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A B S T R A C T

This thesis proposes three distributed methods to achieve the allo-
cation of an homogeneous swarm of robots to spatially distributed
tasks. Tasks are grouped together in space as to form clusters.

These methods have been developed in the form of probabilistic
finite state machines, a microscopic level, behavior-based approach
in Swarm Robotics.

The first method (Naive) simply consists of a greedy allocation of
the robots to available tasks in space, as soon as they have been local-
ized.

The second one (Probabilistic) improves the Naive one with proba-
bilistic rules to avoid allocation conflicts and achieve a more uniform
allocation.

The third (Informed) is built upon the Probabilistic one, using odom-
etry to avoid redundant exploration.

The methods have been simulated on three different scenarios: Uni-
form, Biased and Corridor. We characterize the methods according
to their allocation uniformity and allocation speed.

We show that there exists a trade-off between uniformity and speed
for the developed methods. We also find that the positioning of the
clusters has a strong impact on the performances of the methods.
We conclude that the Informed method is the one having the best
performances on the proposed scenarios.

keywords : Swarm Robotics, Task allocation, Decentralized con-
trol

mots clés : Robotique en essaim, Répartition des tâches, Contrôle
décentralisé
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We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— Donald E. Knuth [Knuth, 1974]
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1
I N T R O D U C T I O N

In nature, many animals societies exhibit forms of collective behav-
ior. Such kind of behavior emerges from interactions occurring at
animal level. One of the reasons for those interactions is that agents
are often faced with demanding activities, whose complexity is gen-
erally beyond the capabilities of the individual. Hence, the only way
to perform such kind of tasks is to require the intervention of other
entities and join forces with them. When cooperation is triggered, the
problem of dividing the global duty into more, simpler components
and assign (i. e.allocate) them to the different agents arises.

Indeed, task allocation is a common problem that can be observed in
different collaborative societies. The way the allocation is performed,
however, varies across different species. The division of

labour process in
human societies has
raised many
philosophical and
sociological issues,
discussed by Plato,
Adam Smith and
Karl Marx, among
others, whose
discussion is beyond
the scope of this
thesis.

In humans, the most prominent example of this problem is the di-
vision of labour. This process consists of the decomposition a work
activity into sub-tasks and their allocation to different individuals, in
order to profit of the skills and capabilities possessed by each of them.
The allocation is generally performed in a centralized manner, with a
single entity that assign tasks and/or determine the degree of spe-
cialization of each agent. The presence of such entity, with a global
knowledge of the agents and the tasks, allows, in most cases, for a
quick and coherent allocation. However, a similar approach has some
major drawbacks. First of all, the presence of a single unit with en-
hanced capabilities, introduces a single potential point of failure in
the system. In fact, the allocation, thus the possibility to work of
all the other agents depends on the "allocator". As soon as it will be
unable to perform the allocation, the whole system will stop function-
ing. Furthermore, in many contexts it is impossible or impractical to
gather a global knowledge of the system, hence limiting the effective-
ness of the centralized solution.

Surprisingly, successful examples of task allocation and task parti-
tioning can be found in the animal kingdom. For instance, eusocial
organisms (mostly insects, with some exceptions) are characterized
by a reproductive division of labour, a specialization among repro-
ductive and non-reproductive activities (caring for other individu-
als, nest building and defense, among others) that occurs at insect
level. Moreover, some species of ants and bees are able to respond
to changes in demand for particular activities by redistributing the
available workforce. Here, task allocation is a product of the coop-
eration or, in other words, a consequence of the self-organization of
the individuals. Even though each agent is a relatively simple entity,

1



2 introduction

with limited sensing capabilities, the task allocation for the complex
activity can be achieved through processes and interactions locally
occurring among them.

The study of collective behavior of decentralized, self-organized
systems, natural or artificial, composed by a relevant number of ho-
mogeneous organisms, is the main focus of the of Swarm Intelligence,
a research sub-field in Artificial Intelligence (AI). The goal of this
research is to formulate models to explain the emergence of the be-
havior in order to be able to design effective, distributed algorithms
for problem solving. In this thesis, we apply this paradigm to the task
allocation problem. To be more precise, we focus on the problem of
allocating agents to spatially distributed tasks.

Our study will be performed in the framework of Swarm Robotics,
hence the agents will be a group of simple and (quasi) identical
robots, with decentralized control and lack of synchronicity [Beni,
2005]. Given their characteristics, we decided to adopt is the E-puck, a
small mobile robot, as the robotic platform for our experience. Tasks,
on the other hand, are represented by IRIDIA Task Abstraction Mod-
ules, devices specifically designed to allow the e-puck to abstract tasks
that are beyond its capability.

In our implementation of the problem, tasks are arranged to form
a limited number of clusters in space.

Our purpose is to understand whether it is possible to achieve a
uniform allocation of the robots across the clusters by relying only on
Self-organization, without the need for any centralized solution.

In order to do so, we developed three methods. The first one (Naive)
consists simply of a greedy allocation of the robots, as soon as the
tasks are discovered, while the second one (Probabilistic) introduces
a probabilistic mechanism to better distribute the robots across dif-
ferent clusters. The third (Informed) is built by adding an odometry-
based memory of the last visited cluster to the Probabilistic one.

The performance of these methods are compared on three different
scenarios: Uniform, Biased, Corridor, each one of them characterized
by a precise disposition in space of the clusters and the initial deploy-
ment area of the robots.

thesis layout

The thesis is structured in 5 chapters.
In background & related work we start by presenting the

reader the relevant notions related to the Swarm Intelligence (SI) field.
Then, we discuss the problem of spatial allocation and we provide a
summary of state-of-the-art on the problem (Spatial allocation). We
conclude the chapter by providing the readers some specifics con-
cerning the hardware (E-puck, IRIDIA Task Abstraction Module) and
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software (Autonomous Robot Go Swarming) components used in the
development of the thesis.

In methodology, we first provide a formal Problem statement,
we describe our Experimental setup and we illustrate the three devel-
oped methods, the Naive, Probabilistic and Informed one.

The chapter results is dedicated to a detailed analysis of the re-
sults and properties of the methods. First, we present the scenarios
(Section 4.1) that we used to test our methods and the Metrics we mea-
sured in our experiments. Then, we focus on two relevant properties
of our methods: the uniformity of the speed of the allocation, analyzed
respectively in Sections 4.3 and 4.4. The chapter is concluded by an
evaluation of the difficulty of the different scenarios (Section 4.5).

Finally, conclusion & future work concludes the thesis with
a discussion on the obtained results and suggestions for future re-
search directions to explore.



2
B A C K G R O U N D & R E L AT E D W O R K

The main purpose of this chapter is to present all the relevant
knowledge required to understand the work described in method-
ology. In Concepts we discuss the basic concepts upon which the
thesis has been developed with a top-down approach. We begin by
giving a quick overview of the Self-organization framework. Then,
we proceed by illustrating the Swarm Intelligence field, focusing es-
pecially on the presentation of Swarm Robotics.

Once the context have been clarified, we state the objective of our
work, the motivation behind it, its specific literature and related work
in Spatial allocation.

In Materials, we conclude by giving a brief overview on the hard-
ware and software components used in the development of the thesis.

2.1 concepts

2.1.1 Self-organization

A first, general notion that is required to fully understand the pro-
posed methods is self-organization. Self-organization occurs natu-
rally in a variety of biological, chemical, and social systems. Due to
the heterogeneity and strong diversification among these categories,
it is difficult to define precisely. For our scope, we borrow a working
definition from Camazine et al. [2001]:

"Self-organization is a process in which pattern at the global
level of a system emerges solely from numerous interactions
among the lower-level components of the system.
Moreover, the rules specifying interactions among the system’s
components are executed using only local information, without
reference to the global pattern."

A pattern can then be seen as an organized disposition of the system
components in space (or time).

Many processes in chemistry, for instance, are examples of how
interactions at a microscopic level have a great influence on the final
properties of a material at the macroscopic level.

One of them, Crystallization, is the process of forming solid crys-
tals by precipitation from a (generally) liquid solution. It takes place
when a solute (chemical compound) is mixed with a solvent, heated
at high temperature. This causes the molecules of the compound to
disaggregate and start floating around. By gradually reducing the

4



2.1 concepts 5

temperature of the compound, the free solute molecules, which can-
not be held anymore in the solvent, start to aggregate. Not all the clus-
ters of molecules become crystals, but only those who have reached
a critical size (determined by the operating conditions of the process,
namely temperature and pressure). The remaining molecules then
join the "surviving" aggregates, arranging themselves in a defined pe-
riodical manner that gives the crystal its characteristic structure. It
is indeed an example of self-assembling process, analogous to the pro-
cess that binds the DNA molecules to form the characteristic double
helical structure.

Without restraining ourselves to chemistry, similar activities can
be observed in biology as well. Notable illustrations of the self-
organizing phenomena are, indeed, morphogenesis, protein folding
and homeostasis. Morphogenesis is a term used to identify the process
through which a biological organism develops its final shape. Many
particular patterns in nature, such as pigmentation on some species
of shells (Figure 1a) and coat patterns in giraffes and zebras (Figure
1b) are examples of morphogenesis products.

