foraging task.

2.3 Random Exploration

In Sections 2.1 and 2.2, we present two ways a robot swarm can efficiently navigate between
two locations, and how foraging robots can converge on the shortest path. However, all
of the proposed approaches rely on robots at first being able to find the locations by
exploring the environment.

The efficient exploration of an environment in search of a specific location is a complex
and extensively researched problem, both in biology and swarm robotics [9, 11]. Indeed,
animal search patterns, can often be described by different types of random walks [2,
4, 9, 39]. In swarm robotics, the interest in random walks stems from their simplicity
and versatility (since they do not require much sensing capabilities or computing power),
and some specific types of random walks can be very effective in exploring unknown
environments [9, 11].

Lévy walks, which model the patterns exhibited by albatrosses or deer for example
[39], are often used when the search targets are sparse, as in this case, research suggests
that the Lévy walk can lead to optimal searches [38]. However, this assumption should
be taken with a grain of salt as other research finds this superiority to be questioned
under specific conditions [24]. A Lévy walk is characterised by a distribution of time
between consecutive turns, or step-length, following a power law, which leads to series
of quick turns (local exploration) followed by long straight displacements (relocation).
Brownian motion, which models the motion of particles colliding with molecules in a fluid
for example, can be seen as a Lévy walk with a negative exponent equal to three in the
power law [11].
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Correlated random walks are characterised by a correlation between the successive
turning angles of a moving agent, known as persistence [25], leading to the walker tending
to point in the same direction for successive steps. The correlated random walk is a natural
way to model animal paths in the scientific literature as they tend to move forward [36].

Finally, it is also possible to consider hybrid random walks, where the step-length
follows the Lévy walk’s power law, but the successive turning angles are persistent like in
a correlated random walk. In a study, some researchers propose how to implement such a
hybrid random walk in a robot swarm, and explore different parameter values to optimize
search efficiency in various settings [11].
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Chapter 3

Blockchain-based Robot Swarms

One of the main characteristics of a robot swarm is the absence of any centralized control.
Rather, the swarm is able to perform complex tasks through emergent behaviors which
stem from individual actions, governed by local sensing and communication capabilities.
This decentralized architecture is precisely what enables a robot swarm’s parallel execu-
tion, fault tolerance, and scalability features, but it comes at the cost of not disposing
of a centralized system to store shared knowledge robots acquire over time (i.e., a global
information database). Consequently, new research has been presented to use blockchain
technology both as a shared database, as well as a way to secure a robot swarms against
Byzantines (i.e. defective or malicious robots undermining the swarm’s expected behav-
ior) in the context of consensus achievement [32, 31, 23].

3.1 Blockchain Technology

Blockchain technology was first introduced in 2008 as a way to implement the Bitcoin
cryptocurrency [21], where the blockchain can be seen as a common, decentralized ledger
of peer-to-peer transactions. This was made possible by leveraging cryptography and
the concept of Proof of Work consensus to enable network participants to update and
agree on the current state of the ledger in a fully decentralized manner. More recently,
the Ethereum Foundation [6] has proposed a framework to, not only store data, but
also execute computer programs, known as smart contracts, through the blockchain. In
the context of cryptocurrencies, smart contracts can be used to trigger automatic (i.e.
programmed) financial transactions, but they can also be generalized as a means to execute
any programmable code, which is itself stored on the blockchain. The blockchain can thus
be seen as a secure decentralized server capable of storing data and executing code.

3.2 Application of Blockchain in Robot Swarms

Recent research has explored the idea of using blockchain technology in robot swarms. As
a first proof of concept, one study devises a system to secure the swarm from Byzantines
in a collective decision making problem where the swarm is tasked with determining the
majority color (black or white) of floor tiles in an arena through voting [32]. The use of
smart contracts allows the robots to detect and blacklist robots voting in an incoherent
way. Using simulations in ARGoS [26], the researchers find that their blockchain-based
approach is able to secure the swarm from attacks at the cost of a slower convergence
time and increased data storing and communication requirements.
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This approach is further explored by the same researchers in a sequel to this first
proof-of-concept study [31]. In this second study, the robots are tasked with estimating
the frequency of the colored tiles instead of deciding the majority color, are able to decide
when to stop and “deliver their answer”, and provide a mechanism to protect the swarm
from Sybil attacks (i.e. a specific type of attack where Byzantine robots forge many
identities to flood the swarm with false information). Through the use of simulations, the
researchers determine the efficacy of this blockchain-based approach in this more complex
context, and showcase the potential of blockchains in securing robot swarms.

Finally, a third study implements the same collective decision making task, where
robots have to estimate the frequency of colored tiles, in a physical robot swarm [23]. To
do so, the researchers use a mobile ad-hoc network protocol to share data between robots
[17], as well as the Proof of Authority [34] concept to secure the blockchain, instead of
the more computationally intensive traditional Proof of Work. In this way, they are able
to show the viability of the blockchain approach to secure physical robot swarms, outside
of simulation.
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Chapter 4

Resiliency in Robot Swarms

As a distributed system, a robot swarm relies on the cooperation between its agents to
accomplish a task, which means it is vulnerable to purposefully disruptive agents. In this
context, we can analyze the impact of these disruptive agents and denote by resiliency,
the swarm’s capacity to limit their impact. Though research in this field is recent and
developments are still ongoing, in this chapter, we analyze the resiliency of robot swarms
in different contexts.

4.1 In Collective Decision-Making

In collective decision making, a robot swarm is tasked with agreeing on a decision based
solely on local perception and interactions.

In a first study [10], robots are tasked with solving a best-of-n problem, where they
have to choose the best out of n different options (n = 2 for the study). Different options
are associated with different qualities, and the goal is for the swarm to agree on choosing
the option with the highest quality. To complete the task, robots can both measure the
quality of different options directly as well as advertise an option, in the aim of recruiting
other robots to adopt the same option. The researchers specifically study the impact of
zealots (stubborn robots that only advertise a single option and never change opinion) on
the swarm’s ability to converge towards the best option. More specifically, they study the
case where zealots associated to the worst option are more numerous, and discuss under
what conditions the system is still able to converge to the best option. They conclude
that for the models they consider, only systems where honest robots can advertise their
opinion for an amount of time proportional to the quality of their opinion, are resilient
(up to a certain point) when more zealots advertise the worst option than the best.

In a second study [8], a robot swarm also tasked with solving a best-of-n problem
is faced with three types of attacks. Contrarian robots always oppose the majority of
the group to slow down the decision process. Wishy-washy robots change their opinion
constantly and randomly, leading to the swarm not being able to stick to a decision.
Groups of zealots always advertise the same inferior option to make the swarm choose an
inferior-quality option. The study analyzes different decision models and their resiliency
to each type of attack.

A third study [27] describes communication manipulation as an attack where a threat
can manipulate, and modify, data sent between honest robots. To explore this scenario,
the study analyzes the case where a few honest robots (called discoverers) from a swarm
need to propagate information to the remaining robots (called receivers), while attackers
try to propagate the wrong piece of information. This task is modelled as a best-of-n
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problem (n = 2), where both pieces of information have the same quality, and where
only receivers can change their opinion. The researchers propose and analyze two defense
mechanisms, and show that one of these can substantially increase the swarm’s resiliency,
even for a number of attackers close to the number of discoverers.

Finally, we can also cite the blockchain-based robot swarm studies described in Sec-
tion 3.2 [32, 31, 23] that use blockchain technology to secure a robot swarm and increase
its resiliency in a collective decision-making context.

