
U
N

I
V

E
R

S
I

T
É

L

I
B

R
E

D

E

B
R

U
X

E
L

L
E

S

Federated Learning in Swarm Robotics
using Blockchain Smart Contracts

Mémoire présenté en vue de l’obtention du diplôme
d’Ingénieur Civil en informatique à finalité spécialisée

Sébastien De Vos

Directeur
Professeur Marco Dorigo

Superviseur
Dr Andreagiovanni Reina

Co-Superviseur
Dr Volker Strobel
Alexandre Pacheco

Service
IRIDIA

Année académique
2022 - 2023

* Biffer la mention inutile * Biffer la mention inutileFo
rm

u
la

ir
e

ve
rs

io
n

 0
4

/2
0

1
5

Exemplaire à apposer sur le mémoire ou travail de fin

d’études,

au verso de la première page de couverture.

Réservé au secrétariat : Mémoire réussi* OUI

NON

CONSULTATION DU MEMOIRE/TRAVAIL DE FIN

D’ETUDES

Je soussigné

NOM :
……………………………………………………………………………………
………………………

PRENOM :
……………………………………………………………………………………
………………..

TITRE du travail :
……………………………………………………………………………………
………

……………………………………………………………………………………
…………………………………

AUTORISE*

REFUSE*

la consultation du présent mémoire/travail de fin
d’études par les utilisateurs des bibliothèques de

l’Université libre de Bruxelles.

Si la consultation est autorisée, le soussigné concède
par la présente à l’Université libre de Bruxelles, pour
toute la durée légale de protection de l’œuvre, une
licence gratuite et non exclusive de reproduction et de
communication au public de son œuvre précisée ci-
dessus, sur supports graphiques ou électroniques, afin
d’en permettre la consultation par les utilisateurs des
bibliothèques de l’ULB et d’autres institutions dans les
limites du prêt inter-bibliothèques.

Fait en deux exemplaires, Bruxelles, le …………..

Signature

De Vos

Sébastien

Federated Learning in Swarm Robotics
using Blockchain Smart Contracts

02/06/2023

Résumé

Auteur : Sébastien De Vos
Titre du master : Ingénieur Civil en Informatique à Finalité Spécialisée
Année académique : 2022-2023
Titre du mémoire : Federated Learning in Swarm Robotics using Blockchain Smart
Contracts

Le federated learning est une nouvelle approche de machine learning distribué. Il offre
des avantages tels que la conservation des données localement et la distribution des calculs.
Plus précisément, le federated learning signifie que chaque machine entraîne un modèle
localement puis échange uniquement les paramètres appris. Cependant, pour agréger les
paramètres entraînés localement, les travaux existants utilisent principalement des ser-
veurs centralisés. Bien que cette approche montre un grand potentiel dans les systèmes
multi-robots, elle ne convient pas aux systèmes de robotique en essaim qui, inspirés par
les comportements collectifs des systèmes biologiques, visent à créer des systèmes décen-
tralisés où des robots autonomes peuvent s’auto-organiser et atteindre des objectifs sans
autorité centrale. Dans cette thèse, nous présentons un proof-of-concept de federated lear-
ning dans un essaim de robots ne compromettant pas la décentralisation. Pour ce faire,
nous utilisons la technologie de la blockchain pour permettre à notre essaim de robots de
synchroniser un modèle partagé qui est l’agrégation des modèles individuels sans dépendre
d’un serveur central. Cette implémentation protège également l’entrainement des modèles
contre des attaques de robots défectueux et malveillants, appelés robots Byzantins, pou-
vant survenir dans les réseaux décentralisés. Nos expériences sont menées dans ARGoS,
un simulateur basé sur la physique de robotique en essaim, tout en utilisant le protocole
blockchain Ethereum exécuté par chaque robot simulé. Nous montrons qu’introduire un
seul robot Byzantin peut perturber considérablement le processus d’apprentissage des
modèles. À cet égard, nous avons conçu deux mécanismes de protection qui empêchent
efficacement l’impact des Byzantins. Nous montrons également les inconvénients et les dé-
fis actuels de ces mécanismes. Nous espérons qu’avec les solutions proposées, cette thèse
pourra ouvrir la voie à une méthodologie sécurisée de federated learning dans les travaux
futurs.

Mots-clés : federated learning, robotique en essaim, byzantin, blockchain, smart contract.

Abstract

Federated learning is a new approach to distributed machine learning. It offers advan-
tages such as keeping data locally and distributing computation. Specifically, federated
learning means that each machine trains a model locally and then exchanges only the
learned parameters. However, to aggregate the locally trained parameters, existing work
mainly uses centralized servers. Although the approach shows great promise in multi-
robot systems, it does not lend itself easily to swarm robotics systems which, inspired by
collective behaviors in biological systems, aim to create decentralized systems where au-
tonomous robots can self-organize and achieve objectives without a central authority. In
this thesis, we present a proof-of-concept implementation of federated learning in a robot
swarm that does not compromise decentralization. To do so, we use blockchain technology
to enable our robot swarm to synchronize a shared model that is the aggregation of the
individual models without relying on a central server. This implementation also protects
the learning process from different Byzantine faults or attacks that may occur in decen-
tralized networks. Our experiments are conducted in ARGoS, a physics-based simulator
for swarm robotics, using the Ethereum blockchain protocol which is executed by each
simulated robot. We show that introducing only a single Byzantine can heavily disrupt
the training process. As such, we devise two protection mechanisms that effectively pre-
vent the Byzantine’s impact. We also show the drawbacks and current challenges of these
mechanisms. We expect that with the solutions provided, this thesis can pave the way to
a secure federated learning methodology in future works.

Keywords: federated learning, swarm robotics, byzantine, blockchain, smart contract.

Acknowledgments

I would like to express my sincere gratitude to Andreagiovanni Reina, Volker Strobel,
and Alexandre Pacheco, without whom this thesis would have never been possible. Their
invaluable support and guidance, both technically and personally, have been instrumental
throughout this journey. I am truly thankful to them for their continuous assistance. I
would also like to express my gratitude to Marco Dorigo and the IRIDIA group for allow-
ing me to conduct my work in their laboratory.

Furthermore, I would like to extend my appreciation to my friends who accompanied
me on this lengthy academic voyage in the field of engineering.

I am also deeply grateful to my family, especially my parents, for their unwavering love,
comfort, and assistance whenever I needed it. Their constant support has been a source
of strength throughout my endeavors. Additionally, I would like to thank my brother,
Julien, and my sister, Émilie, for their encouragement and positive mindset, which helped
me overcome challenges along the way. Lastly, I would like to express my heartfelt ap-
preciation to Élodie, for her continuous encouragement and source of motivation to push
the utmost out of me.

Acronyms

AI Artificial Intelligence
ANN Artificial Neural Network
DNN Deep Neural Network
FL Federated Learning
LSTM Long Short-Term Memory
MAE Mean-Absolute Error
ML Machine Learning
MSE Mean-Squared Error
PoA Proof-of-Authority
PoS Proof-of-Stake
PoW Proof-of-Work
RaB Range and Bearing
SC Smart Contract
SGD Stochastic Gradient Descent
SSE Sum of the Squared Error
TCP Transmission Control Protocol
TF TensorFlow

Contents

1 Introduction 1
1.1 Objectives . 2
1.2 Related Work . 2

2 Background 4
2.1 Artificial Neural Networks . 4

2.1.1 Feed-forward Mechanism . 5
2.1.2 Back-propagation . 6
2.1.3 Federated Learning . 7
2.1.4 Long Short-Term Memory Layer . 8

2.2 Blockchain Protocols . 10
2.2.1 Monetary Ledger . 10
2.2.2 Distributed Computing Platform 12

2.3 Swarm Robotics . 14

3 Methodology 16
3.1 Simulation Environment . 16

3.1.1 Robot Controller . 17
3.1.2 Dataset creation . 20

3.2 Federated Learning & Blockchain . 20
3.2.1 Neural Network Architecture . 20
3.2.2 Federated Learning implementation on Blockchain 21

3.3 Byzantines Behaviors and Security Layers 22
3.3.1 First and Second Security Layer . 23
3.3.2 Three Byzantine Behaviors . 24

4 Results & Discussion 26
4.1 Data Quantity . 26
4.2 Introduction of Byzantine Robots . 30
4.3 First Security Layer . 30

4.3.1 Ether distribution . 33
4.4 Second Security Layer . 34

4.4.1 Ether distribution . 36
4.5 Smart Byzantines and Current Limitation 37

4.5.1 Ether distribution . 38
4.6 Discussion . 39

CONTENTS CONTENTS

5 Future Work & Conclusion 41
5.1 Future Work . 41
5.2 Conclusion . 42

Bibliography 43

List of Figures

2.1 Feed-forward ANN . 5
2.2 Classical vs centralized federated machine learning 7
2.3 LSTM representation . 9
2.4 Bitcoin transaction scheme . 10
2.5 PoW mining . 11

3.1 Experimental arena & compass . 17
3.2 E-puck robot in ARGoS simulator with its 8 infra-red proximity sensors. . 18
3.3 Training sequence of actions of a robot in the docker container. 19

4.1 1st experiment’s aggregation rounds . 27
4.2 1st experiment’s number of samples . 28
4.3 1st experiment’s convergence speed . 28
4.4 1st experiment’s final loss . 29
4.5 2nd experiment’s convergence speed . 30
4.6 3rd experiment’s convergence speed and aggregation rounds 31
4.7 3rd experiment’s number of samples . 32
4.8 3rd experiment’s ether of honest robots . 33
4.9 3rd experiment’s ether of Byzantine robots 33
4.10 4th experiment’s convergence speed . 34
4.11 4th experiment’s aggregation rounds and final loss 35
4.12 4th experiment’s number of samples . 36
4.13 4th experiment’s ether of honest robots . 36
4.14 4th experiment’s ether of Byzantine robots 36
4.15 5th experiment’s convergence speed . 37
4.16 5th experiment’s aggregation rounds and final loss 38
4.17 5th experiment’s ether of honest robots . 38
4.18 5th experiment’s ether of Byzantine robots 38
4.19 Memory usage in megabytes of the blockchain in function of time. 40

Chapter 1

Introduction

Swarm robotics takes its roots from collective behavior in biological systems such as bee
or ant colonies. As a group, they are capable of solving complex problems, such as finding
safe nesting locations through individual decision-making and peer-to-peer interactions.
Swarm robotics aims to create decentralized systems in which the robots in a swarm
can self-organize and complete goals effectively. This means that there is no centralized
authority deciding the robots’ behavior nor infrastructure that allows for global commu-
nications. Rather, self-organization is an emerging property of the simple interactions
between individuals and the environment. Additionally, most swarms consist of cooper-
ative robots, similarly to how swarms of insects are cooperative by nature because they
share the same goal. However, recent research has shown that the actions of damaged or
malfunctioning robots may propagate errors that lead to undesired group behaviors. In
more extreme cases, robots may be hacked and actively try to harm the swarm. Robots
with these characteristics are referred to as Byzantine robots. Recent research by Strobel
et al. [35] and Pacheco et al. [28, 27] introduces blockchain technology to swarm robotics
in order to address these security issues.

In the field of Artificial Intelligence (AI), Federated Learning (FL) is a novel approach
to distributed machine learning. It has the advantage of increasing data privacy by keep-
ing data locally and sharing computation. In FL, each agent performs local training (for
example, on a smartphone) on the data it has collected and shares the trained model
with a centralized server that aggregates all the individual models. FL shares a similar
foundation with swarm robotics, as both involve agents performing small tasks to achieve
a common objective. However, FL still relies on a centralized server.

This thesis explores the implementation of federated learning in swarm robotics. Each
robot of the swarm locally trains a model with the data they have collected. However, in
contrast to classical FL, which uses a central server to aggregate the parameters of the lo-
cal models, a decentralized and secure data structure will be utilized. This data structure
is the Ethereum Blockchain, which is maintained by the robot swarm. The Ethereum
Blockchain supports Smart Contracts (SC) which allows programs to be executed in a
decentralized blockchain network and reach consensus on the outcome of the programs.
Additionally, this thesis explores resilience to malfunctioning or malicious robots, specif-
ically Byzantine robots that may send incorrect model parameters. Therefore, using a
blockchain serves a dual purpose: as a distributed computation platform that enables the
synchronization of an aggregated model; and as a means to implement security mecha-

1

Introduction Objectives

nisms that address the risks posed by Byzantine robots for the model training.

In this thesis, we begin by providing an overview of the background and employed
technologies in Chapter 2. Next, in Chapter 3, we present the experimental implemen-
tation, including the network architecture that we implemented, the weights transmitted
by each Byzantine robot, and the protective measures that we designed. Subsequently,
we analyze the results of each experiment and outline areas for future investigation in
Chapter 4. Finally, we conclude this thesis with a discussion on the results and findings
of our study, its implications, and potential future developments in Chapter 5.

1.1 Objectives
It has been shown that FL can be used by a robot swarm to perform decentralized and
collective learning of a model for trajectory prediction [21]. Unfortunately, we show that
this method is fragile to the introduction of a single Byzantine robot that sends random-
ized parameters (similar to the initialization parameters of this model).

Our objective is thus to present an implementation of the same federated learning
mechanism as a smart contract on the blockchain. This migration is done because the
blockchain mechanism has proven to be effective when dealing with Byzantine robots in
swarm robotics [35, 27].

We then show a smart contract implementation that prevents the harm caused by
the same Byzantine robots and enables the secure federated learning of the model in the
presence of Byzantine robots.