(a) Pigmentation pattern on a cone
shell (Courtesy of Stephan Wol-
fram)

(b) Pigmentation patter of a zebra coat
(Courtesy of The Technium)

Figure 1: Examples of self-organizing patterns emerging from morphogene-
sis

In Turing [1952], Alan Turing explained the occurrence of a simi-
lar structures by means of the diffusion in the cells of chemical sub-
stances (morphogens). By modeling this phenomenon with systems
of differential equations, he discovered that a particular pattern is
the result of the interaction between different types of morphogenes,
some promoting and other preventing cell growth. On the other hand,
Homeostasis is the property of system to self-regulate its internal envi-
ronment to maintain a stable, relatively constant state. This process,
first studied by Bernard in the 18th Century (cf. Cooper [2008]), has
been explained in the framework of dynamical systems (feedback cy-
cles). "Positive feedback

isn’t always
negative"
–M.Resnick,
Learning about Life

Even though, at a first glance, the aforementioned processes may
seem really different among them, they can all be explained through
the combination of positive feedback, that iteratively amplifies the re-

http://www.stephenwolfram.com/publications/articles/ca/83-cellular/2/text.html
http://www.stephenwolfram.com/publications/articles/ca/83-cellular/2/text.html
http://www.kk.org/thetechnium/archives/2009/08/ratcheting_up_a.php


6 background & related work

sponse of the system and negative one, which compensates by limiting
it, leading the system towards stable equilibrium states.

From a different point of view, another relevant definition of self-
organization has been given by [Ashby, 1962]:

"[...] the system that starts with its parts separate (so that the
behavior of each is independent of the others’ states) and whose
parts then act so that they change towards forming connections
of some type."

Examples of self-organizing systems in this sense, are human neu-
ral networks, whose connections and capabilities evolve across time
thanks to the interconnection with similar cells. It should be noted
the latter definition does not address the question of the usefulness of
the emerging organization and that both the definitions focus on the
interaction (and consequent cooperation) among the parts of the sys-
tem. In both cases, no constraints are imposed on the basic building
blocks of the system, which could be either living or inanimate enti-
ties. Moreover, the definitions do not specify whether information is
exchanged among the agents during their interaction and how such
knowledge is used in the process.

The research in Swarm Intelligence, on the other hand, is focused
on the study of self-organizing behaviors of a precise typology of
entity: agents (i.e. entities capable of observing and modifying their
environment by means of, respectively, sensors and actuators).

2.1.2 Swarm Intelligence

What is, then, an intelligent swarm? We can find a good answer in
Beni [2005]:

"[...] a group of “machines” capable of forming “ordered”
material patterns “unpredictably”."

This definition allows us to immediately clarify the most impor-
tant aspects concerning this discipline. First of all, the fact of dealing
with systems composed by multiple individuals which are able to or-
ganize themselves autonomously. The intelligence of the swarm is
expressed in terms of computational equivalence. Its unpredictabil-
ity arises from the fact that it is as powerful as any other universal
computational model.

Moreover, the notion of machine (as "[...] an entity capable of process-
ing matter/energy", from Beni [2005]) does not define the nature of the
entity itself which could be either a living creature (Natural Swarm
Intelligence) or a human artifact (Artificial Swarm Intelligence).

Natural Swarm Intelligence deals with the study of the collective be-
haviors emerging from the interactions of biological organisms (gen-
erally animals or insects).

The most fascinating examples in this category, under a visual
point of view, are surely the flocking (schooling) behavior that can
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be observed in groups of birds (fish). While displaying a similar be-
havior (Figures 2a, 2b), the group of animals moves as if it were a
single, fluid entity. Furthermore, even though rapid changes of di-
rection are triggered as a reaction to events in the environment (e.g.
presence of a predator/obstacle) accidental collisions among the indi-
viduals are rare. Surprisingly, a limited set of rules (three, to be pre-
cise, cf. Reynolds [1987]) describing the inter-agent interactions and
local sensing capability are sufficient to achieve this complex global
behavior.

Insects are an interesting example of how organization can be achie-
ved when the number of individuals scales up from tens to thousands
of units in the group.

For instance, ants of the Pheidole genus are divided two distinct cat-
egories of individuals: minors and majors. Insects from the former
category carry out the majority of the tasks required in the colony
(grooming, brood care, foraging) while those in the latter focus on
nest defense and seed milling. As shown in Wilson [1984], when
the ratio minors:majors drops below a certain threshold, the repar-
tition of the activities among the agents is modified in a way that
majors compensate for the lack of minors by performing their tasks.
If the ratio is increased again, the ants recover the original task alloca-
tion. An explanation of this adaptive unsupervised division of labor,
has been given several years later with the response-threshold model
(Theraulaz et al. [1998]), based only on features of each agent.

Bees, on the other hand, show us how the global structure of their
hive can emerge from the independent, but self-organized work of
a large number of individuals (Figure 2d). An honey bee colony
presents in fact a characteristic pattern, made by three concentric
zones containing respectively brood, pollen and honey (from the cen-
ter to the exterior area). A first hypothesis that has been formu-
lated to describe this phenomenon was that bees possessed some in-
nate knowledge about how to arrange cells (e.g.blueprint or pattern).
What Camazine [1991] has shown, is that brood is initially deposed in
a compact way by the queen, while pollen and honey are dispersed
randomly in the structure or in cells where the same substance is
already present. The structure then emerges from a simple nourish-
ment 1 displacement behavior performed by all the agents, based on
brood quantity in the neighborhood, along with the different rates at
which new substances are brought in the colony.

Evidence of the emergence of a collective intelligence through sim-
ple interactions in a large group of individuals have been observed
in humans as well. In Krause et al. [2010] we find the application of
this principle to different real situations such as the guess of the exact
quantity of marbles in a jar, the management of a football team, the
design of a new product. The main benefit of a similar cooperation

1. Pollen and honey.
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in humans is the collective information processing to provide a new
cognitive solution to a problem.

(a) Flock of auklets (seabirds). (Cour-
tesy of D. Dibenski)

(b) School of fishes swimming together
in a spherical formation.

(c) Major and minor ants of the Phei-
dole genus taking care of the colony
brood. (Courtesy of Alexander
Wild)

(d) Bees deposing honey in their
colony. (Courtesy of Kamillo
Kluth)

(e) Exemplification of the "Wisdom of
crowds" concept.

Figure 2: Examples of Swarm Intelligence

Why are these behaviors widely observed in nature? Why there is
an interest in their study from an engineering standpoint? An answer
can be found in the characteristics that these systems possess.

First of all, they are completely distributed, in the sense that there
are no leading individuals in the group that impose a certain behav-
ior, neither locally nor globally. Furthermore, all the agents are rela-
tively homogeneous (i.e., they present only limited variability in terms
of morphology or capabilities) with only local sensing capabilities (that

http://www.alexanderwild.com/
http://www.alexanderwild.com/
https://secure.flickr.com/photos/27330306@N08
https://secure.flickr.com/photos/27330306@N08
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is, they could only have insights on what is happening in their sur-
roundings, but not at a global level). The combination of this features
implies that no individual is essential to the survival of the group,
thus ensuring the ability to cope with the loss of individuals (due to
death or temporary/permanent inability), hence the robustness of the
system. Moreover, through simple behavioral rules concerning the
interaction with other agents and basic information transfer, both di-
rect or indirect (e.g. stigmergy), a collective, intelligent organization
emerges. This locality allows the system to be resilient with respect
to both the fluctuations in the environment and in the swarm. As we
may notice, all the aforementioned features brings a set of advanta-
geous properties to the system.

The research in Swarm Intelligence is mainly twofold. On one
hand, the aim is to understand the mechanisms underlying such
kind of systems and provide a model which is able to explain the
emergence of a collective behavior (Scientific Swarm Intelligence). Since
Swarm Intelligence is a bio-inspired discipline, the largest part of this
research is conducted by life scientist. On the other hand, the focus is
how to apply the discovered knowledge to problems having a practi-
cal relevance (Engineering Swarm Intelligence). In this case, researchers
in computer science, mostly in artificial intelligence and robotics, are
using the knowledge gathered in other fields to create algorithms
able to solve optimization problems, to perform realistic simulations
of thousands of agents or develop efficient robotic systems.

2.1.3 Swarm Robotics

In the first years of 1990, while life scientists [Camazine, 1991] were
observing and modeling the behavior of social insects, the first ex-
amples of multi-agent systems were being developed by computer
scientists (Singh [1991]).

These artificial systems are composed by a group of autonomous
entities interacting among them and with an environment, which can
be either physical (e.g robots in a real environment) or virtual (soft-
ware agents, for example). The nature (physical/virtual, human/arti-
ficial) and the complexity of the agents (active/passive, cognitive/re-
flexive) could be highly variable, yielding to heterogeneous sets of
agents. Over the years, similar systems have been mainly used to
perform distributed problem-solving (Colorni et al. [1991]) or multi-
agent simulation of real world processes (Benenson [1998]).

In the years 2000, the biological and artificial research paths have
joined in the Swarm Robotics field.

A more precise definition can be found in Şahin [2005]:

"Swarm robotics is the study of how large number of rela-
tively simple physically embodied agents can be designed such
that a desired collective behavior emerges from the local inter-



10 background & related work

actions among agents and between the agents and the environ-
ment."

A physical embodied agent is an entity whose behavior is affected
by its morphological features and the environment it is situated in
[Pfeifer et al., 2007]. In order for the agent to be embodied, it must
be able to transfer and process matter, energy (through its actuators)
and information (by means of its sensors and its internal architecture),
hence it must be, according to Beni [2005], a robot.

As a consequence, we can observe from the definition that Swarm
Robotics is a branch of collective robotics where a global behavior
is achieved through the self-organization of the individuals. The
autonomous agents are relatively simple in the sense that they are
equipped with a minimal set of sensors and actuators, that prevents
each agent from having a global knowledge of the system and the envi-
ronment.