4.2 In Pheromone-Based Foraging

Robot swarms relying on stigmergic communication methods for their organization can
also be attacked in ways analogous to how ants can get trapped in a pheromone loop, or
“ant-mill”, and die of exhaustion. In [1], the attack is analyzed using a simulator where
robots are agents that solve the classical central place foraging task through the laying of
pheromone. Here, a small number of attackers (relatively to the amount of honest robots)
constantly lay “food” pheromone (i.e. pheromone used to indicate a trail to food) near
the nest, which, once a certain threshold is reached, traps honest robots inside due to
the high pheromone concentration. To mitigate this effect, honest robots can lay another
type of “cautionary” pheromone when they are following the “food” pheromone. The
quantity of “cautionary” pheromone deposited increases the longer a robot is following
a “food” pheromone trail. When the concentration of “cautionary” pheromone exceeds
that of “food” pheromone, robots stop taking the “food” pheromone into account for
their navigation. In the end, this defense mechanism is shown to be an effective way to
thwart the attackers’ trap.
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Materials and Methods

11



Chapter 5

Simulation Environment and Agents

5.1 Environment

The robots move in a finite 2D rectangular arena of size W × H. In our study we set
W = 1200 and H = 600. This space is empty except for two specific sites, the food
patch and the nest, respectively located at PF = (200, 300) and PN = (1000, 300), as
to be placed symmetrically to the left and right of the environment. These sites are
circular areas of a fixed radius rF and rN , that we set to rF = rN = 50. For a graphical
representation of the environment, see Fig. 5.1.

The robots have to transport items, which we allude to as “strawberries” due to their
graphical depiction in the simulator, from the food site to the nest site. To simulate the
time necessary for a robot to manipulate an item (i.e. the time that would be necessary
to physically collect or deposit the item), the collection and deposit of a strawberry is not
instantaneous when a robot enters a site. Instead, the robot needs to spend a random
amount of time within the site in order to collect/deposit it. We implement this random
manipulation time by placing the strawberry or deposit spot at a random point, chosen
uniformly within the site, where the robot needs to travel to complete the collection or
deposit action. Furthermore, once the robots are organized in an efficient path between
the two sites (see section 6), this process serves to shuffle the robots’ relative placement
within the chain across different round-trips, making the chain more homogeneous, and
preventing robots gaining any advantage from their relative position in the group when
buying and selling information.

5.2 Robots

Robots are point-like particles that do not collide with each other and that can commu-
nicate when within a certain communication range rC = 50. They can move freely in the
environment, up to a certain maximum velocity V = 2.5 (measured in distance moved
per simulation step) and can change direction instantly (no inertia). The robots do not
have access to any global tool (e.g. a GPS) to accurately know their position and thus
need to keep track of their own relative movement through odometry. However we assume
odometric measurements are noisy, and accumulation of odometric noise leads robots to
drift away from the trajectory they think to be following.

To model this drift, each robot has 2 intrinsic noise parameters: bias µ and standard
deviation σ. At each step of the simulation, a robot sets its desired movement as a vector
in its own reference frame. However, its actual movement is rotated by an angle sampled
from a normal distribution with mean µ and standard deviation σ. We assume the
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Figure 5.1: Environment containing 10 robots (small blue circles). The green circle represents the
food patch, the yellow circle represents the nest, and the gray rings around the robots represent their
communication range

robot uses odometry readings that indicated desired movement was carried out perfectly,
therefore there is a discrepancy between the robot’s recorded movement and its actual
motion. As a result, a robot that thinks to move perfectly straight will actually be moving
on a curved trajectory, as it is on average turning µ degrees each step.

At the beginning of each experiment, each robot samples its drift bias µ from a bimodal
probability distribution p(mµ, sµ) of the following form:

p(mµ, sµ) =
1

2
(N(mµ, sµ) +N(−mµ, sµ)) (5.1)

where N(m, s) denotes a normal distribution of mean m and standard deviation s. This
means certain robots intrinsically drift more than others. Unlike µ, the drift’s standard
deviation σ has the same value for all robots.
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Chapter 6

Social Navigation

The robots are tasked with going back and forth between a location containing food
and their nest. However, due to local sensing and communication constraints, as well as
noisy odometric estimates, they need to cooperate by sharing information on where they
think these places are in order to efficiently navigate between them. In this chapter, we
describe the base robot behavior that can store and share information to eventually form
a dynamic chain, where the system converges on a single path between the food and the
nest. This behavior is inspired from an article [13] we describe in Section 2.2.

6.1 Storing Information

When the robots move, they can use sensors to estimate the distance they have traveled
and the angle they have turned between consecutive time steps (i.e. odometry). By con-
tinuously keeping track of these estimates, the robots are able to memorize their relative
distance and orientation from a given starting position. In practice, this information is
stored in a navigation table of the following form:

Location Distance Age Known
FOOD (200,−5) 78 True

NEST (−1000, 35) 400 True

Table 6.1: Example Navigation Table

The first column contains the name of the point of interest. The second column
contains a 2D vector of the robot’s approximated distance from that point, in the robot’s
reference frame (here, the food is estimated to be 200 units forward and 5 units to the
right). The third column keeps track of the relative age of the information, and the
attribute in the last column is a boolean flag that indicates whether the information is
trustworthy or not. A row in the navigation table is referred to as a target.

At each step of the simulation, the robots increase each target’s age by 1. They
also update each target’s distance vector with the data from their odometric estimates,
by rotating each vector with the (opposite) angle they have turned, and updating their
components with any translational movement. Finally, if the robot reaches the target
location but its sensors do not confirm the presence of the expected site, the robot switches
the “known” flag to False, indicating the target is not trustworthy.
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6.2 Using Information

If a robot is not carrying any food, and has a known FOOD target in its navigation
table, it simply tries to go towards it. If it does not know the FOOD target location, the
robot explores the environment randomly (see Section 8.8.1) until either stumbling upon
the food site by chance, or until acquiring information about the FOOD’s location from
another robot. Symmetrically, if the robot needs to carry food back to the nest, it follows
the same procedure with the NEST target.

6.3 Acquiring New Information

Any given robot has two ways of acquiring new information: sensing a location directly
or getting a target from another robot. When a robot senses a given site, it can directly
update its navigation table (see Tab. 6.1) with a target containing the distance to that
site (from its sensors), setting the age attribute to 1 and the known variable to True.
Alternatively, robots constantly broadcast the age and location attributes of their own
known targets and any other robot within range can ask to buy the full target (for the
moment we consider cooperative robots, which means the transaction is free). Robots
decide to acquire another robot’s target if the corresponding age is lower than their own,
for a given location.

First, when acquiring a target from another robot, the distance attribute needs to
be rotated and modified according to the distance between the two robots, as well as
their relative orientations. Once this is done, the buyer needs to decide how to update
its navigation table. If the buyer’s own target is not known, the buyer simply replaces
its target for that location with the new one. However, if the buyer’s target has a True

known attribute, instead of simply replacing its own target with the one it bought, the
buyer combines the information from the two into a new target. The resulting target’s
age is the average of the two age attributes and the resulting distance vector is a weighted
average of the two vectors, where the distance with a lower associated age has a higher
weight. More formally:

v⃗res =
abuyer

abuyer + aseller
· v⃗seller +

aseller
abuyer + aseller

· v⃗buyer (6.1)

ares =
abuyer + aseller

2
(6.2)

with a representing a target’s age attribute and v⃗ representing its 2D distance vector.
Also, since robots only buy newer information, we have abuyer > aseller. This allows a
robot to update its own target, attributing more importance to new information, without
completely discarding its previous beliefs.

This reasoning relies on one main hypothesis: a target’s age measures its quality.
Because information is distorted through imprecise odometric estimates, older information
will likely have accumulated more errors and be more imprecise. Even though this is true
for information carried by a single robot, in the negotiation process, a robot needs to decide
if newer information from another robot is better than its own. As we know, a robot’s
intrinsic odometric drift is a random variable (see Eq. 5.1), which means newer information
from a robot with a large drift may actually be less accurate than older information from
a robot with a small drift. Therefore, there could be value in robots estimating their own
drift, to more precisely assess the quality of their own information. To test whether robots
having an intrinsic estimate of their own drift is worth it, we conducted experiments where
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a target’s age attribute was replaced with a quality attribute, varying between 100% and
0%. At each step of the simulation, the robots would decrease this quality attribute
(analogously to increasing an information’s age), and would use it to determine whether
they should buy another robot’s target.