1.2 Related Work
This thesis builds upon the paper Flow-FL: Data-Driven Federated Learning for Spatio-
Temporal Predictions in Multi-Robot Systems [21]. We re-implement this paper and
change the aggregation mechanism to be on the blockchain and the training to take place
during the experiment rather than post-experiment. Since this thesis combines 3 fields:
swarm robotics, federated learning and blockchain, we divide this section in 3 part. First
we discuss the current implementation of federated learning in swarm robotics. Next, we
present the ongoing work related to federated learning in blockchain. Finally, we end with
a discussion over the implementation of blockchain in swarm robotics.

Federated learning saw its debut with McMahan et al. [22] at Google in 2016 to train
the Gboard on smartphones [11] while keeping all the training data on the user’s device,
increasing data privacy. Then FL started to gain interest in the swarm robotics fields.
Majcherczyk et al. [21] implemented FL for trajectory prediction in swarm robotics and
decentralized the aggregation process in a driven-data approach which they call Flow-FL.
Na et al. [23] proposed a federated reinforcement learning strategy for automatic con-
troller design of robot swarms. Finally, Zhu et al. [49] explores the implementation of
a decentralized deep reinforcement learning for swarms using the blockchain as the ag-
gregation mechanism, which bears similarities to the approach we implement in this thesis.

2

Introduction Related Work

Federated learning on the blockchain is also a novel approach. Wang and Hu [46] were
among the first to explore this concept and conducted a comprehensive survey on the
application of blockchain in federated learning. In their paper, they discussed multiple
architectures, and the one this thesis implements is the fully coupled blockchain FL, where
the agents of federated learning serve as the nodes of the blockchain. To incentivize par-
ticipants to contribute, appropriate reward mechanisms have been proposed. Kim et al.
[17] introduced BlockFL, a blockchain-based approach that rewards users proportionally
to the number of samples used for training. However, this mechanism poses a threat where
the value of samples may be exaggerated by malicious nodes. In this thesis, we explore
the aspect of malicious nodes and implement a similar reward mechanism. Other reward
mechanisms, such as the Shapley value method [33], exist to assess the contribution of
federated learning participants fairly. However, calculating the Shapley value is time-
consuming. Liu et al. [20] implemented the Shapley value method in their blockchain
called FedCoin, a peer-to-peer payment system for federated learning that enables fea-
sible profit distribution based on the Shapley value. In Fedcoin, blockchain consensus
entities calculate the Shapley value and a new block is created based on the proof of
Shapley (PoSap) protocol. Wang et al. [45] and Song et al. [33] also implemented their
version of the Shapley value as a base for their reward mechanism. Lastly, Kang et al.
[16] implemented another effective incentive mechanism. They proposed reputation as a
metric to evaluate reliability and trustworthiness. They then effectively created an incen-
tive mechanism combining reputation with contract theory to motivate high-reputation
mobile devices with high-quality data to participate in model training.

Finally, blockchain was first introduced to swarm robotics by Castelló Ferrer [7]. He
described a range of applications for blockchain in robot swarms, including secure commu-
nication, data logging, and consensus agreement. Later, as a first proof of concept, Strobel
and Dorigo [36] designed a system to protect a swarm of robots from Byzantine where
the task was to reach a consensus on the most present colored tile in an arena. This sys-
tem used the Ethereum blockchain framework [6] and the robot swarm simulator ARGoS
[29]. The same researcher then extended this work to determine the relative frequency of
white tiles and presented the ARGoS-blockchain interface [35]. Lastly, Pacheco et al. [27]
implemented the same collective decision task in a physical robot swarm. They used a
mobile ad-hoc network protocol to share data between robots and switched the blockchain
consensus algorithm to proof-of-authority [38] which is much less computationally inten-
sive than the initially implemented proof-of-work consensus algorithm [24]. With these
changes, they effectively demonstrated the viability of the Ethereum blockchain approach
for the protection of physical robot swarm to Byzantines in real world. This thesis uses
the ARGoS-blockchain interface with Ethereum and the proof-of-authority algorithm.

3

Chapter 2

Background

This thesis relies on three main technologies: Artificial Neural Networks, Blockchain, and
Swarm Robotics. Each technology will be reviewed to describe what is the current state
of research and the tools that have been used to conduct this thesis.

2.1 Artificial Neural Networks
Artificial neural networks (ANN) can be traced back to the field of artificial intelligence
(AI) and the early research on modeling the human brain [32]. Today they are used as
powerful machine learning tools, like GPT-4 which is a generative AI capable of generating
text based on a user’s queries (through text) [26]. The task of the neural network is to
match as best as possible an input to an output. Let x be the input, y be the desired
output, M(·) (for model) the neural network, and the d weights associated w. The goal
of the model is defined as:

y = M(x; w) (2.1)
Typically, we call the output of a model a prediction, and is defined as ŷ. Training

a model is the equivalent of solving an optimization problem where the objective is to
minimize a loss function L(w) by tuning the weights.

min
w∈Rd

L(w) with L(w) = 1
N

N∑
i=1

ℓ(yi, xi; w) (2.2)

Where ℓ(yi, xi; w) corresponds to the loss of the prediction for sample (xi, yi) with
weights w. For this minimization to be effective, a large amount of samples (xi, yi) are
needed, this is what we refer as the data set which, in the case of Eq. 2.2, is of size N .
Many loss functions exist, such as the Mean Squared Error (MSE) which is used in re-
gression ANN problems [41].

To further explain the principles behind ANN, this section is divided into four parts.
The first two sections, feed-forward and back-propagation, aim to explain how the model
is used and trained. Next, in Section 2.1.3, we introduce the federated learning (FL)
algorithm. Finally, in Section 2.1.4, we present the Long-Short Term Memory (LSTM)
layer, which is a different kind of layer than the classical dense (neurons) layer, as it is
used in the model for trajectory prediction.

4

Background Artificial Neural Networks

2.1.1 Feed-forward Mechanism
An ANN can be viewed as layers of neurons. Each neuron of a layer is connected to every
neuron of the next layer with its associate weight [4]. Typically, an ANN will be composed
of an input layer, a hidden layer, and an output layer (Figure 2.1). If there are multiple
hidden layers, the model is usually referred to as a Deep Neural Network (DNN).

Figure 2.1: Feed-forward ANN with an input layer x, a hidden layer z and an output layer ŷ.

From Figure 2.1, let1:

• n the number of inputs.

• L the number of layers.

• m(l) the number of hidden neurons of the lth layer ∈ {1, ..., L}.

• w
(l)
ij the weight connecting the ith neuron of layer l − 1 to the jth neuron of layer l.

• z
(l)
j with j ∈ {1, ..., m(l)} the output of the jth hidden neuron of the lth layer.

• b(l) the bias of the lth layer.

• Finally we denote m(0) = n and z
(0)
j = xj with j ∈ {1, ..., n}.

The output of neuron z
(l)
j for l ≥ 1 is composed of a linear and non-linear part (which

is why we call ANN non-linear algorithms). Let’s first consider the linear part of z
(l)
j as v

(l)
j

which is given by the linear combination of the weights and the neurons of the previous
layer:

v
(l)
j =

m(l−1)∑
k=1

z
(l−1)
k · w(l)

kj + b(l−1) · w(l)
0j for j ∈ {1, ..., m(l)} (2.3)

1This section is inspired from Gianluca Bontempi’s Handbook chapter 8.1.1 on Artificial Neural Network
[4]

5

Background Artificial Neural Networks

The non-linear part is called an activation function. Multiple activation functions
exist, with the most popular ones being the sigmoid, ReLu (Rectified Linear unit), or
hyperbolic tangent function [39]. For example, the ReLu function is defined as:

ReLu(x) = max(0, x) (2.4)

Let us call a(l)(·) the activation function of layer l, z
(l)
j can be obtained by processing

v
(l)
j through the activation function:

z
(l)
j = a(l)(v(l)

j) (2.5)

The output, for example of a 2 layers ANN, is thus associated with its input with the
following equation:

ŷ = a(2)(v(2)
1) = a(2)

m(1)∑
k=1

z
(1)
k · w

(2)
k1 + b(1) · w(2)

01

 , (2.6)

where

z
(1)
k = a(1)

 n∑
j=1

xj · w(1)
jk + b(0) · w(1)

0k

 for k ∈ {1, ..., m(1)}. (2.7)

2.1.2 Back-propagation
The back-propagation algorithm is used to find the optimal weights. It is a gradient
descent-based algorithm with the goal of minimizing the non-convex loss function [4]. In
this thesis, the loss is computed as the Mean-Squared Error (MSE) over a dataset of N
samples.

L(w) = 1
N

N∑
i=1

(yi −M(xi; w))2 = 1
N

N∑
i=1

(yi − ŷi)2 (2.8)

The back-propagation computes the gradient of the loss function with respect to the
weights and updates the weights using a learning rate η. The basic approach of gradient
descent is called the iterative gradient descent[4] or more commonly Stochastic Gradient
Descent (SGD) [37].

w(t + 1)← w(t)− η
∂L(w(t))

∂w(t) , (2.9)

where w(t) is the weight vector at iteration t.

More advanced gradient descent techniques have been later introduced such as the
Root Mean Square Propagation2 (RMSProp) [31] and Adam3 [18]. Both RMSprop and
Adam are improved optimization algorithms of SGD which have faster convergence speeds.
Still, SGD will be used for this thesis as it is the foundation of the Federated Averaging
Algorithm (see next section) which will be used and was also used in Flow-FL4.
2RMSProp was first introduced as class note slides:
http://www.cs.toronto.edu/∼tijmen/csc321/slides/lecture_slides_lec6.pdf

3Adam is not an acronym but is derived from adaptive moment estimation. Adam adjusts the learning
rate for each weight by utilizing estimations of the first and second moments of the gradient.[2]

4In their paper [21] they mention they used RMSprop, yet in their code SGD was the optimizer used,
this is why we use SGD.

6

Background Artificial Neural Networks

2.1.3 Federated Learning
Federated Learning (FL) is a machine learning technique that enables multiple devices
to collaboratively train a model without the need to share data with a centralized server.
It is an iterative algorithm that involves sharing the model between clients and server
instead of clients sharing their data with the server, Figure 2.2.

Figure 2.2: Classical (left) vs centralized federated (right) machine learning5. The clients
are represented with phones, and the file logo represents the data of each client. The model is
represented with the network of neurons next to the server on the left image and between clients
and server on the right image. Lastly, the server is represented with a computer and is on the
top of both images.

To set up FL, the server first decides on the architecture of the ANN/DNN it wants
and initializes the weights. Weights can be initialized randomly [14] with different dis-
tributions, such as a normal distribution [40]. Once the server has its initial model it
selects from the available clients the ones that will perform local training. Once locally
trained the client sends back the model and the server aggregates them. This is called
an aggregation round and this whole process (apart from setting the weights initially) is
repeated iteratively until convergence of the model.

There are multiple aggregation mechanisms, such as FedAwo [48], FedProx [19], Fed-
Nova [44], FedDyn [1], or FedAdp [47]. However, in this thesis, we focus on Federated
Averaging (or FedAvg) [22], a simple yet effective algorithm that works well with LSTM
layers. The FedAvg algorithm is an optimization problem with a similar goal to the
original ANN.

min
w∈Rd

L(w) with L(w) =
K∑

k=1

nk

N
Lk(w), (2.10)

where
Lk(w) = 1

nk

∑
i∈Pk

ℓ(yi, xi; w), (2.11)

5We created this image using Alex Lenail model generator for the neural network
https://alexlenail.me/NN-SVG/index.html and using the file logo from https://www.iconpacks.net/free-
icon/file-1453.html.

7

Background Artificial Neural Networks

and let:

• K the number of clients.

• C the fraction of selected clients.

• Pk the data set of client k

• nk the data set size of client k.

• B the local mini-batch size.

• E the local epoch count.

• R the number of aggregation rounds.

In a scenario where C = 1 (so using all clients) with learning rate η, each client will
compute their local training and update their weights

wk(t + 1)← wk(t)− η
∂Lk(wk(t))

∂wk(t) , (2.12)

where wk(t) corresponds to the weights of robot k at time t. Before any update has been
made locally the weights wk(t) = w(t). Also, if the number of batches is > 1 (due to
B < nk) or the number of epochs E > 1 then the weights are updated multiple times
locally, and only at the last update are the weights assigned to wk(t + 1). All wk(t + 1)
are then aggregated with a weighted mean based on the number of samples they have
trained on:

w(t + 1)←
K∑

k=1

nk

N
wk(t + 1). (2.13)

2.1.4 Long Short-Term Memory Layer
Long Short-Term Memory (LSTM) is an ANN layer that enables the learning of time-
series data using a carousel mechanism. It was a response to the vanishing/exploding
gradient issue of Recurrent Neural Networks with long time-series data that made the
training of such ANN much longer [15]. In 2017, another improvement in time-series data
processing for ANN was introduced by Vaswani et al. [43]: The Transformer. Trans-
formers are powerful tools that made GPT6-4 possible. One issue of transformers is their
computational and memory cost (they are heavier to run than LSTM). Since this thesis’s
training dataset input size is short (32 points long sequences for the input), transformers
are unnecessary. Instead, we use LSTMs because they are the lighter option while still
being capable of solving the ANN problem we present in this thesis.

LSTMs are made of 4 gates: the forget gate, the input gate, the state candidate gate
and the output gate, Figure 2.3.
6GPT stands for Generative Pre-trained Transformer.