It is important to clarify that, while the definition deals with a large
number of robots (from hundred to thousands of robots), the empir-
ical experiments in Swarm Robotics are performed with group of at
most 30 to 50 robots. This discrepancy is mainly due to practical and
economical reasons. In fact, even though the technological evolution
allowed to reduce the costs of the microelectronic components that
constitute a robot, a single assembled agent still remains costly (from
several hundred to several thousands euros). Furthermore, most of
the robots used in the experiments are battery-powered, which con-
strains the autonomy of the robots to those of their power supply.

Despite of these limitations, why there is still an interest in Swarm
Robotics? The answer to this question can be found by analyzing
how self-organization can solve some common issues in collective
robotic. For instance, the robot coordination in many application of
collective robotics is achieved through a shared, centralized commu-
nication medium, which is accessed concurrently by all the agents.
A similar solution has some major drawbacks: if the medium is un-
available, the system cannot operate correctly. Moreover, the quality
of the communication decays as the number of robots in the system
increases, due to the concurrency. Conversely, if the coordination is
achieved through local interactions of the robots, the robustness of the
system with respect to faults and disturbances can be achieved. The
points of failure will then become distributed among the agents, low-
ering their influence on the overall performance of the system. Also,
if the agents are homogeneous and relatively simple, the swarm be-
comes even more dependable by means of redundancy. In addition,
the lack of a central communication mechanism favors the scalability
of the system with respect to changes in the number of individu-
als. Another advantage of self-organization is that robots could op-
erate autonomously, hence performing parallel activities which are
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distributed in space and in time, improving the global efficiency of
the system.

It is important to stress the fact that the aforementioned properties
are not guaranteed as a consequence of self-organization.

2.1.3.1 Development methodology

Requirement specification

Design

Implementation

Test and Analysis

Validation

Operation and maintenance

Behavior-based
Automatic

Microscopic level
Macroscopic level

Simulation Real
robots

Figure 3: Overview of the typical development process in Swarm Robotics.
Backward feedback loops are omitted for clarity.
The elements having a dashed border are not generally performed
in the context of Swarm Robotics.

Indeed, the main research question in Swarm Robotics (SR) is how
to develop design methodologies at the individual level that will
cause the emergence of a collective behavior exhibiting the aforemen-
tioned properties.

Figure 3 depicts the typical development process in Swarm Robotics.
The systematic application of scientific and technical knowledge in a
structured way in the development process is generally referred as
Swarm Engineering.

Concerning the design step, there are two common approaches,
behavior-based and automatic.

The behavior-based one is a process that consists in developing (often
by hand, in a trial-and-error fashion) a specification of the agents
behavior which can be easily implemented. According to Brambilla The interested reader

could find all the
details and relevant
articles describing
their application in
Brambilla et al.
[2013]

et al. [2013] the most used methods in this category are the finite
state machine and virtual physics one. The finite state machine one is
based on the definition of a set of relevant states for the robot and the
corresponding transitions, based on the inputs from the sensors and



12 background & related work

on the robot current state. Virtual physics [Spears et al., 2004] treats
each agent as a virtual particle subject to virtual forces. Those forces
are the result of the interaction of the robot with a virtual potential
field, that can be perceived through its sensors.

As for automatic methods, the idea is to apply Artificial Intelligence
techniques to the design process of the robot, without relying on
human-based development. The most frequently used techniques are
Reinforcement Learning (RL) and Evolutionary Robotics (ER).

With Reinforcement Learning [Sutton and Barto, 1998] the agent
learns a desired individual behavior by means of iterated interactions
with the environment, receiving a feedback on its actions. The polar-
ity (positive or negative) of the feedback, determines whether the
agent should retain or forget a certain component of the behavior.

In Evolutionary Robotics, evolutionary computation techniques [Gold-
berg and Holland, 1988] are applied to the swarm of robots. The indi-
vidual behavior of the robots (identical for all the agents) is the basic
component that is evolved through different iterations of the method.
At the beginning, this behavior is generated randomly and the collec-
tive behavior produced by the simultaneous execution of it on all the
robots is evaluated by means of a fitness function. At each iteration,
the individual behaviors are modified by means of selection, recom-
bination and mutation operations. The process is stopped once the
desired collective behavior has been achieved.

After the design phase have been completed, the emerging behav-
ior must be thoroughly analyzed in order to assess whether the de-
sired properties hold or not, before actually validating it with tests
on the real robots. The analysis is performed mainly by means of
simulations and mathematical models.

Simulations offer a swarm representation which is as close as pos-
sible to the reality, by modeling each robot component at a micro-
scopic level. Unfortunately, this accuracy comes at the price of com-
putational complexity, which dramatically increases as the number of
agents becomes larger, making technically unfeasible the simulation
of numerous swarms.

On the other hand, mathematical models based on the theory of dy-
namical systems or on the control and stability theory can be used
to describe the system at a macroscopic level. They can be studied
regardless of the group size, but their extent is often restricted to sim-
plified representations of the systems to study, limiting their practical
utility.

The final step of this engineering process is the execution of the
individual behavior by a swarm of real agents. Surprisingly, as Bram-
billa et al. [2013] shows, the validation on real robots is performed on
less than half of the papers that the authors have reviewed.

The validation through simulation of the results presents some
clear advantages: it prevents damages to the robot in case of a be-
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scientific engineering

– Aggregation
– Pattern formation
– Self-assembly
– Coordinated motion

– Self-assembled motion
– Area coverage
– Collective indoor exploration
– Collective transport
– Consensus achievement
– Task allocation
– Fault detection
– Group size regulation

Table 1: Summary of the applications of Swarm Robotics. The task typolo-
gies are those presented in Brambilla et al. [2013].

havior fault, it can be easily parallelized thus being executed faster,
it does not require the actual deployment and maintenance of the
robots. However, the lack of experiment in the real environment of
the robots does not give any guarantees on the feasibility of the meth-
ods and on the realism of the underlying assumptions.

2.1.3.2 Applications of Swarm Robotics

As we discussed in Swarm Robotics, the affordability and the main-
tenance issues of a swarm of real robots are the problems that hinder
the creation of swarm-based solutions that can operate in everyday
life.

Nevertheless, the research in Swarm Robotics has provided valu-
able insights on the functioning of self-organized biological systems
and proofs-of-concept regarding how agent cooperation can success-
fully tackle complex problems. Hence, according to the taxonomy
defined in Dorigo and Birattari [2007], these results can be classified
as Artificial Swarm Intelligence with both Scientific and Engineering pur-
poses.

Under a scientific point of view, the most fruitful applications are
related to collective behaviors that cause the emergence of patterns
with a precise connotation in space. For instance, Garnier et al. [2005]
have successfully designed a robot controller that causes the forma-
tion of group of agents in defined regions of the space (i.e. their
aggregation), replicating the behavior of cockroaches. In addition, the
chaining behavior of ants have been modeled and implemented on ar-
tificial agents, both with [Mondada et al., 2005] and without [Nouyan
et al., 2008] physical connection among the agents. Also, the flocking
behavior, the most known example of coordinated motion, depicted in
figures 2a and 2b, has been achieved with a group of robots [Balch
and Hybinette, 2000].
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Studies in Swarm Robotics has not only proven to be useful in ex-
plaining the underlying mechanisms that trigger the emergence of
Swarm Intelligence in animals and insects, but also in developing
solutions to problems having a practical relevance (i.e. from a engi-
neering standpoint).

Here, the most interesting results have been obtained while deal-
ing with environment exploration, object transport, swarm awareness and
decision making problems.

Within the exploration framework, solutions have been found by
deploying robots in a way that they maximize the area coverage of the
given environment, sometimes by having a connectivity constraint
among the agents [Howard et al., 2002] or by using an heterogeneous
swarm, in order to take advantage of the different characteristics of
the individuals [Ducatelle et al., 2011].

Collective object transport has been successfully tackled by a group
of robots, simply by relying on the force, position and orientation
sensing of each agent [Donald et al., 1997].

Some methods have also been developed to make the swarm aware
of its current state, for example, by being able to detect the presence
of faulty robots [Christensen et al., 2009] or estimate and regulate its
group size [Brambilla et al., 2009].

Moreover, the problem of having the swarm reach a consensus con-
cerning a choice (e.g. moving direction, aggregation point) that will
affect the performance of the whole group, have been solved using
both direct [Gutiérrez et al., 2010] and indirect communication [Gar-
nier et al., 2005].

Last but not least, the problem of allocating robots to different tasks
(foraging against resting) in order to maximize the throughput of the
system have been successfully addressed with an individual decision
mechanism [Krieger and Billeter, 2000].

We are aware that the overview we presented may be incomplete,
but its main purpose is to illustrate the most prominent results ob-
tained in Swarm Robotics.

2.2 spatial allocation

In this thesis we investigate the problem of allocating embodied
agents to physical tasks distributed in space. A brief example might
clarify this description.

Consider a search and rescue scenario: some people are dispersed
in an hazardous environment (e.g. a building on fire) and they need
help in the shortest possible time. The nature of the environment gen-
erally impedes a global exchange of information among the rescuers,
making a centralized coordination of the process unfeasible. More-
over, the information concerning the topology of the environment
and the number of people in distress may be unavailable or unreli-
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able. If we consider that robots are, in general, faster, stronger, more
resistant and more accurate than human, we could foresee the appli-
cation of a swarm of robots to operate in the aforementioned dan-
gerous environment. In any case, the only operable solution would
be to let the rescue agents self-coordinate themselves during the pro-
cess. The optimal allocation, in a similar scenario, would be the one
allowing to rescue all the people in the shortest possible time.

Indeed, the fundamental aspects that characterize the performance
of the method are the uniformity of the distribution of agents across
the requests in the environment and the time needed to discover and
allocate to the task.