In a first set of experiments, all robots decrease this quality attribute by the same
constant amount at each step of the simulation, which results in this quality attribute
being completely equivalent to age. In a second set of experiments, robots decrease their
quality attributes by an amount proportional to their drift (we assume they have access
to its value, even though in practice, they would need to estimate it), which means robots
drifting more degrade the quality faster. The third and final set of experiments is similar
to the second, except the quality of information decreases exponentially with a robot’s
drift (penalizing heavy drifters more).

Since the results of these experiments are similar, we conclude that estimating a robot’s
intrinsic drift, which is necessary to use the quality measure used for the second and third
set of experiments, (which would not be as accurate as for these control experiments where
we gave perfect information about the magnitude of their drifts to the robots) wouldn’t
be worth it compared to simply using a target’s age as a measure of its quality.
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Chapter 7

Dealing with Misinformation

In the previous chapter we described how basic honest cooperative robots can freely
exchange information to efficiently complete the foraging task. In this chapter, we study
what happens when we introduce liars (known as Byzantine robots in swarm robotics
terminology), i.e. robots that modify the targets they give to other robots, resulting in a
destabilized system.

7.1 Introducing Saboteurs

To study the impact of Byzantine robots, let’s introduce a new kind of behavior that lies
about the information it communicates to other robots: the saboteur behavior. Saboteurs
behave in a completely identical way to the basic behavior described in Section 6 except
for a single difference: when selling a target, they rotate its distance attribute vector by
90 degrees. This means that instead of being redirected to the desired location, robots
acquiring this target are sent off in a completely different direction. Unfortunately a
single saboteur can completely disorganize the entire system, and break any dynamic
chain formed by the collaborative robots. The ways to counter this Byzantine behavior
can be separated into two distinct categories: individual (or micro) and systemic (or
macro) protection.

On one hand, the idea behind micro-level protection is that robots try to individually
filter out or lessen the impact of a Byzantine target on their own movement. We consider
two of such strategies: the careful and smart behaviors, in Section 7.2.

On the other hand, macro-level protection comes from designing a set of rules all robots
must follow in such a way that honest robots can be distinguished from Byzantines. To this
end, we introduce different payment systems (regulating the price of buying and selling
information) and reward mechanisms (regulating the reward for completing the task) with
the intention of finding a set of rules encouraging honesty and cooperation by attributing
a higher proportion of the total wealth to honest robots compared to Byzantines (see
Section 7.3).

7.2 Individual Protection

7.2.1 Careful Behavior

Instead of comparing and combining new targets one by one, careful robots wait until
having acquired a certain number of targets before changing their beliefs. This procedure
can be seen as collecting information from multiple sources before making a decision. In
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practice, careful robots decide to buy targets in the same way as basic robots (decide to
acquire target if its age is lower), but instead of directly combining this new target with
their own, they store it in a pending information table. This table is very similar to the
robot’s navigation table, as its targets are updated at each step according to odometric
estimates, except it is not used to dictate how the robot should move.

Once a certain number s of targets have accumulated for a given location in the pending
information table, the robot combines the acquired information with its own target. To
combine this information, the robot first computes the average of the s pending targets’
distance vectors. The target whose vector is closest to this average is then chosen as a
replacement for the target in the robot’s navigation table, while the others are discarded.
The s parameter is called the security level and its value can be tuned to set (as the
name says) the desired level of security. A security level that is too low increases the risk
that the robot accepts an outlier, while a security level that is too high introduces high
latency before employing acquired information (in turn lowering the benefits of frequent
cooperation).

7.2.2 Smart Behavior

Whereas the careful behavior accumulates a fixed number of targets before choosing one
that may be arbitrarily different from the robot’s current belief, smart robots accumulate
an arbitrary number of targets in their pending information table until any pair (either
between a pending target and the robot’s current belief, or between two pending targets)
are similar enough.

In a nutshell, whenever a smart robot obtains a new target, it compares it with the one
in its navigation table as well as those in its pending information table by computing a
difference score for each pair. If at any point, this difference score is lower than a threshold
θ, the new target replaces the one in the robot’s navigation table. This difference score is
a measure of how different two targets are.

In practice the difference score is computed as follows:

diff(i, j) =
||vi − vj||

||vi||
(7.1)

where i is the “old” target, j is the new target being compared to others, vi designates
target i’s 2D distance vector attribute, and ||...|| denotes the Euclidean norm of a 2D
vector.

7.3 Systemic Protection

The goal of this section is to introduce system-wide rules or protocols regulating the
price of buying and selling information, as well as the price a robot is rewarded for
transporting an item to the nest. Indeed, when a robot deposits an item in the nest, it
obtains a monetary reward R. This money it accumulates can, in turn, also be used to
buy information from other robots.

7.3.1 Information Payment Systems

Fixed Price Transactions

The most basic information payment scheme is a buyer paying a fixed price in exchange
for a seller’s target. In this case, sharing information is incentivized as the the seller
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obtains an immediate reward. We state this payment system here due to its simplicity,
but we do not actively use it in the rest of our analysis.

Reward Share Transactions

Here, instead of paying a seller immediately, the transaction is stored until the buyer has
transported an item to the nest. In the Reward Share Transaction system, when the robot
deposits an item and obtains the reward R, it keeps a fraction a of this reward, while the
remaining (1− a) is distributed evenly between all previously stored transactions’ sellers.
More formally the robots are rewarded as follows:

• W = a ·R, is the worker’s reward (robot transporting the item)

• St =
1−a
|T | · R (for t = 1, ..., |T |) is the reward for the seller involved in transaction t

in the set T of all transactions recorded during the worker’s last round-trip

Window-Filter Reward Share Transactions

This payment scheme is based on the Reward Share Transactions mechanism, where
instead of assigning equal weights to each transaction, similar information receives a
higher share of the combined buyers’ cut. The hypothesis is that in a swarm composed
of a majority of honest (smart) robots, true information generally points in the same
direction, and saboteur information is less common and points in another direction. By
rewarding targets based on how similar they are to other targets, less numerous saboteurs
should obtain a lower share than more numerous honest robots. Each transaction stores
both the location of the sold target, as well as the angle the buyer should turn to follow
the target’s vector.

The weights are computed in the following way:

similar(ti, tj) =

{
1, if |oti − otj | < 30◦ AND locationti = locationtj

0, otherwise
(7.2)

wt =

|T |∑
i=1

similar(t, ti) (7.3)

where similar(ti, tj) determines whether transactions i and j are considered similar (based
on if the sold information pertain to the same location, and if the targets’ relative orien-
tations o to the buyer are in a 30◦ window), and the weight wt of transaction t counts the
number of similar transactions. One can note that similar(t, t) = 1, which implies wt ≥ 1.

7.3.2 Reward Mechanisms

Fixed Reward

For this very basic reward mechanism, a robot receives a fixed amount for bringing back
food to the nest. This amount has arbitrarily been set to R = 1.

Round-trip Duration Reward

The Round-trip Duration Reward mechanism modifies the reward a robot gets when
achieving the task based on the completion time. The reward is higher for more efficient
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robots. The hypothesis is that when combining this reward mechanism with the Reward
Share Transactions information payment scheme, robots are encouraged to sell accurate
information, so that the buyer is more efficient in their journey, which generates a higher
reward, and thus a bigger total share for both the target buyer and seller.

Practically, the reward’s value is calculated as follows:

R(τ) = e
1− τ

τmin (7.4)

with τmin =
2D

V
(7.5)

where τ is the time the robot took to make a round-trip between the food and nest
locations, and τmin is the minimum theoretical time to travel between the two locations,
calculated by dividing 2D, twice the distance between the food and the nest, by V , the
robot’s maximum velocity. This means the reward’s value is R = 1 for t = τmin and
follows a decreasing exponential for τ > τmin.

7.4 Introducing Greedy Robots

Due to the introduction of the information payment systems, as well as the reward mech-
anisms, we also analyse the impact of another type of Byzantine behavior: greedy robots.
Unlike saboteurs who simply disrupt the system by sending other robots off in the wrong
direction, greedy robots exploit the payment system by lying on the age attribute of their
targets and consistently setting it to 1. By doing so, since the decision to buy informa-
tion from another robot depends on the target’s age (i.e. if it is newer than what the
buyer already has), greedy robots ensure they always sell their target to any robot within
communication range.
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Chapter 8

Technical Description

In this chapter, we describe in detail how the model described in the previous chapters is
implemented. All of the code can be found on the simulator’s github repository: https:
//github.com/ludericv/information-market.