8

Background Artificial Neural Networks

Figure 2.3: Representation of an LSTM with weights w, u, and bias b using the sigmoid
and hyperbolic tangent (tanh) activation functions . The add symbol corresponds to a matrix
addition and the mul symbol corresponds to a Hadamard product ⊙ [34].

LSTMs have two main branches, here depicted with ct and ht, which respectively
correspond to the long-term memory and the short-term memory [34]. They carry the
information of the previous input (xt−1) to the next (xt) of a given sequence. ht is also
the final output of the LSTM when the whole sequence has been processed. To compute
ct and ht, two different activation functions are used in this LSTM: the sigmoid σ(x) and
the hyperbolic tangent (tanh) τ(x),

σ(x) = 1
1− e−x

, τ(x) = ex − e−x

ex + e−x
. (2.14)

With these activation functions we can define the respective gates equations:

ft = σ(wfxt + ht−1uf + bf) (2.15)
it = σ(wixt + ht−1ui + bi) (2.16)
st = τ(wcxc + ht−1uc + bc) (2.17)
ot = σ(woxt + ht−1uo + bo) (2.18)

Using these gate equations, ct and ht can be computed as

ct = ct−1 ⊙ ft + it ⊙ st (2.19)
ht = τ(ct)⊙ ot. (2.20)

The weights of a LSTM layer are identical for all elements of the sequence. Only ct and
ht are updated when getting the next input xt of the sequence. In the same way as the
neurons of Section 2.1.1, LSTMs weights are updated by applying the back-propagation
algorithm of Section 2.1.2.

9

Background Blockchain Protocols

2.2 Blockchain Protocols
Blockchain technology made its debut in 2008 with the Bitcoin cryptocurrency created
by Satoshi Nakamoto7 [24] as a way to record digital transactions in a decentralized way.
This means that, for the first time, it became possible to send money across the internet
without the need for governmental or banking institutions to manage user accounts and
funds. Instead, these transactions are recorded on a distributed public ledger that relies
on trustless verification and consensus systems that ensure that double-spending funds is
not feasible.

Ethereum [6] is another cryptocurrency and blockchain protocol which launched in
2014. It extends upon Bitcoin in the sense that the transactions that go on its ledger are
not only monetary: when sending Ethereum transactions it is possible to execute code
on a public computing platform known as the Ethereum Virtual Machine. The computer
programs that users can interact with are known as Smart Contracts (SCs). In this thesis,
we leverage Ethereum SCs to execute code synchronously in a network of robots.

Throughout the remainder of this section, we present the fundamentals of blockchain
technology, starting with the Bitcoin blockchain as a monetary ledger, and then the
Ethereum blockchain as a distributed computing platform.

2.2.1 Monetary Ledger
Bitcoin, in the first place, is a way of transferring a form of digital money known as a
cryptocurrency. All transactions are stored in a ledger. A transaction is, for example,
Alice sends Bob 5 Bitcoin. For a transaction to be accepted it needs to be digitally signed
by Alice with her private key as money is being transferred from her account to another
account. To prevent Bob from copy-pasting Alice’s transaction multiple times a hash of
the previous transaction (in this case Alice’s transaction) is included in the creation of the
signature, Figure 2.4. In Bitcoin and most blockchain frameworks, all the data is public
and accessible by everyone using the blockchain.

Figure 2.4: Transaction scheme of the Bitcoin Blockchain [24]. Looking at the second trans-
action, owner 2 would be Bob, and owner 1 would be Alice, as Alice is transferring Bitcoins to
Bob. The transaction is digitally signed by using the hash of the previous transaction to or from
Alice and the public key of the next owner (Bob). Anyone can then verify this signature using
the public key of the previous owner (Alice).
7Satoshi Nakamoto is a pseudonym, and their real identity remains unknown to this day.

10

Background Blockchain Protocols

In the second place, Bitcoin is a decentralized system, which means that every partici-
pant keeps a copy of the blockchain. Then, for a transaction to be added to the blockchain
it needs to be included in a new block, that will be appended to the blockchain. To achieve
this, users broadcast their transactions to other participants which keep a local buffer of
transactions known as a mempool.

A block is thus a collection of transactions that are collected from the mempool of the
node that issued that block. New blocks are issued through a process called mining. The
mining process is at the core of the consensus protocol that Bitcoin uses: proof-of-work
(PoW). A consensus protocol is a mechanism used to enable multiple participants or nodes
to agree on the state of a system. It ensures that all participants reach a consistent view
of the shared data, even in the presence of failures, delays, or malicious actors. Indeed, as
the blockchain is decentralized, participants have to choose and agree on a single version
of the blockchain.

Proof-of-work

PoW is the consensus mechanism that enabled decentralized systems to prevent double-
spending (a situation where the same Bitcoin would be used for 2 transactions). Mining
consists in hashing the block with the hash of the previous block (which is what creates
the chain of the blockchain) and a nonce8, Figure 2.5. The goal is to change the nonce
such that the hash begins with a certain number of zero bits.

Figure 2.5: PoW mining mechanism of a new block [24].

Finding the nonce is exponentially harder as a function of the number of zeros required.
While finding the nonce is hard, verifying it is quick and simple and it can be done
by executing a hash function. Trying to cheat by changing the transaction inside a
block would require re-mining an old block and this is a hard operation since finding a
nonce before every other miner in the blockchain is highly unlikely, therefore cheating is
discouraged. Miners are rewarded with Bitcoins and transaction fees9 when their block is
added to the blockchain. This is what motivates miners to mine as fast as possible and
this requires high computing power. Finally, when there are conflicting blockchains from
different nodes, the longer blockchain (meaning the one with the most proof of work) is
the chosen blockchain. The other blockchain being discarded means that all the extra
blocks that are not on the longest blockchain aren’t taken into consideration anymore
and miners lose all rewards they previously received, this is what also incentivizes miners
to always mine on the longest blockchain.
8A nonce is a number used only once.
9The transaction fee is a small compensation the senders add to motivate miners to include their trans-
actions.

11

Background Blockchain Protocols

2.2.2 Distributed Computing Platform
Ethereum is another blockchain that introduced its cryptocurrency, Ether, in 2014. It
allows for the execution of Turing-complete programming code on the blockchain, enabling
the use of SCs. These contracts enable participants to execute code on the blockchain
and accept the outcome without requiring trust or supervision. One can interact with
SCs in two ways: through call functions or transact functions. The call function is used
to access functions that do not change the state of the smart contract and are therefore
used for making queries or accessing information on the blockchain. On the other hand,
transact functions are functions that will change the state of the blockchain, and thus
require users to send a transaction and pay a certain fee depending on the complexity of
the code to be executed. Similarly to regular transactions in Section 2.2.1, transactions
that interact with SCs are first stored in the local mempool of the nodes, and once they
are included in a block and appended to the blockchain, the state of the SC is updated
definitely.

Proof-of-stake

Recently, in 2022, Ethereum changed its consensus algorithm and switched to proof-of-
stake (PoS) [25]. PoS is a response to PoW’s main flaw which is its high amount of power
consumption required to mine blocks. Also, PoW gives more rewards to people with
better equipment (having a higher hash rate10) as the higher the hash rate the higher
the chances are of being the one to create the next block. This also led people to start
working together, which is called a mining pool, where they combine their mining power
and distribute the reward between them. This effectively had the effect of making PoW
more centralized.

In PoS, the people validating the blocks are not called miners anymore but validators
and validators forge new blocks[25]. PoS’s point of view was that letting everyone try
to solve the problem is wasteful, instead it uses an election process in which one node is
selected to forge the next block. To become a validator, a node has to deposit a certain
amount of cryptotokens (like Ether) in the network as stake. The size of the stake deter-
mines the probability of a validator being chosen to forge the next block. The chances
increase linearly with the deposit amount11. If a node is selected to forge the next block,
it has to ensure that the transactions it adds to the block are valid. Afterward, the node
signs the block, adds it to its blockchain, and broadcasts it to the network. As a reward
the node receives the fees that are associated with the transactions inside this block. On
the other hand, if the validators approve fraudulent transactions, they will lose a part of
their stake. Validators can be trusted to correctly validate transactions as long as their
stake is higher than the sum of the rewarded transaction fees. In the end, this is a financial
motivation for good validators and discourages fraudulent behavior as they will lose more
than they gain. When a node stops being a validator, its stake plus all the transaction
fees that it received will be released after some time.

10The hash rate is the hashing speed of a system, i.e., the number of hashes a system can compute per
second.

11Here an analogy could be made with PoW as having more powerful equipment (thus more expensive)
leads to having higher chances of finding the solution. Effectively making the rich more favorable to be
rewarded.

12

Background Blockchain Protocols

PoS is thus a solution that is more decentralized than PoW (due to its mining pools)
and also encourages more people of being nodes of the network as it is much less expen-
sive when compared to PoW (which requires expensive equipment) making it even more
decentralized.

PoS is not a perfect solution either. It has issues with the fact that if an individual
reaches 51% of the total amount of stake of the network he can effectively control the
blockchain12. Additionally, the validator election cannot be perfectly random[30], as it
would create a snowball effect where the richest validators would become richer and gain
more chances of being elected, perpetuating the imbalance. Thus, PoS also brings its own
risk compared to PoW.

Proof-of-authority

The framework used for this thesis implements a different consensus algorithm with the
Ethereum blockchain: proof-of-authority (PoA) [38]. PoA proved itself as a good consen-
sus mechanism for swarm robotics using blockchain technology [27].

In PoA, the validators are called sealers and are the nodes that can create blocks with
their signature and add them to the blockchain. Sealers are pre-approved nodes by the
network administrator, and the election, similar to the PoS consensus election mecha-
nism, is biased towards a preferred sealer selected in a round-robin13 manner. When the
preferred sealer signs the block, it is called an in-turn signature, and if another sealer
signs it then it is an out-of-turn signature [10].

For a block to be valid, certain conditions have to be met, notably:

• The timestamp of the new block must be at least t seconds, after the previous one.
In this thesis, the time t is set to t=10 s and is explained in Chapter 3.

• The sealer can only sign one block in ⌊N
2 ⌋ + 1 where N is the number of sealers.

This is to ensure the 51% majority rule.

• The sealer must correctly sign the block with its private key and the hash of the
previous block.

Finally, the block is broadcasted through all the nodes which can then verify the
block. As it is the case with previous consensus protocols, the chain with the highest
sealing priority is the one the nodes agree on. In the case of PoA, blocks signed with in-
turn signatures have a sealing priority of 2, whereas out-of-turn signatures have a sealing
priority of 1.

PoA is able to scale easily, as it can either keep a core of trusted sealers or add and
remove some based on a majority vote. Nonetheless, PoA is more inclined to private
12It is called the 51% rule and this is still quite unlikely for Bitcoin or Ethereum because it would require

to have billions worth of dollars/euro in mining hardware or Ether, respectively, on the blockchain.
13Round robin is a method of sequentially selecting all elements of a group in a fair and systematic

manner, where each element is chosen in turn and the selection process starts over again from the
beginning of the list once all elements have been chosen. This order is typically rational and consistent,
such as starting from the top of the list and proceeding downwards.

13

Background Swarm Robotics

networks, in the sense that only allowed nodes can seal blocks. But this is not an issue in
the case of this thesis as it is desired that the network is private and that only selected
robots be sealers.

2.3 Swarm Robotics
Swarm robotics is the field that designs groups of robots following the principles of swarm
intelligence [9, 12]. Swarm intelligence is a research field that focuses on the collective be-
haviors exhibited by decentralized and self-organized systems composed of multiple agents
[3, 8]. Swarm intelligence draws inspiration from the behavior of social insects, like ants
and bees, which do not have a central authority and, instead, focus on the resulting collec-
tive behavior originating from local interactions between the individuals themselves and
the environment.

Similarly, in robot swarms, collective behaviors emerge from the local communication
among robots, and from the interactions between robots and their environment. In par-
ticular, robot swarms act in an autonomous and self-organized way.

Indeed, one characteristic of robot swarms is the concept of localized interaction,
wherein each robot has a finite range of communication and perception. Consequently, at
any given moment, each robot directly interacts exclusively with its neighboring robots.
The primary implication of this is that individual robots remain unaware of the overall
size of the swarm and are unaffected by it.

A robot swarm can consist only of robots with identical hardware and control software.
This is known as a homogeneous swarm. Alternatively, a robot swarm can include robots
with different hardware and/or control software from different classes. This is known as
a heterogeneous swarm. Both homogeneous and heterogeneous swarms share a common
characteristic: they exhibit a high level of redundancy. Within these swarms, multiple
robots possess the capability to perform each individual action necessary to fulfill the
given mission. Essentially, no single robot is essential or irreplaceable.

The aforementioned characteristics (i.e., locality and redundancy) are highly valued
due to their recognized ability to enhance resiliency, scalability, and flexibility [12].

Firstly, with a high redundancy and the lack of a single point of failure (because no
robot is irreplaceable), robot swarms are resilient. This promotes a system that is robust
to the failures of individual robots.

Moreover, the locality of interaction within the swarm plays a key role in achieving
scalability. Due to this locality, robots in the swarm are unaware of the swarm’s size.
Given that the density does not vary significantly, adding or removing robots will not
qualitatively alter the behavior of the swarm. This makes the swarm scalable as it is not
required to modify the behavior of individual robots when there are more or fewer robots.

Finally, the ability to perform parallel execution (each robot executing the same code)
enables the swarm of robots to react to contingencies, modification of the environment,

14

Background Swarm Robotics

and changes in the working conditions. This flexibility enables the swarm to dynamically
respond to evolving situations.