The collective behavior that the robots should achieve is in between
the task allocation and the foraging activity (cf. Figure 4). In fact, in
the context of Swarm Robotics, the task allocation problem is usually
related to the choice among different alternatives, which are known
a priori, concerning the role of the agents in the swarm [Krieger and
Billeter, 2000; Agassounon and Martinoli, 2002; Pini et al., 2009].

On the other hand, foraging is the process of collectively searching
for resources scattered in the environment, harvesting them and de-
positing them at predefined collection points. This activity can be de-
composed into four phases. First, the robots have to employ a search
strategy (e.g. uninformed random walk) to localize the resource in
space. Once the object has been found, the agent have to physically
collect it. Then, it must apply a navigation strategy to head back to
the collection point. Lastly, the robot deposit the gathered object and
restart the process. A detailed taxonomy of the process can be found
in Winfield [2009].

Moreover, according the taxonomy defined in Gerkey and Matarić
[2004] our problem could be classified as ST-SR-IA (Single Task, Sin-
gle Robot, Instantaneous Assignment). As a matter of fact, we an-
alyze a problem in which homogeneous agents (i.e. no difference
among them) should localize homogeneous tasks (that is, any robot
could potentially allocate itself to any activity) in space and then de-
cide whether their allocation to the task is required or not.

2.2.1 Related work

In our vision of the problem, the only common subtasks with the
foraging activity are the localization and the collection one. The nav-
igation and deposit operations are outside of the scope of our meth-
ods. As for the localization problem, several techniques of collective
exploration such as area coverage [Spears et al., 2004] or chain forma-
tion [Nouyan et al., 2008] could be potentially employed. Instead, we
choose to implement a simplifed and unbiased exploration technique:
random walk. In addition, the collection operation will be abstracted by
means of a specific device (i.e. TAM).
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Spatial Allocation
Multi-

robot task
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Decentra-
lized
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Collective
foraging

Figure 4: Map of the relevant concepts related to Spatial Allocation

For these reason, we choose to focus our related literature analysis
on the task allocation instead of the foraging activity. Here, we can
distinguish two different approaches: centralized and decentralized.

Centralized approaches are based on the modeling of the allocation
activity as an optimization problem, the Optimal Assignment Prob-
lem (OAP) [Gerkey and Matarić, 2004].

In the classical formulation of the problem [Gale, 1960], there are
m agents that have to be assigned to n jobs. Each agent i is character-
ized by a utility estimate value Uij that predicts his performance on
task j. The optimal solution of the problem consists in the allocation
of agents to jobs that maximizes the system performance (utility). By
gathering all the information concerning the agents in a single entity,
which can be either a robot in the group or an external computation
device, it is possible to obtain a solution using a combinatorial opti-
mization algorithm (e.g. the Hungarian method Kuhn [1955]).

A similar approach requires complex communication capabilities
and a global knowledge of the characteristics of the agents in order
to be effective, requirements that are generally not met on real Swarm
Robotics applications.

Moreover, in case of malfunctions or unavailability of the single al-
locator entity the whole system ceases to function. Also, the central-
ized collection of information introduces a bottleneck in the system.
We can conclude that this approach lacks of robustness and scalability,
thus being unsuitable for swarm implementations.

Decentralized approaches can be classified according to the type
of coordination they employ. On one hand, we have intentional coor-
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dination among the agents, as in market-based approaches, for whose
detailed survey of can be found in Dias et al. [2006]. The underlying
principle is similar to the OAP one.

Each agent possesses, in fact, an individual utility function that
quantifies its preferences for the allocation to a certain task. In ad-
dition, the agent can estimate the cost (e.g. the distance, the energy
consumption) related to the task it is seeking allocation for.

Whenever more than one agent is interested in a certain task, an
auction process is started. On basis of the information it possess, it
makes a certain bid for the task. The agent with the highest bid wins
the auction process and gets the task.

Examples of approaches in this category are Lin and Zheng [2005];
Guerrero and Oliver [2003].

An advantage of this method is that the auction process does not
necessarily require global or perfect information. Unfortunately, the
bidding process is particularly demanding in terms of communica-
tion resources, since it requires an iterated exchange of messages by
all the parties involved in the transaction and does not scale well as
the number of robots increases.

On the other hand, coordination emerges from simple interactions
among the agents, as in response-threshold based approaches, which
draw inspiration from nature.

The response-threshold model, developed by Theraulaz et al. [1998],
assumes that each task in the environment has an associated stimu-
lus. Each agent has a different response threshold for the available
tasks and its probability to engage in the activity is a function of the
threshold and the value of the stimulus. The stronger the stimulus,
the higher the likelihood that an agent will allocate itself to a certain
task. The threshold can be either fixed (as in the original model) or
adaptive (in a Reinforcement Learning fashion). In the latter case,
the decrease of the threshold value for a certain activity can make
an individual more sensible to the corresponding stimulus, resulting
in more frequent allocation. Conversely, an agent will be more ret-
icent to allocate to a certain task when the corresponding threshold
is raised. Since the allocation decision is performed without direct
communication among the agents, the approach scales well as the
number of agents increases. Moreover, it is robust with respect to
faults on the robots and flexible with respect to variations in the de-
mand. The main drawback of this approach is the difficulty to predict
the emergent behavior of the system, making the design of a system
for a specific purpose problematic. A comparative analysis among
the two mentioned approaches has been done by Kalra and Martinoli
[2006], showing a better performance of the response-threshold ap-
proach with respect to the market-based one when the information is
inaccurate.
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The multi-robot task allocation problem can also be seen as an in-
stance of the Constraint Satisfaction Problem. The problem consist in
finding an assignment of values to a set of variables V from the cor-
responding domains set D that respect the set of constraints C. If we
consider V as the set of tasks, D as the set of robots and we introduce
the constraint that each robot must be assigned to exactly one task we
obtain the single robot, single task allocation problem. In Shen and
Salemi [2002], this problem is approached in a distributed fashion
(Distributed Constraint Satisfaction Problem (DCSP)). The proposed
solution however, is particularly demanding in terms of task model-
ing and information exchange among robots, thus difficult to apply
on large groups of robots. Up to now, to the best of our knowledge,
there are no studies that explicitly concentrate on the allocation of
robots to physically situated activity with a self-organizing approach.

Despite having a completely different approach, the work from
Hsieh et al. [2008] addresses a problem closely resembling ours. Their
problem involves N agents to be distributed among M sites in an en-
vironment whose topology can be expressed as a graph G(V,E), in
terms of sites (V) and one-way connections among them (E). The
state of the system is represented by the relative number of agents
at each site i (xi(t)). The authors propose two strategies for redistri-
bution: baseline and quorum-based. In the first one, the distribution
of the agents occurs by means of transition probabilities per unit of
time (kij) between nodes, defined on every edge in E. In the second
one, each site has an associated quorum value qi. Whenever the cur-
rent occupation xi(t) is above the quorum then one of the outgoing
transitions rates from that node is multiplied of a coefficient α un-
til the occupation descends again below the quorum value. In both
cases, the entries of K (i.e. kij∀i, j) are determined using Metropolis
optimization [Landau and Binder, 2009].

Even though the model allows to obtain promising results, success-
fully achieving the redistribution of a swarm of 20000 robots, there
are some strong assumptions that differentiate this approach from
ours. First of all, the agents do possess a global knowledge of the
topology of the environment (G(V,E)) and thus are capable of lo-
calizing themselves and navigating easily from one site to another.
Moreover, the robots are supposed able to estimate the current occu-
pation xi(t) of the site they are in. Also, the results are obtained only
with simulations where real-world non-linear effects on the sensors
and actuators along with realistic deployment dynamics for the robot
have not been modeled. Although the stochastic transition polices are
defined at an agent-level and do not require any wireless communi-
cation, the actual values of the transition probabilities are computed
off-line and then distributed to all the agents, making the proposed
solution de facto centralized.
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In contrast to Hsieh et al. [2008], our purpose is to distribute uni-
formly agents across spatially distributed tasks, in real-time, without
global information concerning the topology of the environment or
the transition rates.

2.3 materials

Since we are going to develop a method in the context of Swarm
Robotics, we must clarify two fundamental aspects: the characteris-
tics of the embodied agents and the development methodology we are
going to adopt.

Our embodied agents are mobile robots, the e-pucks, presented in
detail in the E-puck section.

A novel point in our approach is that tasks are abstracted but em-
bodied as well, by means of a specifically designed device, the TAM,
whose specifications will be discussed in IRIDIA Task Abstraction
Module.

As for the development methodology, we are going to adopt a behav-
ior based approach (explained in methodology) with a microscopic-
level simulation-based analysis. All the relevant information concern-
ing the multi-robot simulator can be found in Autonomous Robot Go
Swarming.

2.3.1 E-puck

Figure 5: Annotated picture of the e-puck robot. (Courtesy of RoadNar-
rows)

Only the relevant
aspects for the thesis
have been discussed
here. For more
details concerning
the robot, visit
http:

//www.e-puck.org

The e-puck (Figure 5) is an open-source educational desktop mobile
robot [Mondada et al., 2009]. It has been developed at the EPFL (Ecole
Politechnique Federale de Lausanne), in order to provide a common

http://www.roadnarrows-store.com/
http://www.roadnarrows-store.com/
http://www.e-puck.org
http://www.e-puck.org


20 background & related work

robot platform to be used in a broad range of university courses. The
educational purpose of the robot has influenced its design process.

The compact and modular shape of the robot is thought to be robust
with respect to the student use but easy to repair at the same time.
Moreover, its size has been conceived make the robot usable also in
relatively small environment, like a desk.