8.1 General Architecture of the Simulator

The simulator is controlled by a core MainController class. The MainController is in
charge of initializing all other software components at the start of a simulation and pro-
vides methods to retrieve data in the end (so it can be stored to a file). It uses parameters
initially specified in an external configuration file (whose path is passed to the python
script executing the simulation as a command line argument) and stored in a Config
object, to start up the other classes.

The configuration file can specify to launch the simulation with visualization. In
this case, the ViewController is initialized by the MainController to create a GUI and
manage graphical components. With visualization, the MainController also provides an
interface for the ViewController to request executing a new step of the simulation, when
a new frame can be drawn. When visualization is turned off, the MainController never
initializes the ViewController, and directly executes all the steps of the simulation in a
simple loop.

With or without visualization, the MainController is also responsible for creating the
Environment the simulation takes place in. The Environment class, as its name suggests,
is tasked with managing the state of the environment throughout a simulation. It is
responsible for initializing, storing and updating the robots, or Agent objects, as well
as managing the Agent’s interactions with the food and nest sites. The Environment
class also contains a PaymentDatabase object, that simulates a blockchain by recording
transactions between robots and managing the robots’ monetary balance when buying or
selling information, according to one of the payment systems described in Section 7.3.1.
Finally, the Environment contains a Market object responsible for calculating a robot’s
reward when depositing an item according to one of the reward mechanisms described in
Section 7.3.2.

The Agent class is responsible for managing a robot’s internal state. It abstracts away
the robot’s hardware capabilities such as its movement and communication. This class
also contains a Behavior object, representing the robot’s control software, containing
the base code for the robot’s navigation (see Section 6) and possibly implementing an
individual protection strategy (see Section 7.2), and/or Byzantine behavior (Sections 7.1
and 7.4). To be precise, the Agent asks its Behavior to decide what to communicate (i.e.
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Figure 8.1: Simplified UML Diagram of the Simulator Architecture

what information to buy from other robots) and how to move, and then carries out those
decisions.

A simplified UML representation of the simulator’s software architecture can be found
in Fig 8.1.

8.2 Synchronous Simulation

The execution of a simulation is synchronous. This means a simulation is divided in a
number τmax of individual time steps. At each of these steps, the Environment is updated
(see Section 8.3.2), which, in turn, updates the different components it contains (i.e.
robots, payment database, ...). For example, for the robots, this means moving up to a
maximum distance (determined by their maximum velocity V ), and buying/selling targets
from other robots within their communication radius.
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8.3 Environment

The Environment class models the setting the simulation takes place in. This means it
manages many different objects: the robots, food and nest sites, payment database and
market (i.e. the reward mechanism).

8.3.1 Initialization

The Environment is initialized by the MainController. In this step, the Environment
instantiates Nr robots (i.e. Agent objects), with N1 robots having one type of Behavior,
and N2 having another type of Behavior (such that Nr = N1 + N2). These Agents are
stored in a python list known as the population and are attributed an ID, which is simply
their index in the population list. When creating the Agents, the Environment sets their
location at a random point within the arena. The Environment also creates the food and
nest sites, the PaymentDatabase and Market.

8.3.2 Step

The Environment’s step method is called by the MainController at each step of the
simulation. It performs certain actions in the following order:

1. Determining which robots from the population are within communication range of
each other

2. Calling every Agents’ communicate function, where robots can communicate and
buy information from other robots within communication range (in a first for loop)

3. Calling every Agents’ step function, where the robots can decide their movement
for that time step (in a second for loop)

4. Calling the PaymentDatabase and Market’s step function

8.4 Agent

The Agent class is responsible for managing a robot’s state (i.e. its position, orientation,
number of items collected, etc.) and providing methods to modify this state. It also
contains a Behavior object, which the Agent updates at each step of the simulation to
retrieve the Behavior’s decision on how to move and buy or sell information.

8.4.1 Initialization

Nr Agent objects are created by the Environment class at the beginning of a simulation
and each Agent stores the parameters the Environment passes through the constructor.
The Agent class randomly and uniformly samples a robot’s orientation as an angle between
0◦ and 360◦, and also samples the robot’s drift bias µ like described in Section 5.2.

8.4.2 Communicate

The communicate method is called at each simulation step by the Environment, and
receives a list of references to Agents within communication range, known as neighbors,
as an argument. This method performs two actions.
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First it makes a copy of the Agent’s Behavior’s navigation table, containing the infor-
mation that other Agents can access during the current communication step. This ensures
the simulation remains synchronous, so Agents whose communication step happens later
in the loop after the current Agent do not have access to the information gathered by
the current Agent in the current time step. For example, consider three robots A, B
and C, where A and B are within communication range, robot B and C are also within
communication range, but A and C are not (B is in the middle of A and C). If B buys
information from A, C shouldn’t be able to buy that same information from B in the same
time step. This information would be accessible to C in the next time step, if B and C
are still within communication range.

Secondly, the communicatemethod initializes a CommunicationSession object, serving
as an API and implementing the protocol the Behavior can use to perform transactions,
to buy information from neighbors. The Behavior’s communicate method is then called,
receiving this CommunicationSession as argument.

8.4.3 Step

The Agent’s step method is responsible for the robot’s movement. First it asks the
environment for sensor information. This is a dictionary of six boolean values: four
proximity readings (one for each direction front, left, right and back) set to True if the
robot is at a distance lower than its maximum velocity V from a wall in that direction,
and two location readings (one for the food site and one for the nest site) set to True if
the robot is within the site.

Second it creates an AgentAPI object, containing methods the Behavior object can
call to get other information about the Agent (such as the maximum velocity V value,
whether the robot is carrying a strawberry, or to get a random turn direction respecting
the random walk pattern described in Section 8.8.1).

Finally, it calls the Behavior object’s step function, responsible for deciding the robot’s
desired movement, and updating any navigation state or information. This desired move-
ment is then retrieved as a 2D vector from the Behavior’s get dr function. Since this
vector is expressed in the robot’s local coordinate system, it needs to first be expressed
in the environment’s coordinate system. In 2D, this transformation is done by rotating
the vector by the robot’s orientation. This desired movement is then further rotated by
a random angle (in degrees) sampled from a normal distribution of mean µ and stan-
dard deviation σ, like described in Section 5.2, to simulate odometric drift. The robot’s
position is then modified by this noisy desired movement vector (making sure the robot
does not leave the environment’s bounds), and the robot’s orientation is changed to the
direction of motion.

8.5 Behavior

The Behavior class implements the equivalent of a physical robot’s control software. In
its implementation, the code uses the object-oriented programming technique known as
inheritance to reuse the same code for different Behavior variations. The abstract empty
Behavior class specifies the basic architecture a Behavior should have through four meth-
ods that will be described in this section: communicate, step, get dr and get target.

The HonestBehavior class inherits from the abstract Behavior class and implements
the base social navigation principles described in Section 6. The SmartBehavior and Care-
fulBehavior inherit from HonestBehavior and modify its communicate and step methods
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to reproduce what we described in Section 7.2. The SaboteurBehavior and GreedyBehav-
ior also inherity from HonestBehavior but change its get target method to reproduce
the Byzantine strategies respectively described in Sections 7.1 and 7.4. In the same way,
the SmartboteurBehavior (contraction of “smart” and “saboteur”) and SmartGreedyBe-
havior classes inherit from the SmartBehavior class, to share the individual protection
measures, but replace the get dr method.

8.5.1 Initialization

At initialization, a base Behavior class creates an empty NavigationTable, that will store
the robot’s estimate of the food and nest sites’ locations (see Tab. 6.1 for an example),
and initializes a 2D vector, dr = (0, 0), representing the robot’s desired movement, in
the robot’s reference frame. The HonestBehavior also initially sets a state variable to
EXPLORING (which can then change to SEEKING NEST or SEEKING FOOD), which
it uses to decide how to move. Finally, some children of the base HonestBehavior class
(the SmartBehavior, CarefulBehavior classes and their children, to be precise) initialize
other variables (such as the pending information table described in Section 7.2).