15

Chapter 3

Methodology

The federated learning scenario using the Ethereum blockchain is implemented in AR-
GoS [29], a physics-based simulator tailored for research in swarm robotics. The interface
between Ethereum and ARGoS was originally employed for studying blockchain-based
robot swarms1[28, 35], and the authors also extended the framework to real-robots [27].

In this thesis, the mission of the robots is to utilize federated learning to train a neu-
ral network that can predict the trajectories the robots will follow, based on previously
recorded positions within a 2D space filled with obstacles. The process involves the robots
keeping their data and collectively training a shared model, which is subsequently shared
back on the blockchain for aggregation. We present in this chapter how we implemented
this mission.

We start by presenting the simulation environment in Section 3.1. In the same section,
we describe the robot controller and the data collection methodology. In Section 3.2, we
present the neural network architecture and the implementation of federated learning on
the blockchain. Finally, in Section 3.3 we explain the details behind the security layers
and the different weights the Byzantines send in each experiment.

3.1 Simulation Environment
The arena is a 2D closed square of dimension 5000×5000 mm2 populated with 15 robots.
The experiment has a time limit of 50 000 steps, with 10 steps executed per second
(effectively making the simulations 5000 s long). The arena is uniformly filled with 5
cylinders of radius 150 mm and height 500 mm, and 5 boxes in the form of rectangular
parallelepipeds with a base size of 300 × 300 mm2 and a height of 500 mm. A visual
representation of the arena is shown in Figure 3.1a.
1The source code of this thesis is available at: https://github.com/teksander/geth-argos

16

Methodology Simulation Environment

(a) Experimental arena (b) Compass and bearing (not to scale)

Figure 3.1: Experimental arena in which robots perform obstacle avoidance (left) & Robot’s
compass and bearing representation (right). Alpha is the angle between the robot’s orientation
and the North, and the bearing the is angle between the robot’s orientation and the position of
the neighboring robot.

The Robots we use are e-pucks [13] that are augmented with a range-and-bearing mod-
ule and a GPS. E-pucks have a diameter d = 75 mm and move at a speed of 2.5 mm·step−1,
which is the distance moved per simulation step, in the arena. The range of communica-
tion between robots is r = 2500 mm and the bearing β ∈ [−π, π[is the angle between the
direction of the robot and the relative position of a neighboring robot, see Figure 3.1b.
Robots have access to GPS coordinates, meaning that they know their (x,y) position at
any given time where x, y ∈ [−2500, 2500]. They also have access to a compass where
the North is at the top of the arena. The angle α ∈ [−π, π[measures the orientation of
the robots around the z-axis, where the positive α values are on the left side (i.e. anti-
clockwise direction starting from the North) of Figure 3.1b. In this context, an angle of
0 represents the North2.

Knowing α, β, r, d and, the position of a robot, which we call here (xr, yr) for reference
robot, we can compute the estimated position (x̂, ŷ) of a neighbor as:x̂ = xr + (r + d) · cos(α + β)

ŷ = yr + (r + d) · sin(α + β)
(3.1)

3.1.1 Robot Controller
During the experiments, each robot continuously performs obstacle avoidance and collects
data (a detailed explanation on the data collection methodology is in Section 3.1.2). In
parallel, every 100 s, robots will enter the training state. In the training state, they first
call the blockchain to access the latest weights (see Section 3.2 for a detailed explanation
2All these parameters are the same as the one used in the Flow-FL paper [21] to enable comparison of
the results. However, the original article used Khepera robots. Our choice to use E-pucks is motivated
by the fact that E-pucks have been equipped with a Raspberry Pi computer and have been shown to be
capable to run blockchain software [27], thus facilitating a future extension of this work to a swarm of
physical robots.

17

Methodology Simulation Environment

of the training and model description). They then train a neural network with these
weights and finally submit the weights back on the blockchain.

Obstacle avoidance

At every time step, robots move in the arena. To move, we either increase or decrease
the speed of each wheels. The e-puck has 2 wheels, one on its left and one on its right.
The E-puck also has 8 infra-red proximity sensors as shown in Figure 3.2.

Figure 3.2: E-puck robot in ARGoS simulator with its 8 infra-red proximity sensors.

The sensors with indexes 0, 1, 6, and 7 are utilized in constructing our obstacle
avoidance algorithm, which is why the weights assigned to these indexes in the algorithm
are {−10, 10}. The sensor returns a value ∈ [0, 1]. A value of 0 indicates the absence of
an obstacle in front of the sensor, while a value between 0 and 1 represents the proximity
between the robot and the obstacle. Based on this information, we employ the following
obstacle avoidance function.

Algorithm 1 avoid with left and right respectively the speed of the left and right wheel
of the robot, speed a constant equal to 2.5, and thresh_ir a threshold value equal to 0.2.

obstacle, avoid_left, avoid_right ← 0
readings = epuck_proximity.get_readings() ▷ The infra-red sensor values
weights = [−10,−10, 0, 0, 0, 0, 10, 10]
for i = 0 to 7 do

if reading > thresh_ir then
obstacle = True
avoid_left += weights[i] · readings[i]
avoid_right -= weights[i] · readings[i]

if obstacle then
left = speed/2 + avoid_left
right = speed/2 + avoid_right

return left, right

Finally, before we set the speed values for each wheel, the values are saturated so as
to never exceed 2.5 speed per wheel.

18

Methodology Simulation Environment

Algorithm 2 saturate with left and right respectively the speed of the left and right
wheel of the robot and speed a constant equal to 2.5.

m = max(|left|, |right|)
if m > speed then

left = left·speed
m

right = right·speed
m

return left, right

Interaction with the blockchain

The implementation of the blockchain for each robot is made possible through the use
of docker containers, each running ethereum/client-go:v1.10.2. Each robot has thus its
own docker container associated. Originally, we wanted each docker container to have its
own instance of TensorFlow3 (TF). Unfortunately, due to difficulties in creating a docker
image that includes both TensorFlow and Go-Ethereum simultaneously, a separate server
has been built with the sole purpose of running TensorFlow to train the weights. This
means that when robots want to train their NN, they connect to the TensorFlow server
via TCP4 connection and send their weights and their ID. This way, the server can access
the data of the robot contacting it. This is thus a central server for training that was
deployed for technical reasons, but if an actual implementation for real robots would take
place, each robot would have its own TensorFlow instance.

Since training takes less than 4s (this value comes from the test with 1250 s expiration
time) and a maximum of 15 robots perform training, the queue will never exceed the
100 s. This queue is also mitigated through time as robots wait 100 seconds after training
before recontacting the server, this effectively spreads the robots in the 100 s interval of
training. A visual representation of the training sequence is in Figure 3.3.

Figure 3.3: Training sequence of actions of a robot in the docker container.

In Figure 3.3 is the sequence of action corresponding to:

1. Robot sends a query to the blockchain to access the latest weights.

2. The blockchain sends the latest aggregated weights.
3TensorFlow is the library used in Python to train the neural network in this thesis.
4TCP is a communication standard used for communication over the network.

19

Methodology Federated Learning & Blockchain

3. The robot uses TensorFlow to train its data with its weights.

4. TensorFlow returns the trained weights.

5. The robot submits its weights on the blockchain.

When it comes to the block sealing period on the blockchain, it is set to 10 seconds.
This means that transactions are sealed every 10 seconds. We settled on this value as a
compromise between a too-short or too-long sealing time. On one hand, if the sealing time
was shorter, there would be numerous blocks mined without any transactions included.
On the other hand, if the sealing time was longer, many transactions and even aggregation
rounds would have to wait to be sealed, which could potentially delay the aggregation
process.

3.1.2 Dataset creation
A trajectory is a combination of 100 positions over time (thus trajectories of 10 s) and
each position is computed using Eq. 3.1. If the connection with a neighboring robot is
interrupted during the recording, the trajectory is discarded. When robots collect these
trajectories, they store them into .csv files. This data collection methodology originates
from the Flow-FL paper [21] and has been translated from C++ to Python. A robot
stores its trajectories every time it collects 10 complete trajectories to minimize file open-
ing and closing.

In this implementation, we made the decision to assign an expiration time to the data,
which is a tuning parameter determined in the first experiment in Section 4.1. This choice
was made to emulate a realistic scenario where it would not be conceivable to, for exam-
ple, store ever-increasing amounts of data on a robot.

To reduce the data loading process when training the neural networks, trajectories are
saved in different files every 50 s. Specifically, the first 50 s of trajectories are stored in the
file traj1.csv, the next 50 s are stored in traj2.csv, and so on. The last file being traj100.csv
since each experiment takes 5000 seconds. This way, when we say that data has a 750
seconds expiration time, it means that only the 15 last trajectory files are opened. This
prevents from processing large amounts of data that would not be used.

When the data of the trajectory files are loaded they are split into an 80% training
set and 20% validation set.

3.2 Federated Learning & Blockchain

3.2.1 Neural Network Architecture
The neural network architecture is the same one as the one in the Flow-FL paper [21] and
is a sequential model composed of:

• First layer: 16 LSTM with input size 32x2

• Second layer: Dropout of 20%

20

Methodology Federated Learning & Blockchain

• Third layer: Dense layer of 96 (48x2) neurons.

• Final layer: Reshape layer that sets the output with shape 48x2.

As a result, there are a total of 2848 parameters in the model. Additionally, with
an input size of 32x2, it corresponds to an input duration of 3.2 seconds. Similarly, the
output size of 48x2 corresponds to a predicted trajectory output duration of 4.8 seconds.
Consequently, we use only 8 s out of the recorded 10 s duration. This has been kept as is
to compare the results with the Flow-FL paper [21]. Additionally, the optimizer used is
SGD as discussed in section 2.1.3 and the loss function is the MSE.

3.2.2 Federated Learning implementation on Blockchain
The SC we use in this thesis is in the Solidity language and runs on versionˆ0.8.0. On
the blockchain, there is a gas price associated with computational operations performed
within the smart contract. This gas price is proportional to the amount of computation ex-
ecuted. Additionally, there are typically limits imposed on gas usage to prevent excessive
computational load on the blockchain. However, in this thesis, we do not delve into this
aspect, and all limits have been removed to facilitate aggregations within smart contracts.

The SC provides two functions to the robots (excluding the monitoring function):
submitWeights for sending trained weights and getWeights for retrieving the currently ag-
gregated weights. At the start of each experiment, initial weights are set on the blockchain.
These initial weights are obtained through random initialization performed by TensorFlow
for our specific model. It’s important to note that the Solidity language does not support
floating-point numbers. To address this limitation, we multiply the weights by 109 when
sending them to the blockchain and then divide them by 109 when retrieving the weights
from the blockchain.

When the weights are submitted on the blockchain, to reduce computation, a rolling
average is performed. This means that only 2 lists are stored on the blockchain: curren-
tWeights and nextWeights. Effectively they are assigned as follows:

nextWeightsi += nk · wk,i ∀i ∈ {1, 2, ..., 2848}, (3.2)

currentWeightsi = nextWeightsi

N
∀i ∈ {1, 2, ..., 2848}, (3.3)

where nk is the number of samples the robot k has trained the weights on and wk is the
weights of robot k after training them and N is the total number of samples (so the sum
of the nk) used in an aggregation round.

The number of participants (the quorum size) shouldn’t be too high as indicated by
the paper on FedAvg [22]. Thus the number of participants has been set to 50% of the
number of robots, which comes to 7.

Additionally, to minimize memory usage, the weights are constrained to the int48
data type. This decision is based on the fact that weights always remain within the
interval ∈ [−1, 1] which is then scaled to ∈ [−109, 109]. Also, in the case of a 1250 s

21

Methodology Byzantines Behaviors and Security Layers

expiration time (as shown in Section 4.1, Figure 4.2), the average number of samples
is approximately 330. Since the rolling average involves the summation of the product
between the number of samples used and the weight, the theoretical limit is equal to
109 · 330 · 7 = 2.31 · 1012 < 247 = 1.41 · 1014.

Moreover, considering that we have 2848 weights of size int48, the weight list occupies
2848 · 48 = 133.5 kilobits (Kb), or 16.7 kilobytes (KB). Therefore, whenever the robots
send their weights, the blockchain memory increases by approximately 16.7 KB.

Both the batch size and epoch count are set to 20, following the parameters used in
the Flow-FL paper5. Finally, the learning rate has been kept at its default value of 0.001
and the number R of aggregation rounds is not set as we try to do as much as possible in
the 5000 s available per experience.

In summary, the FedAvg [22] has been adapted on the blockchain to be:

Algorithm 3 FedAvg with K = 15 total clients; C = 50% fraction of clients partic-
ipating; B = 20 local mini-batch size; E = 20 local epochs; R aggregation rounds and
learning rate η = 0.001.
Blockchain executes:

initialize w(0)
for round t = 1 to R do

p← max(C ·K, 1)
St ← (random set of p clients)
N ← 0
for client k ∈ St do

nk ← (number of samples of robot k)
N ← N + nk

wk(t + 1)← RobotTrain(k, w(t))
w(t + 1)← ∑

k∈St

nk

N
· wk(t + 1)

RobotTrain(k, w):
B ← (split Pk in batches of size B)
for epoch e = 1 to E do

for batch b ∈ B do
w ← w − η∇ℓ(b; w)

return w

3.3 Byzantines Behaviors and Security Layers
We implement two smart contracts. A basic one that has no security against Byzantine
robots, i.e., it functions only as a distributed database and model aggregator. We use this
smart contract to test the convergence of the model and to aid in the choice of appropriate
expiration time. And a more advanced one with two security layers that require robots
5In the paper they mention they do only one epoch but when looking at their code they were replicating
the data 20 times for their epoch which is the equivalent of 20 epochs.