In addition, the robot is equipped with several different sensors
and actuators as well as with an expansion board, making the robot
flexible and usable in a wide range of contexts (from signal processing
to automatic control, for example).

In order to favor the diffusion of knowledge and the improvement
of the robot, the designers have given open access to its hardware
specifications and distributed the related software with an open source
license.

The publication of all the information concerning the robot has
made the development of extension boards for the e-puck possible.
Among the different available extensions, we focus only on those rel-
evant for the development of our methods: the omni-directional camera
and the Range and Bearing (RAB) board.

The omni-directional camera is build by encapsulating the standard
e-puck camera in a glass cylinder, with an hyperbolic mirror on the
opposite edge. By pointing the camera towards the mirror it is pos-
sible to obtain a 360 degrees viewing range around the robot. The
board, containing the CMOS camera, a FIFO buffer and an additional
microcontroller, is mounted on top of the robot and connected to it
by means of a card-edge connector leaving the possibility to connect
other extensions to the e-puck.

The Range and Bearing board is an extension developed to provide
local communication capabilities to the robot [Gutiérrez et al., 2008].
By means of 12 IR emission/reception modules, nearly uniformly dis-
tributed on the perimeter of the board, the e-puck becomes capable of
broadcasting up to 16 bit of information to the nearby robots. The
board takes its name from the fact that, given the power of the re-
ceived signal and the placement of the sensors/actuators, the embed-
ded microcontroller on the board is able to compute the range (dis-
tance) and bearing (angle with respect to the receiver) of the sender
robot.

Figure 6 shows an e-puck with both the aforementioned extensions
installed.

We decided to choose the e-puck as the robotic platform for the
development of our methods since it is a simple yet powerful device
which best represent the notion of swarm agent.

If we look at the specifications (Table 2), we may notice the limited
sensing capability, especially with respect to the sensors we are going
to use in our method: the proximity sensors and the camera.
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The affordability and reduced size (with respect to similar devices)
makes also the creation of a large swarm of robots feasible. Phototaxis is a kind

of taxis, or
locomotory
movement, that
occurs when a whole
organism moves in
response to the
stimulus of light.

Although the e-puck possesses a wide set of sensors and actua-
tors, we are only going to use those required to perform displace-
ments (wheels), obstacle avoidance (proximity sensors) and odometry
(encoders), plus the functionalities offered by the extension boards to
perform phototaxis (omni-directional camera) and local communication
(range and bearing system).

features technical information

size and weight 70 mm diameter, 55 mm height, 150 g

processor (robot) dsPIC 30F6014A @ 60 MHz ( 15 MIPS)
16 bit microcontroller with DSP core

controller (omnidirectional camera) dsPIC33FJ256 GP506 16 bit microcon-
troller with (Averlogic AL440B-24-PBF)
(FIFO) frame buffer

controller (rab board) dsPIC 33FJ256 16 bit microcontroller

motors 2 stepper motors with a 50:1 reduction
gear

encoders One per wheel, pulses resolution: 0.13

mm

proximity sensors 8 IR sensors uniformly placed below the
ring

camera 2 CMOS VGA color camera, resolution:
480x640 pixels (4 fps at 40x40) (Front
and omni-directional)

rab emission/reception module Infrared emitting diode with infrared
modulated receiver and infrared photo-
diode.

microphones 3 omni-directional microphones for
sound localization

accelerometer 3D accelerometer along the X, Y and Z
axis

leds 8 red LEDs (ring), green LEDs (body),
one strong red LED (front)

speaker On-board speaker (WAV and tone
sound playback)

connectivity Serial port (RS232), Bluetooth, IR Re-
mote control

programming languages C (General purpose), ASM (DSP)

Table 2: Overview of the technical specifications of the e-puck robot
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2.3.2 IRIDIA Task Abstraction Module

Figure 6: Picture of the TAM with an e-puck with range and bearing board
and the omni-directional camera extension (Courtesy of Arne
Brutschy)

The IRIDIA TAM is a device for task abstraction specifically de-
signed for the e-puck robot [Brutschy et al., 2010]. Due to its physical
structure, the robot cannot be extended by means of a manipulation
device (e.g a gripper) thus limiting the number of activities that the
robot could actually undertake.

The TAM comes from the idea that the tasks that are beyond the
capabilities of the robot could be instead simulated. It has been de-
signed as an U-shaped booth (Figure 6) that could welcome a robot,
whose presence can be detected by means of the light barrier. The task
abstraction occurs through the interaction between the device and the
e-puck. In fact, the TAM is a programmable device which can display
its internal state through the colors of the RGB LEDs.

It is a duty of the researcher to find a suitable representation of
the task, given the functionalities of the aforementioned device. An
example of a successful application of this device is Pini et al. [2011],
where a group of TAM is used as a cache site to simulate the deposit
and pick up of objects.

In the context of our work, we take advantage of the fact that a
TAM could be seen as a physical representation of an activity, thus
having a precise collocation in space. Indeed, TAMs will model the
spatially distributed tasks that will require the allocation of a robot.

http://iridia.ulb.ac.be/~abrutschy/index.php
http://iridia.ulb.ac.be/~abrutschy/index.php
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features technical information

sizes 120 mm x 120 mm x 108.3 mm (height x width x
depth)

processor Atmel ATmega168 @ 20 MHz ( 20 MIPS) 8-bit micro-
controller

battery 5Wh LiION rechargeable and removable (∼3 hours
autonomy)

light barrier IR LED (emitter,left side) with IR transistor (re-
ceiver,right side)

leds 3 RGB LEDs (left side, right side, top)

connectivity 802.15.4 XBee DigiMesh (Wireless)

programming languages Processing, C, C++

Table 3: Overview of the technical specifications of the TAM device

2.3.3 Autonomous Robot Go Swarming

ARGoS 2.0
development has
been discontinued,
the new version of
the simulator, still in
beta testing phase, is
available at https:
//github.com/

ilpincy/argos3

ARGoS 2 is a multi-robot simulator, written in C++, and released
under GPL-3 license.

It has been developed by Pinciroli et al. [2012] in the framework
of the EU-Funded project Swarmanoid 3 which is also the official
simulator of the EU-Funded projects ASCENS 4, H2SWARM 5, and
E-SWARM 6.

Since the Swarmanoid project dealt with a swarm of heterogeneous
robots, two main issues had to be addressed by the simulator: flexibil-
ity and efficiency.

In order to be flexible the simulator should allow the user to imple-
ment and integrate new features (e.g. sensors or robot models). In
ARGoS, flexibility is achieved through a modular architecture on every
level. Every simulated entity, from the sensors to the physics engine,
is implemented as a plugin, which can be easily modified or extended
by the end-user. A similar architecture supports the existence of dif-
ferent versions of the same components (e.g. actuators/sensors with-
/without noise models, fine vs coarse grained physical simulations)
making the simulation accuracy highly tunable.

Moreover, the plugin nature of the components (Figure 7) allow
the user to load only the required ones, making the simulation more
efficient. Efficiency is also achieved through the support for the simul-
taneous simulation of different physical engines, each one of them as-

2. http://iridia.ulb.ac.be/argos/home.php

3. http://www.swarmanoid.org

4. http://ascens-ist.eu

5. http://www.esf.org/activities/eurocores/running-programmes/

eurobiosas/collaborative-research-projectscrps/h2swarm.html

6. http://www.e-swarm.org/

https://github.com/ilpincy/argos3
https://github.com/ilpincy/argos3
https://github.com/ilpincy/argos3
http://iridia.ulb.ac.be/argos/home.php
http://www.swarmanoid.org
http://ascens-ist.eu
 http://www.esf.org/activities/eurocores/running-programmes/eurobiosas/collaborative-research-projectscrps/h2swarm.html
 http://www.esf.org/activities/eurocores/running-programmes/eurobiosas/collaborative-research-projectscrps/h2swarm.html
 http://www.e-swarm.org/
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signed to non overlapping regions of the simulation space, resulting
in an improved allocation of computational resources. Furthermore,
the multi-threaded architecture of the simulator can profit of the pres-
ence of multiple core CPUs.276 Swarm Intell (2012) 6:271–295

Fig. 1 The architecture of ARGoS. The white boxes correspond to user-definable plug-ins

3.1.1 The simulated 3D space

The simulated 3D space, depicted at the center of Fig. 1, is a collection of data structures that
contains the complete state of the simulation. This state information includes the position
and the orientation of each object such as obstacles or robots. The state of objects composed
of different parts or equipped with special devices, such as sets of colored LEDs, is also
stored in this space.

The data is organized into basic items referred to as entities. ARGoS natively offers
several entity types, and the user can customize them or add new ones if necessary. Each
type of entity stores information about a specific aspect of the simulation.

For instance, to store the complete state of a wheeled robot, a composable entity is used.
Composable entities are logical containers that are used to group other entities. Compos-
able entities can be nested to form trees of arbitrary complexity. The controllable entity is
a component that stores a reference to the user-defined control code and to the robot’s sen-
sors and actuators. The embodied entity component stores the position, orientation and 3D
bounding box of the robot. The current wheel speed is stored into the wheeled entity compo-
nent. If the robot is equipped with colored LEDs, their state is stored in a component called
LED-equipped entity.

Entity types are organized in hierarchies. For instance, the embodied entity is an extension
of the simpler positional entity, which contains just the position and orientation of an object,
but not its bounding box. These design choices (entity composition and extension) ensure
flexibility, enhance code reuse and diminish information redundancy.

Entity types are indexed in efficient data structures optimized for access speed. In this
way, the performance of the plug-ins that access the simulated 3D space is enhanced. For
example, positional entities and their extensions are indexed in several type-specific space
hashes (Teschner et al. 2003).