8.5.2 Communicate

The communicate method is called by the Agent class with a CommunicationSession ob-
ject as an argument. Using this CommunicationSession, the Behavior can get its neigh-
bors’ metadata for both possible locations. The metadata of a location are the age and
known attributes a robot broadcasts for the information it has about that location (see
Tab. 8.1).

Neighbor ID Age Known
15 200 True

2 560 True

19 3000 False

Table 8.1: Example metadata for the FOOD location of a robot with three neighbors.

Based on these metadata, the Behavior can buy the full target from one of its neighbors
using the make transaction method from the CommunicationSession (passing it the
desired location and neighbor ID), to also obtain the distance vector attribute. In this
case, the CommunicationSession also notifies the Environment to record the transaction
in the PaymentDatabase.

Lastly, when a transaction happens, the CommunicationSession object abstracts away
the protocol needed for robots to exchange relative orientations (since targets are vectors
in a given robot’s own reference frame), by rotating the seller’s target to the buyer’s
reference frame. The buyer also has access to the distance to its neighbors (2D vectors
in the buyer’s reference frame) through the CommunicationSession’s get distance from

method, to be able to compute its distance to the location (for an example, see Fig. 8.2).

8.5.3 Step

The Behavior’s step method is called by the Agent class, receiving sensors and an Agen-
tAPI as arguments. Its role is to decide the robot’s next movement, based on the sensor
readings, Behavior’s state and NavigationTable information. The decision for the robot’s

25



Figure 8.2: Example of A buying information from B about the FOOD location. B’s distance to the
food dB(FOOD) = (5, 0) is rotated to be in A’s reference to (0, 5), to which is added the distance to B
in A’s reference frame dA(B) = (2, 0), resulting in the final vector dA(FOOD) = (2, 5)

movement is stored in the dr vector. Note ||dr|| should be smaller or equal to the robot’s
maximum velocity V (this information can be obtained through the AgentAPI’s speed

method). If ||dr|| > V , the Agent class uses V as the desired movement’s length.
Furthermore, the targets inside the NavigationTable are rotated by the (negative) an-

gle between the dr vector and the robot’s local x axis, as the robot turns in the direction
of motion. The robot assumes its instruction is carried out perfectly (i.e. as if an odo-
metric reading confirmed the movement was carried out perfectly). In reality, the Agent
class adds noise to the movement, resulting in the robot drifting away from its desired
trajectory.

8.5.4 Get dr

The Behavior class’ get dr method should return the robot’s desired movement in its own
reference frame (see Fig. 8.3). In practice, the method simply returns the dr attribute
updated by the step method.

Figure 8.3: Example of the dr Vector in a Robot’s Reference Frame
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8.5.5 Get Target

The Behavior class’ get targetmethod receives a location name as argument (i.e. FOOD
or NEST) and returns the target the robot sells for that location. This method is called
when another robot wishes to buy information from the given robot. The base HonestBe-
havior class returns the entry for that location in its NavigationTable. The SaboteurBe-
havior (and SmartboteurBehavior) rotates the distance attribute vector 90◦ from that
entry, whereas the GreedyBehavior (and SmartGreedyBehavior) sets its age attribute to
1.

8.6 Payment

Transactions between robots buying and selling information are recorded in the Payment-
Database. This is a centralized object, initialized by the Environment, abstracting away
the idea of a decentralized database (i.e. the blockchain) that would be implemented in
a physical robot swarm, but which is outside the scope of this work.

The PaymentDatabase keeps track of each robot’s reward, as well as the transactions
the robot is a buyer in. The transactions for each buyer are stored in the buyer’s Pay-
mentSystem. The PaymentSystem object calculates the amounts to be transferred from
the buyer to seller according to the payment schemes described in Section 7.3.1. The only
exception is the Fixed Price Transactions for which the transactions do not have to be
recorded, since the price can instantly be deducted from the buyer’s reward and added to
the seller’s reward.

For the other payment schemes relying on the sellers getting a share of a buyer’s reward,
the PaymentSystem class provides a get shares mapping method to compute what share
of the total reward (initially awarded to the buyer when it deposits a strawberry in the
nest) each seller receives.

8.7 Market

The Market class implements the reward mechanisms described in Section 7.3.2. It con-
tains a sell strawberry method that returns the reward R obtained for depositing a
strawberry. The Market’s step function is used to keep track of time, which is needed
for the Round-trip Duration Reward mechanism.

8.8 Helper Modules

To finish this chapter, we quickly describe some helper modules whose functions are called
in various parts of the rest of the code.

8.8.1 Random Walk

The random walkmodule implements functions to calculate the probabilistic distributions
used for the robots’ random walk in their exploration state. In a random walk, two main
characteristics of the movement are subject to randomness: the turning angle, and the
amount of time or distance traveled between consecutive turns (also called step-length).
The specific implementation of the random walk comes from an article [11] that provides
two convenient parameters to control the step-length and turning angle distributions.
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For the experiments conducted in this thesis, the search strategy is a hybrid between a
correlated random walk (CRW) and a Lévy walk (LW). A correlated random walk means
that there exists a correlation between a robot’s consecutive turns, such that a robot is
more likely to continue moving in the same general direction (i.e. it is biased toward low
amplitude turning angles). A probability density function having such characteristics is
a wrapped Cauchy distribution, which reads as:

fρ(θ) =
1

2π

1− ρ2

1 + ρ2 − 2ρ cos θ
. (8.1)

Furthermore, a pure CRW’s step-length, or time between consecutive turns, follows a
Gaussian distribution.

A Lévy walk is characterised by its heavy-tailed step-length distribution, following a
power law,

Pα(δ) ∼ δ−(α+1) , (8.2)

which in practice leads to series of quick turns (allowing local exploration of an area)
followed by long straight-line displacements. A pure LW has a uniform turning angle
distribution.

The random walk implemented for the simulations has a distribution of turning angles
according to the CRW (with parameter ρ = 0.9), but a Lévy step-length distribution (with
parameter α = 1.4). The CRW distribution is represented by a finite set of 360 weights
(one for each integer turning angle between 0◦ and 359◦). When choosing a new turning
angle, a robot samples one turning angle based on these weights (which can be obtained
through the module’s get crw weights function). In the same way, when choosing the
next step-length, a robot samples it proportionally to the distribution of Eq. 8.2, where δ
varies between 1 and 1000. This means the distribution is truncated and the probability
to do more than 1000 steps is not taken into account.

8.8.2 Utils

The utils module provides various functions that do not belong in one of the other
classes. It contains functions to rotate vectors or calculate their norm, as well as some
Exceptions used in different parts of the rest of the code.
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Part III

Analysis and Results
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Chapter 9

Experimental Protocol

In this chapter, we quickly describe how the data used in the following chapters is gathered,
and what parameters we use.

An experiment consists of running simulations for a fixed amount of τmax time-steps
each, with a population ofNr robots. At the end of every simulation, we record the number
of items collected by each robot, as well as robots’ individual wealth, in separate CSV files.
In practice, to gather enough data, simulations are run 128 independent times (using a
different random seed), with the same parameters. In the end, the “items collected” CSV
file (the same can be applied to the “wealth” CSV file) contains 128 lines, each containing
Nr values (one number of items collected or wealth for each robot). If the population
consists of two different types of robots, with N1 of the first type (the collaborative type
by convention) and N2 of the second type (the byzantine type by convention), the N1 first
values of each line refer to the first type of robots, whereas the N2 last values of each line
refer to the second type. The values for the parameters that are fixed for all experiments
can be found in Tab. 9.1. Parameters specific to a given experiment will be explicitly
mentioned when showing the results.