22

Methodology Byzantines Behaviors and Security Layers

to make a transaction of ether when submitting their weights. The transaction fee is set
to 5 ether and the number of ether each robot starts with is 21 ether. In the case of the
robot’s weights being completely discarded (due to the first security layer), this effectively
lets them lose the equivalent of four submissions before not being able to submit anymore
(the extra ether is to take care of the gas fee when executing the SC). For the other
robots, this lets them lose and gain money without making them be instantly discarded
the moment their weights are considered bad (this refers to the second security layer).

3.3.1 First and Second Security Layer
The first security layer is based on a threshold. Every time a robot submits its weights on
the blockchain, they are compared with the previous aggregated ones. The comparison is
a distance function, The Mean-Absolute Error (MAE), which sums the distance of each
weight respectively.

MAE(ws, wa) = 1
N

N∑
i=1
|ws,i − wa,i| (3.4)

In Eq. 3.4, ws are the submitted weights, wa are the previously aggregated weights,
and N is the total number of trainable weights (in this case 2848). During training, the
peak MAE robots achieved on average was 107 (due to the multiplication by 109). The
threshold above which weights are not taken into account is thus set to five times this
average. This means that if a robot sends weights that generate a MAE greater than
5 · 107, it loses the money it submitted.

The second security layer consists of a ranking function. Since the aggregation pro-
cess requires seven robots, there is seven ranks. The robots are ranked based on their
distance (measured using MAE) from the previously aggregated weights. The robot with
the distance that corresponds to the median of all the distances of the seven robots is
ranked first. Then the following ranks are based on the absolute difference between a
robot’s distance and the ranked first robot’s distance. Robots with a distance similar to
the median are ranked high, whilst robots with a distance much different (leading to a
high absolute difference) are poorly ranked.

For example, let’s assume the seven robots have these MAE: [33, 54, 22, 19, 44, 77, 61].
The median value of this list is 44, thus the fifth robot would be ranked first. Hence,
the current ranking is [_, _, _, _, 0, _, _] where we put 0 for the robot ranked first,
and 6 for the robot ranked last. Then we compute the absolute difference between the
robot’s MAE and the MAE of the robot ranked first. This gives the following list:
[11, 10, 22, 25, 0, 23, 15]. We then rank the robots based on these distances, with the
shorter having a good rank, and the higher having a bad rank. The final ranks are thus:
[2, 1, 4, 6, 0, 5, 3].

Each rank has its own weight corresponding to a higher or lower reward. The weights
are of 2 categories, positive and negative. The positive weights are for the first (in ranking)
n robots, which are positively rewarded, and the last robots (in ranking) have negative
weights, which indicates a penalty in their reward. To compute the reward/penalty both
the weights and the number of samples are taken into account. The number of samples is
also considered since they also take part in the aggregation. The idea of this combination

23

Methodology Byzantines Behaviors and Security Layers

came from four thoughts:

1. High ranking with a high number of samples should lead to a good reward.

2. High ranking with a low number of samples should lead to a reward.

3. Low ranking with a low number of samples should be penalized.

4. Low ranking with a high number of samples should be severely penalized.

The rank weights for this thesis are [1, 1, 1, 1, 1,−1,−1], consisting of 5 equal positive
weights, and 2 equal negative weights. This thus rewards the first robots and penalizes
the 2 last robots. Note that if there are only good robots that send weights, they should
have an equal probability for any rank since they send on average 200 samples. This leads
good robots to eventually cancel the penalty with the rewards.

The sum of the reward is equal to the sum of the penalties which is equal to the
submission price: 5 ether. Finally, each robot is rewarded/penalized a fraction of this
reward/penalty. This fraction is computed as follows:

First, we compute the product between the robot’s rank weight (rw) and the number
of samples (s) it has trained on:

wi = rwi · si ∀i ∈ {1, 2, ..., 7}. (3.5)
Then the positive weights are normalized between them only, and the same goes for

the negative ones:

wf,i = wi∑
i∈P wi

∀i ∈ P , (3.6)

wf,j = wj

|∑j∈N wj|
∀j ∈ N , (3.7)

where P and N represent the set of positive and negative weights respectively, and wf is
the final weight. The amount of ether robot i is getting back is then:

mi = (1 + wf,i) · 5 ether ∀i ∈ {1, 2, ..., 7}. (3.8)
Since the price of submitting weights is 5 ether, this effectively means that positively

ranked robots get wf ·5 ether in addition to the submission price (they thus make a profit).
On the other hand, negatively ranked robots lose wf · 5 ether from their submission price.

3.3.2 Three Byzantine Behaviors
In experiments two to five, we introduce Byzantine robots. There are 3 types of Byzan-
tines. The first one is considered to be faulty and sends random weights using the ran-
dom.randint() function provided by Python, which generates random numbers following a
uniform distribution. It has uniformly distributed weights in the interval [−0.5, 0.5] which
are then multiplied by 109 for the blockchain. We use this Byzantine robot in experiments
2 and 3, respectively in Section 4.2 and 4.3.

24

Methodology Byzantines Behaviors and Security Layers

The second Byzantine robot is considered to be a malicious robot (for example, be-
cause it has been hacked) that sends as trained weights the currently aggregated one.
This is to slow down the training and is in response to the first security that prevents
vastly different weights from being accepted. We use this Byzantine robot for the fourth
experiment in Section 4.4.

Finally, the third Byzantine robot is a smart hacked robot. Its objective is to always
be ranked first, which would make it rich and the other robots poor. This is to try and
bypass the second security layer. To be ranked first, it needs to know what is the median
MAE. To estimate it, it tracks over time what are the current aggregated weights w(t) and
what are the previous aggregated weights w(t− 1). Then it computes the MAE between
the two lists of weights. This MAE is an indicator of how much it needs to change the
current weights to try to be ranked first. The weights the Byzantine robot sends are thus:

wk
i (t + 1) = wi(t) + r ·MAE · 2 (3.9)

Where r is a uniformly distributed random value between 0 and 1 which is regenerated
for every weight wi(t). Since it is uniformly distributed, it is multiplied by 2 such that on
average r will be equal to 1, which effectively generates weights with a bias that have the
same MAE. This bias will harm the network and at the same time make the robot richer.
This Byzantine robot is used in the fifth experiment in Section 4.5.

25

Chapter 4

Results & Discussion

This chapter presents the results of five experiments that we conducted. The first exper-
iment, discussed in Section 4.1, was conducted as a means to establish the data quantity
that is suitable for federated learning on the blockchain. The second experiment, in
Section 4.2, we introduce a faulty Byzantine robot (that sends random weights), but is,
however, capable to impede collective learning. The third experiment, in Section 4.3,
presents the results of our first security layer, which is shown to be capable of managing
faulty Byzantine robots. Section 4.4 is the fourth experiment and presents the results of
our second security layer, and how it fares against a malicious type of Byzantine robot
(that uses the previous aggregated weights as its trained weights). And the fifth exper-
iment, in Section 4.5 presents the results of a smart Byzantine robot (see 3.3.2) that
manages to bypass both security layers and take the money of honest robots. Finally, a
discussion of all the experiments is done in Section 4.6. Note that all the results discuss
a loss (or average loss), and this loss specifically refers to the validation loss.

4.1 Data Quantity
The first experiment consists of 15 well-functioning robots performing obstacle avoidance
in the arena. This experiment will thus verify if we managed to apply federated learning
on the blockchain using a smart contract. Also, since all the robots are collaborative, the
only variation in each configuration will be the amount of data used for training. The
objective is to determine the data expiration time (i.e., the minimum amount of data)
that is needed for optimal convergence speed and final results.

This is important because it can be expensive to store large amounts of data, as robots
may have limited storage capabilities. Additionally, training data can become outdated in
dynamic scenarios. Similar reasoning would also be valid in different scenarios, for exam-
ple, in federated learning deployed on people’s smartphones, it would not be tolerable to
store all the data and take up a considerable amount of the phone’s memory for the sake
of training. Therefore, our solution is to discard data older than a given expiration time.
This experiment is designed to measure how the expiration time influences the collective
learning performance on what is a suitable value for our next experiments.

For this experiment, we executed 5 runs1 for each configuration of data expiration
1Only 5 runs are performed per configuration as we only want to select the data expiration time to fix a
parameter for the following experiments.

26

Results & Discussion Data Quantity

time, which ranges from 250 s to 1250 s.

Figure 4.1 shows that as the data expiration times increase, the number of aggregation
rounds increases. This is potentially due to the blockchain receiving too many transactions
per second (or the block sealing period of 10 s being too high) with a small data expiration
time where the training on the server is shorter (taking maximum 2 seconds). Also one
could have expected the number of aggregations to reach:

aggregations = 15
7 ·

5000
100 = 107 (4.1)

As there are a total of 5000
100 training periods, 15 robots in the arena, and 7 robots

required for aggregation. However, this theoretical limit is hard to reach as communication
limitations and blockchain conflicts lead to fewer aggregations taking place in the end.

Figure 4.1: 1st experiment’s aggregation rounds for each data expiration time.

Figure 4.2, presents the number of samples (the number of trajectories) each robot
uses when performing local training at given aggregation rounds. We can see that higher
expiration times lead to a higher number of samples. For example, with 250 s the number
of samples available for training averages 65, and for 750 s it averages 200. This also indi-
cates that the number of samples available increases linearly with the expiration time, 3
times more expiration time leads to 3 times more data for training. We can also see that
a certain delay is required to reach the peak number of samples for a given expiration
time. This is because robots always start with zero data, and have to create their dataset
along the experiment.

27

Results & Discussion Data Quantity

Figure 4.2: 1st experiment’s number of samples used for training for each expiration time in
function of the aggregation round.

The results of Figure 4.3 are computed as follows: the loss of the general model is
obtained by taking a weighted average of the loss of each robot taking part in the ag-
gregation round. As for the aggregations, the weights depend on the number of samples
each robot has locally trained the model on. Additionally, since 5 runs were executed for
each configuration, the average (the darker line) of the 5 runs is displayed with its 95%
confidence interval (the lighter area of one’s color tone).

On Figure 4.3, 2 graphs are present, one in linear scale and one in logarithmic scale.
The reason why both are shown is that usually, loss graphs in a neural network are with
a linear scale. In the case of this thesis, experiments will have really similar results to the
point that graphs wouldn’t be readable on a linear scale. This (and the next Figure 4.4)
will thus be the only linear scale loss graphs presented.

(a) Linear scale (b) Logarithmic scale

Figure 4.3: 1st experiment’s average loss in function of the aggregation rounds with only
collaborating robots for each expiration time in function of aggregation rounds.

When looking at Figure 4.3, visually 250 s and 500 s prove to be insufficient expiration
times for training the model, as the convergence speed (i.e. the speed of average loss’
decrease in function of the aggregation rounds) of these expiration times is significantly

28

Results & Discussion Data Quantity

impacted. On the other hand, starting at 750 s, increasing the data leads to diminishing
returns, refer to Figure 4.4. Indeed, even though an expiration time of 1250 s is 500 s
longer than an expiration time of 750 s, its improvement (in terms of average loss re-
duction) is much less than the improvement we see when increasing from 250 s to 750 s.
Comparing our results with the ones obtained in the original article that proposed the
Flow-FL framework [21], the convergence speed of our system (Figure 4.3) is quantita-
tively different but qualitatively the same. By that, we mean that we reach the same final
results with a loss of 10−2 for the higher expiration times, but we do not have the same
convergence speed. In particular, our system has a slower convergence speed, which may
be caused by the use of a different parameter set (as it was not possible to identify all
parameters used in the original Flow-FL article [21]).

In Figure 4.4 we present the final loss (i.e., the loss at the end of an experiment)2 in
the form of boxplots. These boxplots and all the other graphs with boxplots show the
following: the lower extreme, lower quartile, median, upper quartile, and upper extreme
with the whiskers length being 1.5 times the interquartile range.

(a) Linear scale (b) Logarithmic scale

Figure 4.4: 1st experiment’s final loss with only collaborative robots for each expiration time.

To quantify why we select the 750 s data expiration time, we present in Table 4.1 a
relative performance by setting 1250 s as the best performer. All experiments start with
an initial loss, on average, of 1.5. We thus compute the relative performance with:

rp = 1.5− ℓi

1.5− ℓ1250
(4.2)

Expiration Time [s] Average Final Loss Relative Performance
250 0.3095 79.93%
500 0.0507 97.30%
750 0.0187 99.46%
1000 0.0175 99.54%
1250 0.0106 100%

Table 4.1: Relative performance table of the final average loss for each data expiration time.

Based on Table 4.1, augmenting the data beyond 750 s only results in marginal im-
provement, with 750 s managing to achieve 99.46% of the results obtained with 1250 s,
2In this subsection, we stop the experiments at 80 aggregation rounds, to enable a comparison with the
experiment with 250s data expiration time, whose minimum number of aggregation rounds is 80.

29

Results & Discussion Introduction of Byzantine Robots

while also exhibiting a similar convergence speed (as shown in Figure 4.3). Therefore, we
selected the 750 s expiration time as the optimal data expiration time for the subsequent
experiments.

4.2 Introduction of Byzantine Robots
As we have shown, the swarm is capable of training on the blockchain with 15 honest
robots. We can now test its resilience to Byzantine robots. In this experiment, no layer
of security is present. This means that if a robot sends bad weights along with a high
number of samples, it will be taken into account in the aggregation process.