3.1.2 Sensors and actuators

Sensors and actuators are plug-ins that access the state of the simulated 3D space. Sensors
are granted read-only access to the simulated 3D space, while actuators are allowed to mod-
ify it. As explained in Sect. 3.1.1, information about the simulation state is stored in a num-
ber of specialized entities. Sensors and actuators are designed to only access the necessary

Figure 7: Architecture of ARGoS. The white boxes correspond to user-
definable plug-ins.
From Pinciroli et al. [2012] in Swarm Intelligence, Volume 6, Is-
sue 4, December 2012. Reprinted with permission from Springer
Science and Business Media. All rights reserved.

Figure 8: Screenshot of the ARGoS simulator for the scenario B environment
configuration.
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In addition to the aforementioned properties, we decided to use
ARGoS since it offers full support for the e-puck robot (all the sen-
sors/actuators are simulated).

In order to launch a working simulation, ARGoS requires two com-
ponents to be provided: the controllers and the configuration file.

The controllers are plugins which make use of all the other com-
ponents provided by the simulator to implement the individual be-
havior of an entity (TAM and e-puck, in our case). They consist of
C++ source files (.cpp), with the respective headers (.h), which must
be compiled prior to be dynamically loaded at runtime. The con-
trol interface to write robot controllers in ARGoS is common to both
simulated and real robots. This means that the transition between
simulated and real robots is seamless, requiring only a recompilation
for a different target architecture (except for the TAM).

The configuration file is an XML file which describes the structure
of the simulated environment (physics engines, placement of mobile
and static objects, placement of the cameras) and which is used to
map each simulated entity with the corresponding controller, giving
also the possibility to pass parameters to it.

Another important functionality offered by ARGoS is the possibility
to create loop functions. The simulation loop in ARGoS involves three
phases: sense and control, act, update. In the first phase, the values
of the sensors are read and passed to the code of the user defined
controller, which is then executed, modifying the state of the actuators.
Then, in the act phase, the actions stored in the actuators are executed.
Lastly, in the update phase, the physics engine updates the state of the
entities under its control.

Loop functions are user-defined functions hooks that are placed in
precise points in the simulation loop (i.e. at initialization time, before
and after the execution of the update phase). By means of this tool,
the user is able to query the physics engine and to modify its state
at run time. This allows us to collect data at each simulation step for
further processing and visualization.
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M E T H O D O L O G Y

The methodology chapter contains an accurate description of
the methodology that we adopted for development of our methods.

We begin by giving a formal definition to the allocation problem
we are going to tackle (Problem statement).

In section Experimental setup, we describe how we have translated
the problem statement into a physical implementation of the prob-
lem.

Then, in Methods, we present our contribution using a top-down
approach. We start by presenting an Overview of underlying idea
of the methods. Lastly, we conclude by characterizing our methods:
Naive, Probabilistic and Informed.

3.1 problem statement

The class of problems we are interested in is the one related to the
allocation of a swarm of robots to spatially distributed tasks.

We speak of class since there are several different features in the
problem statement that may yield to different problem instances. Gen-
erally speaking, the problem can be described as:

Definition 1. Given n robots and m tasks having a precise spatial distribu-
tion, determine a mapping of the robots to the tasks which optimizes a given
allocation metric.

Clearly, the parameters of this general definition are: the number of
robots, the number of tasks, the distribution of tasks and the allocation
metric.

Moreover, the relation between the number of robots and tasks is key
factor in the problem statement, strictly related to the allocation met-
ric.

For example, in the scenario where the number of robots is greater
or equal than the number of tasks (n > m), if the experiment duration
is sufficiently long, the allocation of all the agents will be eventually
reached. There, it could be interesting to analyze the speed with
which the complete allocation is achieved.

On the other hand, if the number of tasks is greater than the num-
ber of agent (n < m), the allocation metric could measure how evenly
are the robots spread over the task in space or how fast the swarm
could reach some allocation "milestones" (e.g. 25%, 50%, 75% of the
tasks).

26



3.2 experimental setup 27

Regarding the spatial distribution (in a two-dimensional space) we
could foresee two possible categories of problems: random and deter-
ministic distribution.

With a random distribution, the positions of the tasks are deter-
mined by a bivariate random distribution (e.g. normal or uniform).

Conversely, a deterministic distribution consist of a precise disposi-
tion of the tasks in space, as to form a grid or clusters.

In the light of this classification, we can give a precise definition of
our problem:

Definition 2. Given n robots and m tasks (n < m) clustered in space,
determine a mapping of the robots to the tasks which is as uniform as possible
across clusters.

We assume that the values of n and m remain constant for all the
duration of the experiment. Furthermore, robots are assumed to be
identical among them and tasks are considered homogeneous (i.e. there
are no difference among tasks in terms of required skills to be per-
formed) and independent of each other (i.e. there are no relations
among the tasks).

The allocation of a robot to a task automatically prevents the allo-
cation of other robots to the tasks. As a consequence, any robot could
perform any available task.

In addition, the m tasks to be performed are distributed across c
clusters in space. For each cluster i, we can define the request ri and
the occupation oi(t).

The request ri consists of the fraction of the total number of tasks
m that belongs to the cluster i.

The occupation oi(t) corresponds to the number of tasks of the clus-
ter i that are being performed by a robot at time t.

Consequently, we have m < ri <= oi(t), ∀ i, t.
Given the two measures, we can compute a third one, the error,

which will serve as a measure for the quality of the allocation.

ei(t) = ri − oi(t) (1)

Indeed, if a cluster request will be completely satisfied, the error will
be null. A thorough discussion of the measures of allocation quality
is made in the results chapter.

3.2 experimental setup

As described in definition 2, our problem consist in allocating robots
to tasks that are distributed in space but grouped in a limited num-
ber of clusters. In our experimental setup, the tasks are represented
through TAMs and a cluster consists of a circular arrangement of tasks.
Moreover, the cluster is able to broadcast information concerning it-
self (as shown in Figure 9), namely its id i, the number of requests ri
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and its current occupation oi, in a limited surrounding area. In the
simulation, the information transfer occurs only when the robot is
within a circular range (radius: 51cm) around the cluster. Although
this cluster-to-robot communication is only performed in simulation,
this operation could be easily implemented with real TAMs and real
robots by means of a local communication device such as the Range
and Bearing board by Gutiérrez et al. [2008]. The shape of the clus-
ter has been specifically designed to give the robots the possibility to
navigate around it, either to assess the cluster occupation or to direct
to an available task.

Figure 9: Schematic representation of the TAM disposition in a cluster. Each
square box represent a single TAM entity. The blue circle corre-
sponds to the area (r=51cm, in our experiments) within which the
robots are able to sense informations concerning the cluster.

In our experimental setup we are going to use 4 clusters, each one
composed by 8 TAMs. The requests ri of the clusters will be dis-
tributed as follows:

cluster tams requests

1 8 7

2 8 5

3 8 8

4 8 5

total 25

Table 4: Clusters request in Uniform, Biased, Corridor experiment setups.
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Given the technical equipment of the TAM (Table 3), we decided to
make use of the RGB LEDs to make the internal state of the device
detectable by the robots, as shown in Figure 10.

AvailableDisabledstart Occupied

Sense
RobotEnabled

Figure 10: Finite state machine representing the TAM states. The color of the
states corresponds to the actual color displayed by the TAM LEDs.

At the beginning of the experiment all the TAMs are initialized in
the Disabled state. Then, a number of TAMs corresponding to the
requests ri defined in Table 4 is enabled in each cluster, making the
device available. Finally, when a robot is sensed in the TAM by means
of the light barrier, the device becomes Occupied. Clearly, in each
cluster i, 8− ri cluster will remain disabled, thus unaccessible by the
robots.

We decided to represent the tasks as sporadic (i.e. not occurring pe-
riodically), atomic (i.e. they cannot be suspended and later resumed)
in order to test the capability of the swarm to dynamically adapt to
changes in configurations instead of learning periodic patterns.

As we need to have a number of tasks greater than the number of robots
(i.e. n < m), we will use 20 e-pucks randomly deployed in a prede-
fined area of the environment. The initial position of the robots will
be determined by drawing the x and y coordinates of the robot from
a uniform distribution within the range depicted. It should be noted
that, given their technical specifications, the chosen number of robots
is not sufficient to perform a complete coverage of the environment,
thus requiring the e-pucks to explore it.

3.3 methods

Unlike many methods in Swarm Robotics, ours are not inspired by
any natural phenomenon. Instead, simplicity was the principle that
guided our development.

We started by focusing ourselves on the less complex (i.e. Naive)
method that achieved a reasonable allocation of the robots.

Once that has been found, we incrementally built a second method
(Probabilistic) upon the basic one, trying to devise specific measures
to overcome its limitations.

Lastly, we tried to further improve the second method by adding
navigation information to it (Informed).

All the methods are based on the sense, think, act paradigm. At
each simulation step, the robot first collects the information gathered
through the sensors, then, according to its internal controller, deter-
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mine the values to transmit to the actuators. Here, for the sake of
clarity, we focus only on the think phase, giving a brief description of
the robot controllers.

Among the different behavior-based developing approaches described
in Development methodology, we decided to use the probabilistic fi-
nite state machine one. Finite state machines allow to decouple a
complex problem in several easier sub-problems, which can be tack-
led separately and independently of each other. Furthermore, they
provide an elegant and clear representation of the robot controller, in
terms of internal states of the robot and transitions, based on both the
state and the currently sensed values of the robot.