Parameter Description Symbol Value
Number of robots Nr 25
Simulation length (total time-steps) τmax 15 000
Environment width×height W ×H 1200×600
Food patch position PF (200, 300)
Nest position PN (1000, 300)
Food and Nest sites radii rF , rN 50
Robot communication range rC 50
Robot maximum velocity V 2.5
Robot drift bias distribution parameters (Eq. 5.1) mµ and sµ 0.05 and 0.05
Robot drift standard deviation σ 0.05
Robot initial reward R0 3
Correlated random walk parameter ρ 0.9
Lévy walk parameter α 1.4

Table 9.1: Base Simulation Parameters
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Chapter 10

Individual Protection

In this chapter, we first show how the performance of a system composed of naive robots
(the base behavior described in Section 6), heavily deteriorates when we introduce sabo-
teurs (see Section 7.1) in the population. We then show how by introducing more skeptical
robots (i.e. the careful and smart behaviors described in Section 7.2), the population is
more robust to saboteurs. However, we also show that this robustness has a cost, as more
skeptical robots are also less efficient in a population without saboteurs. For the moment,
we consider robots exchange information for free (i.e. there is no payment system).

10.1 Naive Behavior

10.1.1 Honest Population

As a base case, we can analyze the performance of a population of naive robots imple-
menting the social navigation strategy described in Section 6. To do so, we run 128
simulations with 25 naive robots. The results are shown in Fig. 10.1.

From the violin plot on the left, we can see the median robot collects 21 items per run.
We can also see 50% of robots (first to third quartile) collect between 19 and 21 items per
run. The distribution resembles a normal distribution, negatively skewed (tail towards
low values). This is logical since inaccurate robots (with a large drift) can stray from the
main robot chain for a long time, collecting few items, but very accurate robots (with
very low drift), are not much more efficient than the rest of the robot chain. In other
words, all robots with moderate levels of drift have a similar performance because, thanks
to frequent updates and corrections of their information from other robots, they form a
chain and are able to efficiently navigate between the food and nest area. Therefore there
is no considerable difference in number of collected items among the the upper half of the
group. Instead, there is a large drop in performance when robots have drifts so large that
they fail to remain in the robot chain and drift away.

10.1.2 Population with Saboteurs

For a second set of experiments, we analyze the performance of a population of 24 naive
robots with 1 saboteur robot. The saboteur behaves like the naive, except it falsifies
information it gives to other robots by rotating its 2D distance vector attribute by 90◦

(see Section 7.1).
The plots from Fig. 10.2 first show that the performance of the naive robots heavily

drops when a saboteur is present, and is also more spread out. From the violin plot we
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Figure 10.1: Performance of a swarm of N1 = 25 naive robots, by measuring the number of items
collected by each robot at the end of a run. The violin plot on the left aggregates the data from all runs.
It plots a smoothed distribution of the number of items collected by each of the 3200 robots (25 robots
× 128 simulations). Inside the violin plot, we can see a miniature box plot, with the white point being
the median number of items collected across all 3200 robots. The figure on the right plots the mean and
standard deviation of the individual robot rewards, for each of the 128 runs, sorted by increasing mean.
This allows us to analyze the data by individual run, to visually notice effects possibly hidden by the
aggregation.

can see the first to third interquartile range is between 6 and 11 items collected (median of
9), compared to 19 to 21 items collected (median of 21) for a fully cooperative population
(composed of naive robots only). We can also see the performance of the saboteur robots
is on average better than the naives’ (interquartile range between 11 and 15, median of
13).

From the plot on the right of Fig 10.2, we can also see the means of the naive sub-
population spread from 4 to 15 items collected across the 128 runs, which varies much
more than for a fully cooperative population of naive robots (between 18 and 22 in the
right plot of Fig 10.1). Finally, this plot allows us to see a clear negative correlation
between the performance of the lone saboteur and the other naive robots in each run.
When the saboteur performs well, it means that it is able to remain on the path between
food and nest for a longer period of time, and in that case, the naive group collects very
few items and often drifts away from the main path. Instead, when the saboteur performs
poorly and often drifts away from the main path, the naive group tends to perform better
as the robot chain is less often disrupted.

10.2 Increased Skepticism

10.2.1 Performance Against Saboteurs

As Section 10.1.2 shows, the number of items collected by a naive population heavily
deteriorates when a saboteur is present. In this section we show how the careful and
smart behaviors described in Section 7.2 can make the swarm more robust to saboteurs.
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Figure 10.2: Performance of a swarm of N1 = 24 naive robots and N2 = 1 saboteur, by measuring
the number of items collected by each robot at the end of a run. The violin plot on the left shows the
distributions of items collected for the aggregated 3072 naive robots (in blue) and 128 saboteurs (in red).
The dashed lines in the violin plot show the first and third quartiles (many small dashes), as well as
the median (few long dashes). The plot on the right shows the mean and standard deviation for the
items collected by each robot for each run separating between the naive subgroup (in blue) and saboteur
individual (in red), sorted by increasing means of the naive subgroup. We can clearly see a negative
correlation between the saboteur’s performance and the rest of the naive robots in each run. When the
saboteur performs well, the naive robots perform badly, and vice versa.
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Figure 10.3: Performance of a swarm of N1 = 24 careful robots with security level s = 3 robots and
N2 = 1 saboteur.

Both of these behaviors are more skeptical than naive robots, in the sense that they wait
until having acquired multiple pieces of information before changing their beliefs.

Fig. 10.3 and Fig. 10.4 respectively show the performance of swarms of 24 careful
robots and 24 smart robots, in the presence of a single saboteur. We can see from the
violin plots that both strategies are able to collect more items in the presence of a saboteur,
than their naive counterpart can (Fig. 10.2). For both careful and smart behaviors, we can
also see that the clear negative correlation between the honest subgroup’s performance
and the saboteur individual has disappeared.

From the violin plots, we can also see that the median number of items collected by
a careful robot in the presence of a saboteur is about 45% higher than for a naive (13
compared to 9), and for smart robots, the gain in efficiency is higher than 75% (median
of 16 items compared to 9).

However, for both skeptical behaviors, the interquartile range is also wider than in the
case of naive robots ([9,16] for the careful, [12, 20] for the smart, compared to [6,11] for
the naive). Furthermore, we can note that the performance of the saboteur individuals
increases thanks to the robustness of the honest subgroup. Indeed, saboteurs are also
more efficient when the dynamic chain formed by the honest robots holds, as saboteurs
rely on honest information for their own navigation. Finally, we can see that saboteurs
perform as well when surrounded by careful robots as smart robots (same first quartile,
median, and third quartile in both violin plots).

All in all, we can conclude that the smart behavior is the most robust of the three
honest behaviors, when facing a saboteur in the swarm.

10.2.2 The Cost of Robustness

In the previous section (Section 10.2.1), we show how the previously introduced careful
and smart behavior especially, are able to increase the swarm’s robustness to the saboteur
behavior (i.e. maintain its performance compared to the naive behavior). In this section,
we show how this robustness comes at the cost of a lower efficiency when the swarm only
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Figure 10.4: Performance of a swarm of N1 = 24 smart robots with threshold θ = 0.25 and N2 = 1
saboteur.

contains honest robots (i.e. naive, careful, or smart).
Fig. 10.5 shows the violin plots for 3 experiments of 128 runs with 25 robots of each

honest type. We can see naive robots perform the best, with a distribution concentrated
around its median of 21 items collected per robot per run. Second come the smart robots
with a wider distribution, and a median of 17 items collected. The careful robots perform
the worst with the widest distribution and a median of 13 items collected per run. This
means that the two skeptical behaviors are less efficient than the naive behavior when the
population is fully cooperative. Security comes with a cost.

Furthermore, the two skeptical behaviors’ median performance and their overall dis-
tributions are extremely similar in a fully cooperative setting, to when a saboteur is
present in the population. This indicates that the two behaviors are able to filter out the
saboteur’s information effectively, unlike the naive behavior, who suffers a large drop in
performance in the presence of a saboteur.

Finally, we can also see that the smart robots are more efficient than the careful robots
in a fully cooperative environment. Since the smart behavior is superior to the careful
behavior both in the presence and absence of saboteurs, we can conclude smart robots are
strictly superior to careful robots. In the next section, we will thus only be considering
the smart behavior.