In this context, Byzantine robots are considered faulty robots, as their sensors could be
blocked or malfunctioning. To simulate this, the Byzantine robot sends random weights.
The weights are uniformly distributed between -0.5 and 0.5, as this is the interval Tensor-
Flow [40] uses when generating random weight at initialization. The number of samples
they send along the weights is 200 as this is the average number of samples robots train
on after the first experiment, see the 750 s curve of Figure 4.2 in Section 4.1.

We perform 10 runs for both configurations with zero Byzantine robots and one Byzan-
tine robot. We restrict the tests to one Byzantine robot because, as depicted by Figure
4.5, having only one Byzantine is already sufficient to destroy the model’s training.

Figure 4.5: 2nd experiment’s average loss in function of aggregation rounds with 1 Byzantine
robot and no security.

Figure 4.5 shows that having no security makes the system vulnerable to a single
malfunctioning or malicious robot. Introducing security layers to face faulty or malicious
robots becomes mandatory and is the focus of all the next experiments.

4.3 First Security Layer
In this experiment, we introduce a revised Smart Contract, which is an evolution of the
previous one that only implemented the aggregation mechanism without any security lay-
ers. The new Smart Contract requires robots to send 5 ether to submit their weights.
Robots start with 21 ether and if they fall below 5 ether they can not participate anymore.

30

Results & Discussion First Security Layer

We use two security layers (see Section 3.3 which present these security layers) that are
designed to cause Byzantine robots to lose ethers. In this section, we present the results
of the first layer.

We conduct twenty runs for each configuration with Byzantine numbers ranging from
0 to 7 (which is half of the swarm and also the number of participants needed to complete
an aggregation round). The Byzantine robots send the same weights as the previous
experiment, of Section 4.2. The objective of this experiment is to verify if the first
security layer works. Namely, weights with an MAE (see Section 3.3 which presents the
first security layer) greater3 than 5 · 107 should not be taken into account.

(a) Average loss in function of aggregation rounds. (b) Aggregation rounds with Byzantines.

Figure 4.6: 3th experiment’s average loss for each configuration of Byzantine robots in function
of aggregation rounds (left) and aggregation rounds for each configuration of Byzantine robots
(right)4.

There are 3 observations we can make out of Figure 4.6a:

1. The first security layer works, the training is not broken as in all configurations the
loss curve converges.

2. The more Byzantine there are the fewer the number of aggregation rounds.

3. When there are more Byzantines, it appears that the training is faster (when com-
paring round aggregation-wise). For instance, in the case of 7 Byzantines, the curve
is shifted to the left, occurring earlier in the aggregation rounds, in contrast to the
scenario without Byzantines.

3Since we multiply the weights by 109 this is the equivalent of requiring an MAE < 0.05 when weights
have initial uniform random distribution ∈ [−0.5; 0.5]

4Note that the graph in Figure 4.6a the curves present an aggregation count that differs compared to
Figure 4.6b which the number of aggregations for each configuration. The reason is that the length of
the curve (i.e. the number of aggregations it reaches in Figure 4.6a) is actually limited to the minimum
number of aggregations a configuration has reached. This is because we want to keep a confidence
interval of a maximum number of samples throughout the whole curve. (Note that the hard outliers are
not taken into account otherwise the curve with 4 Byzantines would have stopped at 20 aggregations on
Figure 4.6a). The same is done for the next experiments, and it is thus important to only look at the
aggregation rounds box plots to actually get a good analysis of the aggregations. The loss curve graphs
are only presented to look at the convergence speed.

31

Results & Discussion First Security Layer

To better visualize the decrease in aggregation rounds when there are more Byzantine
robots, a box plot with the number of aggregations for each configuration is shown in
Figure 4.6b.

Additionally to the decrease in aggregation rounds with Byzantine robots in Figure
4.6b, we can also observe that with no Byzantine the number of aggregations also reduces
compared to the previous experiments. In Section 4.1, when there was no security with
750 s expiration time, we had the median at 87 aggregations. Now, with the added secu-
rity layers and the same expiration time, we have the median at 80 aggregations. We can
see that these added security layers come at the cost of fewer aggregation taking place.
The reason behind this reduction in aggregation rounds is given in Section 4.3.1 where
we discuss the ether distribution among robots.

We can also notice in Figure 4.6b that there are hard outliers, namely in configura-
tions with 1 and 4. The cause of this issue is related to the blockchain itself and the PoA
consensus mechanism which in some rare cases can get stuck and no more blocks are able
to be sealed. This behavior is not explored in this thesis and we only concentrate on the
results which are not related to this issue.

To explain the third observation from Figure 4.6a, it is necessary to examine the
number of samples used for each aggregation round.

Figure 4.7: 3rd experiment’s number of samples used for training for each configuration of
Byzantine robots in function of aggregation rounds.

Through Figure 4.7, it becomes easier to understand why configurations with more
Byzantine robots exhibit faster training, even though this might not be immediately ap-
parent. When more Byzantines are present, the aggregation process occurs less frequently.
For example, the 5th aggregation with 7 Byzantines can happen after 1000 seconds, while
the 5th aggregation with 0 Byzantine may happen in less than 500 seconds5

Additionally, a certain delay is needed to reach the required 200 samples per train-
ing cycle. And as we have seen in the first experiment in Section 4.1 with Figure 4.3,
the convergence speed depends on the amount of data used. So with more Byzantines,
Figure 4.6a appears to show that training is faster because at the 5th aggregation with 7
5These values were used for an example and are not actual results.

32

Results & Discussion First Security Layer

Byzantines, the robots are already training with 200 samples, whilst with 0 Byzantine,
they start training with 200 samples only after the 10th aggregation.

This should not be confused by assuming that the x-axis has the wrong units (i.e.,
aggregation instead of time). If the x-axis is set to time (s), the curves (with Byzantines)
would more closely resemble the curve obtained in the first experiment with a 250 s ex-
piration time. Indeed, the final loss is much higher at the end of the experiment due to
significantly fewer aggregations taking place.

4.3.1 Ether distribution
The smart contract now requires 5 ether for weights to be submitted on the Blockchain.
Hence, the desired behavior is that honest robots become rich whereas bad ones become
poor.

(a) Ether gained by honest robots. (b) Average ether gained by honest robots.

Figure 4.8: 3rd experiment’s ether of honest robots for each configuration of Byzantine.

Figure 4.9: 3rd experiment’s ether of Byzantine robots for each configuration of Byzantine.

From Figure 4.8b and 4.9, Byzantine robots effectively lose their ether and make hon-
est robots richer on average. This indicates that the first security layer is not rewarding
the bad robots and is actually giving their ether to the honest robots.

Unfortunately, when examining Figure 4.8a, which presents a box plot illustrating
the distribution of ether among all honest robots (as opposed to the average per exper-
iment shown in 4.8b), we observe a significant disparity. Some robots become affluent,
some maintain stability, while others become impoverished to the extent that they can

33

Results & Discussion Second Security Layer

no longer participate. This discrepancy arises from the ranking system, the second layer
of security, which rewards the top 5 robots and penalizes the bottom 2. The ranking
compels the robots to adhere to a specific pattern, implying that they should be trained
on similar amounts and types of data. For instance, if the majority of trajectories consist
of straight lines and one robot suddenly only observes other robots avoiding obstacles,
it will train its neural network differently. Consequently, this deviation may result in a
significantly different MAE compared to others, leading to its frequent placement as the
last-ranked robot, despite its good work to improve the neural network.

This issue is also the cause of the fewer aggregation rounds taking place compared to
the previous experiments, like in Section 4.1. Since fewer robots can afford to participate
(i.e., due to the Byzantines and the ones whose training diverges losing ethers), fewer
aggregations will take place overall.

This implementation thus harbors a weakness, originating from the challenge of identi-
fying which weights are truly problematic (i.e., the MAE computation may be too basic).
This problem is akin to the more widely recognized issue of the black box in neural net-
works. The term black box stems from the difficulty in comprehending the correspondence
between specific weights and their impact on the quality of the model.

4.4 Second Security Layer
In the previous experiment, Byzantine robots were sending weights that were instantly
evicted due to being too different, because they generated an MAE higher than the thresh-
old. This time, to be integrated into the aggregation rounds, malicious Byzantine robots
send the same weights as the current aggregated weights on the blockchain. This is to try
and slow down the training. To prevent this type of attack, which is much less harmful
than the previous one, a second security layer is introduced. Refer to Section 3.3 for
further details on the security layers. The configuration is the same as Section 4.3 with
20 runs for Byzantine ranging from 0 to 7.

Figure 4.10: 4th experiment’s average loss for each configuration of Byzantine robots in func-
tion of aggregation rounds.

34

Results & Discussion Second Security Layer

There are 3 observations we can make out of Figure 4.10:

1. The second security layer works as models converge.

2. Compared to the previous experiment (section 4.3) more aggregation rounds are
taking place with Byzantine.

3. The convergence speed is now slower aggregation-wise when there are more Byzan-
tine.

The reason behind the second observation is that Byzantine robots are not simply
evicted anymore but actually take part in the aggregations. Note that the aggregation
count still decreases but this reduction is slower than in the previous experiment in Sec-
tion 4.3. This decrease in aggregation rounds is shown in Figure 4.11a.

The third observation is directly linked to the second one; since Byzantines are ac-
cepted, bad weights, which do not help the training, are taken into account which slows
down the convergence speed. As a consequence, the final loss reached decreases with the
amount of Byzantines, see Figure 4.11b.

(a) Aggregation rounds with Byzantines (b) Final loss with Byzantines

Figure 4.11: 4th experiment’s aggregation rounds and final loss for each configuration of
Byzantine robots.

Since more aggregations occur because Byzantines are being accepted in the aggre-
gation rounds, we do not observe the same effect of training becoming faster with an
increasing number of Byzantines, as we had in the previous experiment, in Section 4.3. In
Figure 4.12 the curves overlap, emphasizing the point that all configurations have access
to the same amount of data aggregation-wise.

35

Results & Discussion Second Security Layer

Figure 4.12: 4th experiment’s number of samples used for training for each configuration of
Byzantine robots in function of aggregation rounds.

4.4.1 Ether distribution

(a) Ether gained by honest robots (b) Average ether gained by honest robots

Figure 4.13: 4th experiment’s ether of honest robots for each configuration of Byzantine.

(a) Ether gained by Byzantine robots (b) Average ether gained by Byzantine robots

Figure 4.14: 4th experiment’s ether of Byzantine robots for each configuration of Byzantine.

Let’s first analyze Figure 4.13b and 4.14b, which represent the average ether gained by
honest and Byzantine robots. We see an interesting pattern where up until 3 Byzantines,
which is less than half of the quorum size (the quorum size being 7), the honest robots
gain ether and the Byzantines lose all their ether. However, the moment there are more

36

Results & Discussion Smart Byzantines and Current Limitation

Byzantine than half of the quorum size the second security layer starts to fail and Byzan-
tines manage to keep their ether.

If we now look at Figure 4.13a and 4.14a, we still see the limitation that honest robots
may lose all their ether. This limitation is the same as the one discussed in Section 4.3.1.
The high variance in the ether repartition among honest robots in this case is the same,
but in addition to that, we now also have the fact that with more Byzantine the honest
robots do not increase their ether on average.

4.5 Smart Byzantines and Current Limitation
In this last experiment, Byzantine robots try to be ranked first by sending weights with
an MAE that follows the current trend of the training. For more detailed information
on the weights’ generation, refer to Section 3.3.2 on the last Byzantine presented. The
configuration is the same as Section 4.3 with 18 runs6 for Byzantine ranging from 0 to 7.

Figure 4.15: 5th experiment’s average loss for each configuration of Byzantine robots in func-
tion of aggregation rounds.

By looking at Figure 4.15, we can see that it follows the same pattern as the loss
curve observed in Section 4.4 with Figure 4.10. The more Byzantine there are the slower
the training curve. But the same story can not be told with the aggregation rounds.
As Byzantines do not get eliminated the number of aggregation doesn’t directly starts
decreasing. This is better represented in Figure 4.16. Indeed, it is only when there are
more than 4 Byzantines that the number of aggregation starts to decrease, and this is
actually because honest robots start to get evicted (this is understandable through the
ether graphs in Section 4.5.1).
6We restricted the simulations of the 5th to 18 runs due to time constraints.

37

Results & Discussion Smart Byzantines and Current Limitation

(a) Aggregation rounds with Byzantines (b) Final loss with Byzantines

Figure 4.16: 5th experiment’s aggregation rounds and final loss for each configuration of
Byzantine robots.

In the end, by only looking at Figure 4.15 and 4.16b, we could think that this smart
Byzantine robots isn’t actually doing much better than the previous Byzantine robot from
Section 4.4. But this story is much different if we start looking at the ether distribution
between honest and Byzantine robots.

4.5.1 Ether distribution

(a) Ether gained by honest robots (b) Average ether gained by honest robots

Figure 4.17: 5th experiment’s ether of honest robots for each configuration of Byzantine.

(a) Ether gained by Byzantine robots (b) Average ether gained by Byzantine robots

Figure 4.18: 5th experiment’s ether of Byzantine robots for each configuration of Byzantine.

Through Figure 4.17 and 4.18 we can see that, on the one hand, honest robots lose ether
the more Byzantine robots there are, and on the other hand, Byzantine robots gain more

38

Results & Discussion Discussion

ether. This means that Byzantine robots could eventually prevent honest robots from be-
ing able to participate. At this moment, Byzantine robots can start harming the network
with MAE much closer to the Threshold and thus prevent the proper training, similar to
the scenario of 4.2. This is also a limitation of the current implementation.