In order to operate correctly, all the methods require the use of a
minimal set of sensors and actuators: the wheels to make the robots
move in the environment, the omni-directional camera to localize the
tasks, the proximity sensors to perform obstacle avoidance and the
range and bearing board to receive the informations transmitted by
the cluster. In addition, the Informed method requires the use of the
encoder sensors on the wheels, as described in the homonym section.

3.3.1 Overview
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Figure 11: Finite state machine representing the e-puck behavioral rules

Figure 11 summarizes the high-level behavior implemented in our
methods.
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All the robots are initially placed in a common deployment area,
where they start their Exploration of the environment. As soon as
they visually detect (i.e sensed) the cluster by means of their camera,
the robots direct themselves towards the cluster in order to collect
information, thus performing a cluster assessment. When the informa-
tion has been gathered, the robots enter the decision phase. In the case
of a positive outcome of the decision phase, the robot decides to allo-
cate itself to the task, thus completing its duty. Otherwise, the robots
goes back to the exploration phase to find another available activity to
perform.

As we discussed in section Spatial allocation, our problem can be
decoupled into two sub-problems: task localization and task allocation.

The task localization problem is addressed in the Exploration state,
whereas the task allocation is performed in the Assessing cluster, Deci-
sion and Allocation states.

Instead of implementing collective navigation techniques, such as
area coverage or chain formation, we chose to perform the Exploration
phase with a random walk.

Our choice was made taking into account the advantages offered
by such a method: its simplicity, its minimal requirements in terms of
sensors and computational resources and the absence of bias towards
some preferred directions. The Naive and Probabilistic methods im-
plements an uninformed version of random walk, while the Informed
one makes use of odometric information to guide the exploration.

The decision mechanism for the allocation is the key feature that
distinguishes the different methods.

The Naive method applies a greedy allocation rule: as soon as an
available task has been detected, the robot tries to allocate to it.

On the other hand, the Probabilistic and Informed methods intro-
duce an actual probabilistic decision phase, prior to the allocation.

Every time, during the assessment phase, that a change in the cur-
rent cluster occupation is sensed, a stochastic decision mechanism is
triggered. The robot decides whether to leave or not the cluster with
a probability equal to the cluster’s current relative occupation (i.e.
oi(t)
ri

). Through this simple decision rule, we would like to prevent a
concentration of the robots on a single cluster and stimulate a more
uniform allocation.

In addition to this probabilistic rule, in every method, the decision
to leave the cluster is taken anytime a robot detects that the cluster
current occupation equals the requests (i.e. oi(t) = ri for the clus-
ter i being assessed) or, in other words, when the cluster request is
satisfied.

Whenever the decision to leave is taken, the robot enters a tem-
porary blind state (not depicted on the state machine). The robot
remains in this state for 100 time steps, during which it ignores the
readings coming from the camera. This simple mechanism has been



32 methodology

developed to prevent a robot from being attracted by a cluster that
it has just decided to leave, without resorting to more sophisticated
solutions (e.g. odometry).

3.3.2 Naive

Linear Walkstart Random Turn

Directing to TAM Assess clusterIn TAM

Perform Task

Obstacle

Available ∨

Occupied
TAM

Turn end

LostTAM

db < din ∧

Available
TAM

db < das
∧ Occu-
pied TAM

Available TAM

oi = ri
Occupied
TAM

Figure 12: Deterministic finite state machine corresponding the imple-
mented individual robot controller for the Naive method. The
red circles corresponds to the states where the robot has light up
the red LEDs on its body.

Figure 12 provides a detailed description of the robot controller for
the Naive state, based on the high level description depicted in Figure
11.

Here, the uninformed random walk is performed by combining two
simple behaviors: Linear walk and Random turn. Linear walk consists
of letting the robot move in a straight line, i.e actuating the same
speed on both the wheels. As soon as the proximity sensors detect
the presence of an obstacle (within a range of 15 cm), the robots enter
the Random turn state. A random turn is done by first choosing a
rotation direction (clockwise or counterclockwise) and then pivot for
a random number of time steps.

The robot is initialized in the Linear walk state, but as soon as a
task (both available or occupied) is detected, the robot directs itself
towards it. As explained in Section 3.2, the robot is able to deter-
mine the state of a task by perceiving the corresponding color with
its omni-directional camera within a range of 50 cm. In our simu-
lation, the resulting readings from the omni-directional camera are
colored points, characterized by their color, their distance and angle
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with respect to the direction where the robot is heading. Thanks to
this information, the robot can easily rotate and head in the same
direction as the sensed TAM. As soon as an enabled TAM, regardless
of its internal state, is detected by means of the camera, the robots
enters the Directing to TAM state, and starts moving in the direction
of the perceived color point. The sensed TAM could be either available
or already occupied. Since the Naive allocation rule is greedy, if the
abstracted task is available, the robot directs towards it.

When the distance of the color point db it perceives is smaller than
the TAM depth (din=10.83 cm) the robot lights up the red LEDs on
its body to prevent other robots from allocating to the same task and
enters the In TAM state, stopping inside the TAM. Once the TAM has
detected the presence of the e-puck by means of its light barrier, it
signals the change in its internal state by changing the color of its
RGB LEDs to red. This operation consists indeed, in the abstraction
of the activity that the e-puck should perform. In response to this state
transition, the robot moves from the In TAM state to the the final state
Perform Task. From the e-puck point of view, in our experimental setup,
the abstraction of a task consists of remaining idle inside the TAM.

On the other hand, if the sensed TAM is unavailable, while being
in the Directing to TAM state, the e-puck moves in the direction of the
cluster to be able to assess its occupation. When the robot arrives
closer to the TAM then the assessing distance threshold (i.e. when the
distance of the perceived color point db is smaller than das = 25cm),
the robot’s internal state changes to Assessing Cluster. The assessment
phase has two possible outcomes: either there are still tasks available
in the cluster or the cluster request have been satisfied.

In the case of the presence of available TAMs, the robot starts nav-
igating around the cluster, performing a circular motion, remaining
inside the assessing range, until it perceives a green color point, cor-
responding to the available task. Then he moves to the Directing to
TAM state, eventually entering the TAM as described above.

Otherwise, if the cluster request have been satisfied (i.e. oi(t) = ri),
the e-puck performs a random turn and restart the exploration of the
environment, before moving back to the Linear Walk state.
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3.3.3 Probabilistic

Linear Walkstart Random Turn

Directing to TAM Assess clusterIn TAM

Perform Task

Obstacle

Available ∨

Occupied
TAM

Turn end

Stalem
ate

∨
Lost

TAM

db < din ∧

Available
TAM

db < das
∧ Occu-
pied TAM

Allocate

Not al-
locate ∨

Stalemate
∨ oi = ri
∨ Decision

Occupied
TAM

Figure 13: Probabilistic finite state machine corresponding the implemented
individual robot controller for the Probabilistic method.
The red circles corresponds to the states where the robot has
turned on the red LEDs on its body.
Allocate and Not Allocate transitions represent the two possible
outcomes of the probabilistic decision.

Since the Probabilistic method (Figure 13) is incrementally built upon
the Naive one, the general dynamic of the controller is similar to what
has been explained in the Naive section. The behavior of the robot
is identical to that of the Naive method in the In TAM, Perform Task,
Linear walk and Random turn.

The exploration technique is indeed an uninformed random walk.
The allocation rule, on the other hand, is modified in order to ad-

dress the two main issues of the naive approach: the occurrence of a
stalemate and the lack of an allocation rule to obtain a more uniform
task allocation.

A stalemate may occur whenever two robots decide to allocate them-
selves to the same task. In that case, both the robots will start moving
towards the task. If the robots would arrive closer enough (around
30cm) to the TAM at the same time, they will start trying to avoid
each other. Since there is no direct communication among the robots,
there is no possibility of an explicit agreement on which robot should
perform the task.

Our solution for this issue has been developed by implementing a
counter which is started once the robot enters the Directing to TAM
or Assessing Cluster states and incremented each simulation time step.
When the counter surpass a predefined threshold (100 time steps, in
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our implementation), the robots decide stochastically whether to wait
or leave the cluster. The probability to leave (pl), by performing a ran-
dom turn and starting a blind exploration, is equal to 0.01. The deci-
sion process is then repeated at each time step, until either one of the
robots decides to leave before the other, thus allowing the remaining
one to allocate itself to the task, or both will leave the cluster.

On the other hand, the greedy allocation rule of the Naive method
is substituted by a probabilistic one.

In the Probabilistic method, a robot in the Linear walk state still heads
towards a TAM as soon as it has perceived it, regardless of its state,
but behaves differently during the assessment phase.

In fact, if the perceived task is directly available, the robot will
immediately try to allocate itself to it.

Otherwise, if the robot will enter the Assessing Cluster state, the
probabilistic decision will be triggered. Here, the robot will either
decide to allocate or to not allocate.

In the first case, in the same way as in the Naive method, the robot
will turn around the cluster until the first available task is found.

In the second one, the robot will move to the Random turn state,
perform a random turn and start a temporary blind exploration.

Moreover, the decision phase will occur whenever a change in the
occupation of the currently assessed cluster is sensed.

The idea of introducing a stochastic component in the decision
rule arises from the objective of achieving a uniform allocation of
the robots across the cluster. One way of doing so, is allowing the
robots to move from already crowded clusters to those that are still
almost empty, thus balancing the occupation among them. With this
idea in mind, we tried to devise a new allocation rule.

A deterministic rule has been immediately discarded since it lacked
of flexibility with respect to differences in the size of the cluster or the
number of robots. If the rule would have been based on an absolute
occupation threshold (e.g. leave the cluster if oi(t) > Xi), it would
have required a global knowledge of the environment, in order to
determine a priori the optimal values to achieve a uniform allocation.
With a rule based on relative occupation (e.g. leave the cluster if
oi(t)
ri

> Xi)), in addition to the global knowledge requirement, once
the threshold would have been met in all the clusters, it would not
have been possible to allocate the remaining robots.