10.3 Summary of the Individual Protection Analysis

By analysing the naive, careful, and smart behaviors’ performance both in the context
of a fully honest population and in a population with a single saboteur, we obtain the
following main findings:

1. The naive robots’ performance collapses in the presence of a single saboteur. In
that scenario, saboteurs successfully disturb the system, and even perform better
than the subgroup of naive robots.
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Figure 10.5: Performance of a swarm of N1 = 25 robots of the three types of honest behaviors: naive,
careful and smart. For the smart behavior, θ = 0.25. For the careful behavior, s = 3.

2. The careful and smart behaviors are indifferent to a saboteur being present in the
population, which means the system is more robust. However, this robustness comes
at the cost of a reduced efficiency when no saboteur is present.

3. The careful behavior is strictly worse than the smart behavior.
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Chapter 11

Systemic Protection

In the previous chapter, we show how the smart robots described in Section 7.2 are resilient
to a saboteur’s misinformation. Nonetheless, smart robots are less efficient than honest
robots in a fully cooperative context, and we also show that, even though smart robots
are resilient to saboteurs, a saboteur collects more items on average than a smart robot.

In this chapter we compare different payment systems and reward mechanisms (de-
scribed in Sections 7.3.1 and 7.3.2 resepectively) as systemic rules to differentiate smart
robots from Byzantines. Indeed, the goal is to find a combination of information payment
system and reward mechanism, that causes saboteurs to be less wealthy than smart robots.
Under this hypothesis, we could then explore in future work how using this wealth value
can measure the trustworthiness of a robot, to implement new decision rules when choos-
ing whether to buy information from another robot, and possibly improve the system’s
performance (increase the number of items collected in the presence of Byzantines).

To be clear, we are not interested in measuring a robot’s performance (i.e. the number
of items that it collected). Instead, we look at each robot’s wealth, that it accumulates
through depositing items at the nest site (i.e. the reward mechanism) and by selling
information to other robots (i.e. the payment system). Furthermore, since the reward’s
value can be chosen arbitrarily, the numeric value of a robot’s total wealth does not
carry much meaning on its own. Instead, by computing the fraction of a single robot’s
wealth compared to the whole population (i.e. the sum of the wealth of every robot in
the population), we can compare different combinations of payment systems and reward
mechanisms. While the total amount of money injected into the system by the reward
mechanism may not be the same, our analysis allows us to study the efficacy of system
protection against dishonest behaviors.

Finally, in this section we use a saboteur behavior exhibiting skepticism (i.e. saboteurs
perform the same information comparison procedure as smart robots before updating their
target information). This allows us to explore what happens when more than one saboteur
is present in the population. Otherwise, if saboteurs simply buy information like naive
robots, smart robots can often ignore saboteurs’ information, whereas saboteurs sabotage
each other.

11.1 Reward Share Transactions

In this section we explore how the Reward Share Transactions payment system described
in Section 7.3.1 shapes the wealth distribution. The hypothesis is that the seller has
an incentive to sell accurate information in order to let the buyer complete a round-trip
quickly, because the seller only receives a share of the buyer’s reward once the buyer
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Figure 11.1: Wealth repartition using the Reward Share Transactions system with Round-trip Duration
Reward mechanism, for swarms of N1 = [24, 22, 20] smart robots and N2 = [1, 3, 5] smart saboteurs.
Similarity threshold θ = 0.25. Reward share a = 50%. Violin plots obtained from 128 runs for each of
the three N1 (and corresponding N2) values.

deposits its strawberry in the nest. Being more efficient and depositing more items also
reward the seller who gets paid more frequently. Furthermore, if a saboteur sends a robot
in the wrong direction, that robot will probably have to buy more information to find its
way, reducing the saboteur’s share (since more sellers share a fixed fraction of the buyer’s
reward).

11.1.1 Paired with Fixed Reward Mechanism

First we pair the Reward Share Transactions payment system with the Fixed Reward
mechanism (see Section 7.3.2). The results can be found in Fig. 11.1. We compare the
distribution of the fraction of the individual robot’s wealth over the total population
wealth at the end of a simulation. To be precise, for each of the 128 runs, the value of
each robot’s final wealth is recorded at the end of the simulation. We then compute each
robot’s fraction of the total wealth in its population for that run (for example, if every of
the N = 25 robots has the same wealth at the end of a simulation, they all have a fraction
1
25

= 4% of the total wealth). We then plot the distribution of these fractions using a
violin plot, separating between smart honest robots, and smart saboteur robots (we will
simply refer to honest robots and saboteurs from now on). The objective of this analysis
is to test if the payment system and reward mechanism lead to honest robots being richer
than saboteurs.

We can see in Fig 11.1 that the reward fraction is very similar between honest and
saboteur robots. This means that our hypothesis is falsified and the Reward Share Trans-
actions payment system paired with the Fixed Reward mechanism does not distribute
more wealth to honest robots. This can be explained by the fact that the smart robots
oftentimes buy a piece of saboteur information and do not use it actively afterward due
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Figure 11.2: Wealth repartition using the Reward Share Transactions system with Round-trip Duration
Reward mechanism, for swarms of N1 = [24, 22, 20] smart robots and N2 = [1, 3, 5] smart saboteurs.
Similarity threshold θ = 0.25. Reward share a = 50%. Violin plots obtained from 128 runs for each of
the 3 N1 (and corresponding N2) values.

to their “smart” way of filtering information, but the payment system still awards the
saboteur information the same share as truthful, useful, information sold by honest robots.

11.1.2 Paired with Round-trip Duration Reward Mechanism

To try and punish the saboteurs more heavily, we use a reward mechanism that distributes
a higher reward to robots that spend less time collecting and depositing a strawberry. The
rationale is that in this way, when a saboteur succeeds in sending a robot in the wrong
direction, it will increase that robot’s round-trip duration, diminishing that robot’s end
reward, leading to the saboteur getting a small share.

Unfortunately, from Fig. 11.2, we can see this hypothesis does not materialize. We
can provide the following considerations as an explanation:

1. When a saboteur’s information is ignored it is still paid as much as other honest
robots whose information is used by the buyer, just like in the Fixed Reward case.

2. When a saboteur’s information is used, the robot is sent off in the wrong direction.
This leads to a longer round-trip duration, and a smaller reward for both buyer
and collective sellers. This means that all the sellers that sold information for the
same round-trip as the saboteur are also penalized. Therefore, the saboteur is not
punished more than the honest robots by the lower reward share it gets from the
payment system due to increased round-trip time.
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Figure 11.3: Wealth repartition for swarms of N1 = [24, 22, 20] smart robots and N2 = [1, 3, 5] smart
saboteurs. Similarity threshold θ = 0.25. Reward share a = 50%. Violin plots obtained from 128 runs
for each of the 3 N1 (and corresponding N2) values.

11.2 Window Filter Reward Share Transactions

The previous section shows that saboteurs are hard to punish, since the decision not to
use their information happens after the transaction has concluded. This means they are
paid regardless of the use or the discarding of their information by the buyer. What we
want is a system that can detect saboteur information, and reward it less than honest
information.

This is the idea behind the Window Filter Reward Share Transactions described in
Section 7.3.1, and inspired by previous work on blockchain-secured robot swarms that
employed an outlier detection smart contract to reduce the reward of false information
when robots monitored an environment [31]. Here, when a robot buys a target, the buyer
can agree with the seller on how much the buyer would need to rotate to go where the
target points to. Due to a robot’s drift, we can expect honest information to readjust a
robot’s orientation by a similar amount at each transaction. Since saboteur information
would make the robot turn a completely different angle, and since we assume saboteurs to
be a minority in the population, their transactions would figure as outliers. By rewarding
similar information more than outliers, we expect the saboteurs to receive smaller shares
for their information sales.