Note that they reach a plateau7 around 3 and 4 Byzantine robots. This is because of
2 reasons:

1. The more Byzantines there are the more ether on average each honest robots lose.

2. The more Byzantine robots there are, the more they have to share among themselves,
and the fewer honest robots there are providing the ether.

Since the ether gained by Byzantine robots can be computed as:

e+
b = nh

nb

· e−
h (4.3)

where e+
b is the average ether that each Byzantine robot gains, e−

h is the average ether
lost by each of the honest robots, nh is the number of honest robots, and nb is the number
of Byzantine robots. Having the fraction of honest robots decrease and the ether lost
increase leads to this plateau.

4.6 Discussion
Through these different experiments, we showed that it is possible to actually perform fed-
erated learning on the blockchain using smart contracts in Section 4.1. We also presented
the threat Byzantine robots pose to the actual training of the network with experiment 2
in Section 4.2. We thus implemented a security layer to prevent this attack and presented
the results in Section 4.3. This protective layer worked as intended and enabled the net-
work to converge again. We can observe that the first security layer, even though quite
basic, is actually the one that prevents the most damage to the network as it prevents
high disturbance in the network weights.

Similarly, we thought of other attacks as we were building the first security layer and
thus introduced the second security layer in Section 4.4 to motivate robots to follow a cer-
tain trend. This approach prevented a new attack which consisted of sending weights that
the robot did not obtaining through training. The trade-off of this second security layer is
the reduction in the number of aggregation rounds, even in the cases with no Byzantines.
Unfortunately, it also had the consequence of potentially leading to some honest robots
losing their ether. Finally, in Section 4.5, we present a way in which Byzantine robots can
exploit the system in order to take the ether of the honest robots, and eventually, using
the gained ether to control the convergence of the network.

This implementation thus harbors two weaknesses. The first one is the distance func-
tion (MAE) used for the ranking in the second security layer: it can be vulnerable to
7This is actually a maximum and not a plateau since if we further increase the number of Byzantine,
there will be no more honest robots to take ether from. With 15 Byzantines robots, the average ether
gained will be 0 as they all send the same weights and the same amount of samples.

39

Results & Discussion Discussion

some attacks by a smart or malicious robots, while incentivizing robots to provide models
that follow a certain trend, thus removing some freedom in the training of the model.

Second, the current implementation of the blockchain is also a limitation. Making the
aggregation take place on the blockchain forces high amounts of data to be transferred.
This means that the blockchain needs to perform computations of minimum O(n) with n
being the total number of weights. Also, on the memory side, since the blockchain stores
transactions (which contain the weights) in blocks, every aggregated weight submitted by
a robot will be stored on the blockchain.

Figure 4.19 shows the memory used by the blockchain throughout the experiments.
We can see that it linearly increases with time and reaches at the end 100 MB of memory
usage. This is with a neural network of only 2848 weights. This architecture is actually
on the smaller side and if this implementation would be used on larger models8 the mem-
ory usage would rapidly increase which is not practical (especially on smartphone that
generally have gigabytes of memory available).

Figure 4.19: Memory usage in megabytes of the blockchain in function of time.

8To put in perspective, Chat-GPT, the large language model, has 1.75 · 1011 weights [5]. (This is at the
opposite end of the spectrum as it is arguably one of the largest models currently in existence)

40

Chapter 5

Future Work & Conclusion

5.1 Future Work
There are two main issues with the current implementation. The first one comes from the
distance function (MAE) used for the ranking system of the second security layer, and
the second one is the blockchain implementation.

To solve both issues aforementioned multiple options are possible. We believe that
the most important one to explore would be the development of a better distance func-
tion, surpassing the Mean Absolute Error (MAE) approach. However, it is important to
consider that the underlying issue is the difficulty in identifying what are good and bad
weights/parameters when training a neural network. For instance, Unterthiner et al. [42]
provides a method to estimate the performance of a neural network by looking only at its
weights. Changing from our MAE distance function approach to their proposed metric
can help address two issues faced by the second security layer: firstly, it would prevent
honest robots from losing ether due to being unfairly ranked despite their honest work;
secondly, it would eliminate the security breach that allows Byzantine robots to take ether
from honest robots. Another method would be to use the more popular Shapley value,
used by Liu et al. [20] in the FedCoin project, which allows for assessing the contribution
of federated learning participants.

Concerning the limitation of our blockchain implementation, it is common practice
to send the hash of large information instead of the information itself on the blockchain.
To adapt this method to the scenario of this thesis, the robots would initially start with
the same initial weights, and the hash of these initial weights would be stored on the
blockchain. When a robot wishes to submit new weights, it would submit the hash of
the new weights on the blockchain, while sharing the actual weights with neighboring
robots off-chain (i.e., without resorting to a blockchain transaction). The neighboring
robots can verify the authenticity of the weights by computing the hash of the received
weights and cross-checking with the hash on-chain. Then, once enough robots sent the
hash of their weights on the blockchain, the robots compute the aggregation locally and
then share the hash of the aggregated weights on the blockchain. In this way, only hashes
are stored on the blockchain and the memory usage wouldn’t depend on the size of the
network anymore, while the blockchain is still being leveraged to ensure the authentica-
tion of messages, synchronization of the aggregated model between all participants, and
to protect the system from devastating attacks such as Sybil attacks or DoS (by requiring

41

Future Work & Conclusion Conclusion

ethers alongside the submission of the hashed weights).

5.2 Conclusion
Our objective was to investigate the implementation of federated learning in swarm
robotics using blockchain smart contracts. Through the proof of concept in the present
thesis, we show that this is indeed feasible. Subsequently, our focus shifted from a feasi-
bility study, towards highlighting the vulnerability of federated learning to attacks (such
as robots transmitting random weights) and illustrating the use of smart contracts to
mitigate such attacks. Although these protective measures are effective, they do involve
certain trade-offs, such as reduced aggregation over time and the possibility of penalizing
honest robots.

We proceeded to explore additional types of attacks and showcased the current limi-
tations of our implementation. These limitations include, in the first place, a weak ability
to distinguish between good and bad parameters. Secondly, and closely related to the
previous limitation, we show that there is a particular attack that can exploit this weak-
ness, thus enabling the siphoning of ether from honest robots to Byzantines. Lastly, the
current smart contract implementation lacks scalability when applied to larger networks
with a higher number of parameters. These issues have been discussed in Section 4.6 and
potential solutions and areas of research have been proposed in Section 5.1.

In conclusion, while federated learning has shown promise in various fields, includ-
ing multi-robot systems, its application in the context of swarm robotics is hampered by
challenges such as synchronizing a distributed database and achieving secure peer-to-peer
communications. By incorporating blockchain technology into swarm robotics, we offer
a promising solution to address these challenges. Our approach leverages the database
synchronization and security features of blockchain, enabling robot swarms to overcome
these challenges without compromising their critical properties: autonomy, decentral-
ization, and scalability. Although this proof of concept has demonstrated its potential,
further research and future work are needed to refine and enhance the proposed solutions.

42

Bibliography

[1] Durmus Alp Emre Acar et al. Federated Learning Based on Dynamic Regularization.
Nov. 9, 2021. doi: 10.48550/arXiv.2111.04263. arXiv: 2111.04263[cs]. url:
http://arxiv.org/abs/2111.04263 (visited on 05/05/2023).

[2] Adam - Cornell University Computational Optimization Open Textbook - Optimiza-
tion Wiki. url: https://optimization.cbe.cornell.edu/index.php?title=
Adam (visited on 05/05/2023).

[3] Gerardo Beni. “From Swarm Intelligence to Swarm Robotics”. In: Swarm Robotics.
Ed. by Erol Şahin and William M. Spears. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2005, pp. 1–9. isbn: 978-3-540-30552-1. doi: 10.1007/
978-3-540-30552-1_1.

[4] Gianluca Bontempi. "Statistical foundations of machine learning: the handbook".
Feb. 15, 2022.

[5] Tom B. Brown et al. Language Models are Few-Shot Learners. July 22, 2020. doi:
10.48550/arXiv.2005.14165. arXiv: 2005.14165[cs]. url: http://arxiv.org/
abs/2005.14165 (visited on 06/01/2023).

[6] Vitalik Buterin. “A NEXT GENERATION SMART CONTRACT & DECENTRAL-
IZED APPLICATION PLATFORM”. In: ().

[7] Eduardo Castelló Ferrer. “The Blockchain: A New Framework for Robotic Swarm
Systems”. In: Proceedings of the Future Technologies Conference (FTC) 2018. Ed.
by Kohei Arai, Rahul Bhatia, and Supriya Kapoor. Advances in Intelligent Systems
and Computing. Cham: Springer International Publishing, 2019, pp. 1037–1058.
isbn: 978-3-030-02683-7. doi: 10.1007/978-3-030-02683-7_77.

[8] Marco Dorigo and Mauro Birattari. “Swarm intelligence”. In: Scholarpedia 2.9 (Sept. 29,
2007), p. 1462. issn: 1941-6016. doi: 10.4249/scholarpedia.1462. url: http:
//www.scholarpedia.org/article/Swarm_intelligence.

[9] Marco Dorigo, Mauro Birattari, and Manuele Brambilla. “Swarm robotics”. In:
Scholarpedia 9.1 (Jan. 14, 2014), p. 1463. issn: 1941-6016. doi: 10.4249/scholarpedia.
1463. url: http://www.scholarpedia.org/article/Swarm_robotics.

[10] EIP-225: Clique proof-of-authority consensus protocol. Ethereum Improvement Pro-
posals. url: https://eips.ethereum.org/EIPS/eip-225 (visited on 05/28/2023).

[11] Federated Learning: Collaborative Machine Learning without Centralized Training
Data. Apr. 6, 2017. url: https://ai.googleblog.com/2017/04/federated-
learning-collaborative.html (visited on 05/23/2023).

43

https://doi.org/10.48550/arXiv.2111.04263
https://arxiv.org/abs/2111.04263 [cs]
http://arxiv.org/abs/2111.04263
https://optimization.cbe.cornell.edu/index.php?title=Adam
https://optimization.cbe.cornell.edu/index.php?title=Adam
https://doi.org/10.1007/978-3-540-30552-1_1
https://doi.org/10.1007/978-3-540-30552-1_1
https://doi.org/10.48550/arXiv.2005.14165
https://arxiv.org/abs/2005.14165 [cs]
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
https://doi.org/10.1007/978-3-030-02683-7_77
https://doi.org/10.4249/scholarpedia.1462
http://www.scholarpedia.org/article/Swarm_intelligence
http://www.scholarpedia.org/article/Swarm_intelligence
https://doi.org/10.4249/scholarpedia.1463
https://doi.org/10.4249/scholarpedia.1463
http://www.scholarpedia.org/article/Swarm_robotics
https://eips.ethereum.org/EIPS/eip-225
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

BIBLIOGRAPHY BIBLIOGRAPHY

[12] Lorenzo Garattoni and Mauro Birattari. “Swarm Robotics”. In: Wiley Encyclopedia
of Electrical and Electronics Engineering. John Wiley & Sons, Ltd, 2016, pp. 1–
19. isbn: 978-0-471-34608-1. doi: 10.1002/047134608X.W8312. url: https://
onlinelibrary.wiley.com/doi/abs/10.1002/047134608X.W8312.

[13] Paulo Gonçalves et al. “The e-puck, a Robot Designed for Education in Engineer-
ing”. In: Proceedings of the 9th Conference on Autonomous Robot Systems and Com-
petitions 1 (Jan. 1, 2009).

[14] Ekaterina Gracheva. “Trainless model performance estimation based on random
weights initialisations for neural architecture search”. In: Array 12 (Dec. 1, 2021),
p. 100082. issn: 2590-0056. doi: 10.1016/j.array.2021.100082. url: https:
//www.sciencedirect.com/science/article/pii/S2590005621000308.

[15] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Memory”. In: Neural
computation 9 (Dec. 1, 1997), pp. 1735–80. doi: 10.1162/neco.1997.9.8.1735.

[16] Jiawen Kang et al. “Incentive Mechanism for Reliable Federated Learning: A Joint
Optimization Approach to Combining Reputation and Contract Theory”. In: IEEE
Internet of Things Journal 6.6 (Dec. 2019). Conference Name: IEEE Internet of
Things Journal, pp. 10700–10714. issn: 2327-4662. doi: 10 . 1109 / JIOT . 2019 .
2940820.

[17] Hyesung Kim et al. Blockchained On-Device Federated Learning. July 1, 2019. doi:
10.48550/arXiv.1808.03949. arXiv: 1808.03949[cs, math]. url: http://
arxiv.org/abs/1808.03949 (visited on 05/24/2023).

[18] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
Jan. 29, 2017. doi: 10.48550/arXiv.1412.6980. arXiv: 1412.6980[cs]. url:
http://arxiv.org/abs/1412.6980.

[19] Tian Li et al. Federated Optimization in Heterogeneous Networks. Apr. 21, 2020.
doi: 10.48550/arXiv.1812.06127. arXiv: 1812.06127[cs,stat]. url: http:
//arxiv.org/abs/1812.06127 (visited on 05/05/2023).

[20] Yuan Liu et al. FedCoin: A Peer-to-Peer Payment System for Federated Learning.
Feb. 25, 2020. doi: 10.48550/arXiv.2002.11711. arXiv: 2002.11711[cs,stat].
url: http://arxiv.org/abs/2002.11711 (visited on 05/24/2023).

[21] Nathalie Majcherczyk, Nishan Srishankar, and Carlo Pinciroli. “Flow-FL: Data-
Driven Federated Learning for Spatio-Temporal Predictions in Multi-Robot Sys-
tems”. In: 2021 IEEE International Conference on Robotics and Automation (ICRA).
2021 IEEE International Conference on Robotics and Automation (ICRA). ISSN:
2577-087X. May 2021, pp. 8836–8842. doi: 10.1109/ICRA48506.2021.9560791.

[22] H. Brendan McMahan et al. Communication-Efficient Learning of Deep Networks
from Decentralized Data. Jan. 26, 2023. doi: 10.48550/arXiv.1602.05629. arXiv:
1602.05629[cs]. url: http://arxiv.org/abs/1602.05629.

[23] Seongin Na et al. Federated Reinforcement Learning for Collective Navigation of
Robotic Swarms. Sept. 11, 2022. arXiv: 2202.01141[cs]. url: http://arxiv.
org/abs/2202.01141 (visited on 05/23/2023).

[24] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System”. In: ().
[25] Cong Nguyen et al. “Proof-of-Stake Consensus Mechanisms for Future Blockchain

Networks: Fundamentals, Applications and Opportunities”. In: IEEE Access PP
(June 26, 2019), pp. 1–1. doi: 10.1109/ACCESS.2019.2925010.

44

https://doi.org/10.1002/047134608X.W8312
https://onlinelibrary.wiley.com/doi/abs/10.1002/047134608X.W8312
https://onlinelibrary.wiley.com/doi/abs/10.1002/047134608X.W8312
https://doi.org/10.1016/j.array.2021.100082
https://www.sciencedirect.com/science/article/pii/S2590005621000308
https://www.sciencedirect.com/science/article/pii/S2590005621000308
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/JIOT.2019.2940820
https://doi.org/10.1109/JIOT.2019.2940820
https://doi.org/10.48550/arXiv.1808.03949
https://arxiv.org/abs/1808.03949 [cs, math]
http://arxiv.org/abs/1808.03949
http://arxiv.org/abs/1808.03949
https://doi.org/10.48550/arXiv.1412.6980
https://arxiv.org/abs/1412.6980 [cs]
http://arxiv.org/abs/1412.6980
https://doi.org/10.48550/arXiv.1812.06127
https://arxiv.org/abs/1812.06127 [cs, stat]
http://arxiv.org/abs/1812.06127
http://arxiv.org/abs/1812.06127
https://doi.org/10.48550/arXiv.2002.11711
https://arxiv.org/abs/2002.11711 [cs, stat]
http://arxiv.org/abs/2002.11711
https://doi.org/10.1109/ICRA48506.2021.9560791
https://doi.org/10.48550/arXiv.1602.05629
https://arxiv.org/abs/1602.05629 [cs]
http://arxiv.org/abs/1602.05629
https://arxiv.org/abs/2202.01141 [cs]
http://arxiv.org/abs/2202.01141
http://arxiv.org/abs/2202.01141
https://doi.org/10.1109/ACCESS.2019.2925010

BIBLIOGRAPHY BIBLIOGRAPHY

[26] OpenAI. GPT-4 Technical Report. Mar. 27, 2023. doi: 10.48550/arXiv.2303.
08774. arXiv: 2303.08774[cs]. url: http://arxiv.org/abs/2303.08774.

[27] Alexandre Pacheco, Volker Strobel, and Marco Dorigo. “A Blockchain-Controlled
Physical Robot Swarm Communicating via an Ad-Hoc Network”. In: Swarm In-
telligence. Ed. by Marco Dorigo et al. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2020, pp. 3–15. isbn: 978-3-030-60376-2. doi:
10.1007/978-3-030-60376-2_1.

[28] Alexandre Pacheco et al. “Real-Time Coordination of a Foraging Robot Swarm
Using Blockchain Smart Contracts”. In: Swarm Intelligence. Ed. by Marco Dorigo
et al. Lecture Notes in Computer Science. Cham: Springer International Publishing,
2022, pp. 196–208. isbn: 978-3-031-20176-9. doi: 10.1007/978-3-031- 20176-
9_16.

[29] Carlo Pinciroli et al. “ARGoS: a modular, parallel, multi-engine simulator for multi-
robot systems”. In: Swarm Intelligence 6.4 (Dec. 1, 2012), pp. 271–295. issn: 1935-
3820. doi: 10.1007/s11721-012-0072-5. url: https://doi.org/10.1007/
s11721-012-0072-5 (visited on 05/15/2023).

[30] Proof-of-stake (PoS). ethereum.org. url: https : / / ethereum . org (visited on
05/28/2023).

[31] Sebastian Ruder. An overview of gradient descent optimization algorithms. June 15,
2017. arXiv: 1609.04747[cs]. url: http://arxiv.org/abs/1609.04747.

[32] Juergen Schmidhuber. Annotated History of Modern AI and Deep Learning. Dec. 29,
2022. doi: 10.48550/arXiv.2212.11279. arXiv: 2212.11279[cs]. url: http:
//arxiv.org/abs/2212.11279.

[33] Tianshu Song, Yongxin Tong, and Shuyue Wei. “Profit Allocation for Federated
Learning”. In: 2019 IEEE International Conference on Big Data (Big Data). 2019
IEEE International Conference on Big Data (Big Data). Dec. 2019, pp. 2577–2586.
doi: 10.1109/BigData47090.2019.9006327.

[34] Ralf C. Staudemeyer and Eric Rothstein Morris. Understanding LSTM – a tutorial
into Long Short-Term Memory Recurrent Neural Networks. Sept. 12, 2019. doi:
10.48550/arXiv.1909.09586. arXiv: 1909.09586[cs]. url: http://arxiv.org/
abs/1909.09586.

[35] Volker Strobel, Eduardo Castelló Ferrer, and Marco Dorigo. “Blockchain Technology
Secures Robot Swarms: A Comparison of Consensus Protocols and Their Resilience
to Byzantine Robots”. In: Frontiers in Robotics and AI 7 (2020). issn: 2296-9144.
url: https://www.frontiersin.org/articles/10.3389/frobt.2020.00054
(visited on 05/23/2023).

[36] Volker Strobel and Marco Dorigo. “Blockchain technology for robot swarms: A
shared knowledge and reputation management system for collective estimation”.
In: ().

[37] Ilya Sutskever, James Martens, and George Dahl. “On the importance of initializa-
tion and momentum in deep learning”. In: ().

[38] Péter Szilágyi. EIP-225: Clique proof-of-authority consensus protocol. Ethereum Im-
provement Proposals. Mar. 6, 2017. url: https://eips.ethereum.org/EIPS/eip-
225 (visited on 05/09/2023).

45

https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://arxiv.org/abs/2303.08774 [cs]
http://arxiv.org/abs/2303.08774
https://doi.org/10.1007/978-3-030-60376-2_1
https://doi.org/10.1007/978-3-031-20176-9_16
https://doi.org/10.1007/978-3-031-20176-9_16
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1007/s11721-012-0072-5
https://ethereum.org
https://arxiv.org/abs/1609.04747 [cs]
http://arxiv.org/abs/1609.04747
https://doi.org/10.48550/arXiv.2212.11279
https://arxiv.org/abs/2212.11279 [cs]
http://arxiv.org/abs/2212.11279
http://arxiv.org/abs/2212.11279
https://doi.org/10.1109/BigData47090.2019.9006327
https://doi.org/10.48550/arXiv.1909.09586
https://arxiv.org/abs/1909.09586 [cs]
http://arxiv.org/abs/1909.09586
http://arxiv.org/abs/1909.09586
https://www.frontiersin.org/articles/10.3389/frobt.2020.00054
https://eips.ethereum.org/EIPS/eip-225
https://eips.ethereum.org/EIPS/eip-225

BIBLIOGRAPHY BIBLIOGRAPHY

[39] Keras Team. Keras documentation: Layer activation functions. url: https : / /
keras.io/api/layers/activations/ (visited on 05/03/2023).

[40] Keras Team. Keras documentation: Layer weight initializers. url: https://keras.
io/api/layers/initializers/ (visited on 05/05/2023).

[41] Keras Team. Keras documentation: Losses. url: https://keras.io/api/losses/
(visited on 05/03/2023).

[42] Thomas Unterthiner et al. Predicting Neural Network Accuracy from Weights. Apr. 9,
2021. doi: 10.48550/arXiv.2002.11448. arXiv: 2002.11448[cs, stat]. url:
http://arxiv.org/abs/2002.11448 (visited on 05/20/2023).

[43] Ashish Vaswani et al. Attention Is All You Need. Dec. 5, 2017. doi: 10.48550/
arXiv.1706.03762.

[44] Jianyu Wang et al. “A Novel Framework for the Analysis and Design of Heteroge-
neous Federated Learning”. In: IEEE Transactions on Signal Processing 69 (2021).
Publisher: Institute of Electrical and Electronics Engineers Inc., pp. 5234–5249.
issn: 1053-587X. doi: 10.1109/TSP.2021.3106104. url: https://collaborate.
princeton.edu/en/publications/a-novel-framework-for-the-analysis-
and-design-of-heterogeneous-fe (visited on 05/05/2023).

[45] Zexin Wang, Biwei Yan, and Anming Dong. “Blockchain Empowered Federated
Learning for Data Sharing Incentive Mechanism”. In: Procedia Computer Science.
International Conference on Identification, Information and Knowledge in the in-
ternet of Things, 2021 202 (Jan. 1, 2022), pp. 348–353. issn: 1877-0509. doi: 10.
1016/j.procs.2022.04.047. url: https://www.sciencedirect.com/science/
article/pii/S1877050922005816 (visited on 05/24/2023).

[46] Zhilin Wang and Qin Hu. Blockchain-based Federated Learning: A Comprehensive
Survey. Oct. 5, 2021. arXiv: 2110.02182[cs]. url: http://arxiv.org/abs/2110.
02182 (visited on 05/23/2023).

[47] Hongda Wu and Ping Wang. Fast-Convergent Federated Learning with Adaptive
Weighting. Apr. 5, 2021. arXiv: 2012.00661[cs]. url: http://arxiv.org/abs/
2012.00661 (visited on 05/05/2023).

[48] Xi Yu et al. “Federated Learning Optimization Algorithm for Automatic Weight
Optimal”. In: Computational Intelligence and Neuroscience 2022 (Nov. 9, 2022).
Publisher: Hindawi, e8342638. issn: 1687-5265. doi: 10.1155/2022/8342638. url:
https://www.hindawi.com/journals/cin/2022/8342638/.

[49] Xudong Zhu, Fan Zhang, and Hui Li. “Swarm Deep Reinforcement Learning for
Robotic Manipulation”. In: Procedia Computer Science. 12th International Con-
ference on Emerging Ubiquitous Systems and Pervasive Networks / 11th Interna-
tional Conference on Current and Future Trends of Information and Communication
Technologies in Healthcare 198 (Jan. 1, 2022), pp. 472–479. issn: 1877-0509. doi:
10.1016/j.procs.2021.12.272. url: https://www.sciencedirect.com/
science/article/pii/S1877050921025114 (visited on 05/23/2023).

46

https://keras.io/api/layers/activations/
https://keras.io/api/layers/activations/
https://keras.io/api/layers/initializers/
https://keras.io/api/layers/initializers/
https://keras.io/api/losses/
https://doi.org/10.48550/arXiv.2002.11448
https://arxiv.org/abs/2002.11448 [cs, stat]
http://arxiv.org/abs/2002.11448
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1109/TSP.2021.3106104
https://collaborate.princeton.edu/en/publications/a-novel-framework-for-the-analysis-and-design-of-heterogeneous-fe
https://collaborate.princeton.edu/en/publications/a-novel-framework-for-the-analysis-and-design-of-heterogeneous-fe
https://collaborate.princeton.edu/en/publications/a-novel-framework-for-the-analysis-and-design-of-heterogeneous-fe
https://doi.org/10.1016/j.procs.2022.04.047
https://doi.org/10.1016/j.procs.2022.04.047
https://www.sciencedirect.com/science/article/pii/S1877050922005816
https://www.sciencedirect.com/science/article/pii/S1877050922005816
https://arxiv.org/abs/2110.02182 [cs]
http://arxiv.org/abs/2110.02182
http://arxiv.org/abs/2110.02182
https://arxiv.org/abs/2012.00661 [cs]
http://arxiv.org/abs/2012.00661
http://arxiv.org/abs/2012.00661
https://doi.org/10.1155/2022/8342638
https://www.hindawi.com/journals/cin/2022/8342638/
https://doi.org/10.1016/j.procs.2021.12.272
https://www.sciencedirect.com/science/article/pii/S1877050921025114
https://www.sciencedirect.com/science/article/pii/S1877050921025114

	Introduction
	Objectives
	Related Work

	Background
	Artificial Neural Networks
	Feed-forward Mechanism
	Back-propagation
	Federated Learning
	Long Short-Term Memory Layer

	Blockchain Protocols
	Monetary Ledger
	Distributed Computing Platform

	Swarm Robotics

	Methodology
	Simulation Environment
	Robot Controller
	Dataset creation

	Federated Learning & Blockchain
	Neural Network Architecture
	Federated Learning implementation on Blockchain

	Byzantines Behaviors and Security Layers
	First and Second Security Layer
	Three Byzantine Behaviors

	Results & Discussion
	Data Quantity
	Introduction of Byzantine Robots
	First Security Layer
	Ether distribution

	Second Security Layer
	Ether distribution

	Smart Byzantines and Current Limitation
	Ether distribution

	Discussion

	Future Work & Conclusion
	Future Work
	Conclusion

	Bibliography