The results for the Window Filter Reward Share Transactions system paired with both
Fixed Reward and Round-trip Duration Reward mechanisms can be found in Fig. 11.3 and
11.4 respectively. With both reward mechanisms, we can see a clear difference between
the proportion of total wealth attributed to honest robots and saboteurs. This means
this payment system is able to punish saboteurs. We can also see the difference between
the honest group’s distribution and the saboteur’s group distribution decreases as the
proportion of saboteurs in the population increases. This is logical since, as the proportion
of saboteurs increase, the proportion of similar outlier transactions during a round-trip
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Figure 11.4: Wealth repartition for swarms of N1 = [24, 22, 20] smart robots and N2 = [1, 3, 5] smart
saboteurs. Similarity threshold θ = 0.25. Reward share a = 50%. Violin plots obtained from 128 runs
for each of the 3 N1 (and corresponding N2) values.

also increases, leading to all outliers obtaining a bigger fraction of the reward when the
buyer deposits a strawberry.

11.3 Greedy Behavior

In the previous section we show how using the Window Filter Reward Share Transactions
payment system can reward honest robots more than saboteurs. In this section, we show
how another type of Byzantine behavior, the greedy robot (see Section 7.4), is able to
exploit this payment system, to obtain a high fraction of the total wealth.

Fig. 11.5 shows that greedy robots are able to accrue a much bigger proportion of
the total wealth at the end of a simulation, than the honest robots can. By lying on the
target’s age attribute, greedy robots are involved as sellers in a lot of transactions, and
thus get a significant portion of each buyer’s reward when it deposits an item.

Trying to counter the greedy behavior is not tackled in this thesis, but we propose the
following possible approaches:

1. Since greedy behaviors rely on selling a lot of information, one could modify the
Window Filter Reward Share Transactions payment system as to not reward, or
even punish, sellers than sell more than a certain number of targets to the same
robot.

2. Since in practice (i.e. for physical robots), the payment database would be imple-
mented using a blockchain and smart contracts, one could also use these tools to
make robots agree on a shared global clock or time-keeping service, to record the
time at which information is collected and sold. The age of an information target
could then be computed as the difference between two cryptographically verified
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Figure 11.5: Wealth repartition for swarms of N1 = [24, 22, 20] smart robots and N2 = [1, 3, 5] smart
greedy robots. Similarity threshold θ = 0.25. Reward share a = 50%. Violin plots obtained from 128
runs for each of the 3 N1 (and corresponding N2) values.

timestamps. Since in this framework, greedy robots could not lie on a target’s age,
they would not be able to exploit the payment system.

11.4 Summary of the Systemic Protection Analysis

In this chapter, we show how several payment systems and reward mechanisms combi-
nations distribute wealth in a population of honest and saboteur robots. We show that
the Window Filter Reward Share Transactions payment system provides a mechanism
to distinguish between honest and saboteur robots. Under this system, a robot’s reward
would be an indication of how trustworthy that robot is. By creating a new decision rule
(i.e. to decide whether to buy information) based on the seller’s reward, instead of solely
on the target information’s age, future work could investigate how to increase the swarm’s
performance (in number of items collected) in the presence of Byzantines, more than the
individual protection measures we present in Section 7.2.

We also show how the payment system itself, despite being effective against saboteurs,
can be exploited by another type of Byzantine behavior (i.e. the greedy behavior). We do
not provide any concrete solution to this problem but present ideas to be tested in future
work.
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Chapter 12

Future Work and Conclusion

12.1 Extending this Work

12.1.1 Window Filter Reward Share Transactions

In Section 11.2, we show that the Window Filter Reward Share Transactions system is an
effective way to distribute more wealth to honest robots than to saboteurs. However, we
have yet to use this discrepancy in a practical manner, to be able to improve the swarm’s
efficiency, as measured by the number of items collected at the end of a simulation (as it
is the goal in the end). To do so, we suggest solutions that can be grouped into two main
categories:

1. Use a seller’s wealth as a decision variable when choosing whether to buy information
from that robot. Indeed, since honest robots accumulate more wealth on average
than Byzantines, buying information from wealthy robots increases the probability
the information is truthful. Furthermore, this could create a positive feedback loop,
where wealthy honest robots get richer and saboteurs poorer, gradually increasing
the divide between the two, but this would need to be verified experimentally.

2. Use a robot’s wealth, or the Window Filter directly, to identify and blacklist sabo-
teurs, analogously to previous work in collective decision making [31]. The blacklist
would be computed and stored through the blockchain and allow robots to specifi-
cally avoid buying information from saboteurs.

Finally, one of the drawbacks of the Window Filter Reward Share Transactions sys-
tem is that it needs to compute the number of similar transactions for each transaction
recorded in the last round-trip. This can cost a number O(|T |2) (where |T | is the number
of recorded transactions) of operations, and be quite slow and computationally expensive.
Since the idea is to attribute higher shares of a buyer’s reward to similar information,
we can imagine using a different similarity measure than the count of transactions sim-
ilar to the one considered (such as the inverse distance to the median orientation of all
transactions for example). Again, this would have to be tested experimentally.

12.1.2 Dealing with Greedy Robots

One of the main drawbacks of the Window Filter Reward Share Transactions is that
it can be exploited by greedy robots or any behavior that finds a way to sell a lot of
information to other robots. In Section 11.3 we propose two general ways to mitigate this
exploit. For the first proposed solution, we can take inspiration from how Sybil attacks
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can be mitigated using blockchain technology [31], by making sellers pay a fixed cost for
any transaction recorded in the blockchain. By choosing this cost carefully (which may
depend on the size of the swarm), we could prevent greedy robots from selling too much
information, as these fixed costs would accumulate and end up being a larger amount than
the total share of the reward distributed by the Window Filter Reward Share Transactions
to all sellers.

12.1.3 Exploring Other Ideas

Even though in this thesis we concentrate on the impact (and its mitigation) of Byzantines
in a swarm of honest robots, the simulator has been built to easily explore other properties
of the information market we propose. For example one could:

• investigate what happens when communication between robots is costly (either mon-
etarily, or if robots have to stop moving to communicate);

• develop new robot behaviors that exploit in new ways the Window Filter Reward
Share Transactions system;

• look into heterogeneous swarms of two different types of honest robots with different
capabilities (for example, one type may not be able to pick up items), and how wealth
could indicate the individual contribution of each type of robot to the common
foraging task (e.g. by allocating part of the robots to become static beacons that
only sell accurate target information to other robots transporting the objects).

For the first idea, everything is in place to test different scenarios without writing ad-
ditional code. For the last two ideas, one would simply need to extend the simulator with
new Behavior classes, which can be easily implemented following the design of existing
behaviors.

12.2 Conclusion

In this thesis, our goal was to create a simulator to explore the ramifications of using an
information market to regulate communication between robots performing a social navi-
gation task. We especially focused our analysis on the performance of honest robots in the
presence of Byzantines, and proposed two complementary classes of protection measures
against the latter. Through increased skepticism, we show how a swarm of smart robots is
more robust to the disruption caused by Byzantines, but also how this robustness comes
at the cost of reduced efficiency when all robots are cooperative. Through the Window
Filter Reward Share Transactions payment system, we show how Byzantines accumulate
less wealth than honest robots and we suggest concrete mechanisms to translate these
results into ways to further improve the swarm’s resiliency.
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[34] P. Szilágyi. EIP-225: Clique proof-of-authority consensus protocol. https://

github.com/ethereum/EIPs/issues/225, 2017. (Accessed on 06/02/2022).

[35] M. S. Talamali, T. Bose, M. Haire, X. Xu, J. A. R. Marshall, and A. Reina. So-
phisticated collective foraging with minimalist agents: a swarm robotics test. Swarm
intelligence, 14(1):25–56, 2019.

[36] P. Turchin. Quantitative analysis of movement: measuring and modeling population
redistribution in animals and plants. Sinauer Associates, 1998.

[37] G. Valentini, A. Antoun, M. Trabattoni, B. Wiandt, Y. Tamura, E. Hocquard, V. Tri-
anni, and M. Dorigo. Kilogrid: a novel experimental environment for the Kilobot
robot. Swarm intelligence, 12(3):245–266, 2018.

[38] G. Viswanathan, V. Afanasyev, S. V. Buldyrev, S. Havlin, M. da Luz, E. Raposo,
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