Thus, we decided to implement a probabilistic rule based on a sim-
ple intuition: limiting the allocation of robots to cluster whose occupa-
tion is already high. In order to do so, we propose an abandon proba-
bility, computed every time that a robot enters the decision phase. The
abandon probability ai for a certain robot assessing cluster i, at time
t is defined as:

ai(t) =
oi(t)

ri
(2)
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The occupation oi is normalized by the cluster request in order to
obtain a value in the [0, 1] range.

It should be noted that: the higher the number of robots currently
being allocated to tasks belonging to the cluster, the higher the likeli-
hood of leaving the cluster.

The advantages of this allocation rule is that it is completely dis-
tributed, with minimal requirements in terms of communication (i.e.
only the information on the occupation oi(t) must be transferred to
the robot) and computational capabilities and flexible with respect to
the different requests of the clusters.

3.3.4 Informed
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Figure 14: Probabilistic finite state machine corresponding the implemented
individual robot controller for the Informed method.The red cir-
cles corresponds to the states where the robot has light up the
red LEDs on its body.

The Informed method is built upon the Probabilistic one, hence the
behavior of the robots in all the states is the same as described in
section Probabilistic, including the mechanism to solve the stalemate
issue and the probabilistic allocation rule. With the uniform allocation
problem being tackled with the probabilistic rule introduced in Equa-
tion 3.3.3, the only difference with the previous method is how the
exploration is performed. While visualizing the first experiments with
the Probabilistic method, we discovered a minor issue in the explo-
ration phase. In fact, every time a robot decides to leave a cluster,
after having completed the blind exploration phase, there is no guar-
antee that the it will actually direct towards another cluster without
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coming back to the previously left one. Indeed, a robot may assess
several times the cluster it has just left due to the lack of available
tasks, thus having a redundant and inefficient behavior. This could
happen as a consequence of the obstacle avoidance with respect to
other robots or the arena walls. Given the sensory equipment of the
e-puck, we decided to propose a solution to this issue using the odom-
etry. Odometry is a technique to estimate the change of position of
the robot with respect to a known position, using moving sensors. In
our solution, as soon as a robot decides to leave a cluster, it starts
keeping track of the position of the cluster p. This relative localiza-
tion with respect to the robot is then update at each time step with
the information coming from the sensors. A detailed

explanation of the
model can be found
in Lucas [2001]

Odometry is required since the displacement and the rotation of the
robot cause its reference frame to move and rotate accordingly. Thus,
if a position of a fixed point is not translated into the new reference
frame, its exact position could not be tracked anymore. Through the
readings of the encoder sensors mounted on the wheels it is possi-
ble to determine the distance traveled by each wheel of the robot dl
and dr during each simulation step. Since the development of our
methods has been performed in simulation, there is no error in the
readings coming from the sensors. However, the readings from the
sensors on real robots are perturbed by noise. Here, we propose to
model the noise as an additive gaussian noise with mean 0 and stan-
dard deviation 0.2. Thanks to these values, knowing the inter-wheel
distance of the robot diw, it is possible to estimate the displacement
dd and rotation ϑ of the robots:

dd =
dl + dr
2

ϑd =
dl − dr
diw

(3)

The displacement magnitude and angle can be combined to form a
displacement vector: . The vectors are

expressed in polar
coordinates, in the
form
(magnitude,angle)
or, equally (r, ϑ)

d = (dd, ϑd) (4)

The vector is than used to perform the roto-translation required to
correctly update of the stored position of the previous cluster p:

p = x + d

p =

[
cos(ϑd) − sin(ϑd)

sin(ϑd) cos(ϑd)

]
· p = (dp, ϑp)

(5)

By performing the sequence of operations described in Equations
3, 4, 5 at each time step it is possible to maintain a reasonable esti-
mate of the position of the most recently left cluster. We speak of "a
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method exploration decision rule (at time t∗)

Naive Uninformed ran-
dom walk

Greedy.
Leave if at time t∗,
ri(t
∗) = oi(t

∗).

Probabilistic Uninformed ran-
dom walk

Probabilistic with aban-
don probability ai(t

∗) =
oi(t

∗)
ri(t∗)

.
Probabilistic stalemate
prevention rule. 1

Leave if at time t∗,
ri(t
∗) = oi(t

∗).

Informed Informed ran-
dom walk using
odometry

Probabilistic with aban-
don probability ai(t

∗) =
oi(t

∗)
ri(t∗)

.
Probabilistic stalemate
prevention rule. 2

Leave if at time t∗,
ri(t
∗) = oi(t

∗)

Table 5: Overview of the developed methods.

reasonable estimate" since the presence of the error in the readings
does not allow to precisely track the position p of the cluster.

This information is used in the Linear walk state to perform an in-
formed random walk. In fact, whenever the cluster estimated orienta-
tion ϑp is included in the range (h− π

6 , h+
π
6 ), with h being the angle

of the direction where the robot is currently heading and the cluster
estimated distance dp is smaller than two times the omnidirectional
camera range (i.e. 1m), the robot performs a change of direction.

The change of direction (marked with Odometry in Figure 14) is
implemented by changing the state of the robot to Random Turn.

We believe that, even though our solution could not completely
profit from the advantages brought by the use of an exact odometry,
the increased occurrence of direction changes due to this mechanism
will result in a better exploration of the environment and possibly, in
a more even distribution of the robots across clusters.

3.3.5 Summary

1. Probabilistic stalemate prevention rule: After the 100th time step spent in direct-
ing state, decide every time step whether to leave with probability p = 0.01.

2. See 1.
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Our starting point was the problem of uniformly allocating robots
to spatially distributed tasks (cf. Definition 2)

We clarified this statement by fixing constraints on the number of
agents (20), the number of tasks (25) and the arrangement of the tasks
(4 clusters).

From this statement, we devised a physical implementation of the
tasks, the TAM and their arrangement to form clusters (Figure 9).

Once having defined a concrete setup for the problem, we began
the development of our methods by means of an iterative process
based on simulations.

We developed three robot controllers, presented here as finite state
machines, that tackles separately the two sub-problems that charac-
terizes our definition of the problem : exploration and allocation.

A summary of the relevant features of the solutions we imple-
mented in our methods to tackle these problem is presented in Table
5.

In chapter 4 we present the results we obtained by implementing
the the same controller on all the robots in the swarm and launching
simulations of 1000s (10000 time steps) each.



4
R E S U LT S

The results chapter is dedicated to the discussion of the results
we obtained through the application of our method to the Experimen-
tal setup presented in the homonym section.

We start by describing the different scenarios (Section 4.1) that char-
acterizes our experimental setup: scenario Uniform (Section 4.1.1),
Biased (Section 4.1.2), Corridor (Section 4.1.3).

Then, we present the Metrics that we have devised to evaluate the
three most important properties of our methods: Allocation unifor-
mity,Allocation speed.

The core of the chapter is represented by sections Allocation uni-
formity and Allocation speed, devoted to a thorough analysis of the
aforementioned properties.

We conclude by evaluating the difficulty of the scenario (Section
4.5).

4.1 scenarios

The problem statement (cf. Definition 2) gives us several degrees
of freedom in the definition of an experimental setup. In section Ex-
perimental setup, we clarified the number of robots, the number of
tasks and the presence of aggregates of clusters. However, the distri-
bution of these groups of tasks in space and the initial distribution
of robots has not been defined. By varying these two aspects, we de-
vised three different scenarios. The purpose of this choice is to test
the performances of the methods in different environments, in order
to determine the weaknesses and the strong points of each method.

4.1.1 Uniform

The scenario Uniform (Figure 15) is characterized by having the
deployment area in the center of the arena, thus being equally distant
from all the clusters. This is the first scenario we developed and theThe notion of

difficulty of a
scenario will be

clarified in Metrics

simplest one, which will serve as a baseline for comparison with the
other ones.

4.1.2 Biased

In the scenario Biased (Figure 16), the deployment area is moved
in the bottom left corner of the arena and cluster 2 is placed near
the opposite corner of the environment. This results in having three

40
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3 4

Figure 15: Representation of the cluster disposition in scenario Uniform.
Clusters are represented by circles, while the dashed rectangle
indicates the robot deployment area.
The arena size is 4m x 4m, while the deployment area is 1m x
1m.
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Figure 16: Representation of the cluster disposition in scenario Biased.
Clusters are represented by circles, while the dashed rectangle
indicates the robot deployment area.
The arena size is 4m x 4m, while the deployment area is 1m x
1m.
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Figure 17: Representation of the cluster disposition in scenario Corridor.
Clusters are represented by circles, while the dashed rectangle
indicates the robot deployment area.
The arena size is 2m x 5m, while the deployment area is 1m x
1m.

clusters closer to the deployment site and the fourth one far away. We
introduced this bias in the environment in order to test the influence
of a non-uniform positioning of the clusters to the performances of
the method.

4.1.3 Corridor

In scenario Corridor (Figure 17) we placed the clusters in a nar-
row rectangular arena, closely resembling a corridor. The clusters are
equally spaced among them and the deployment area is located at
one edge of the corridor. The motivation of the scenario Corridor
is to test the impact of inter-robot interference on the performance
of the methods. In fact, the environment presents a limited space
around the clusters, due to the proximity of the walls and the cluster
themselves, which will cause the robots to aggregate and potentially
interfere with each other.

4.2 metrics

4.2.1 Allocated robots

Since we are dealing with methods to allocate robots to tasks, the
most intuitive aspects we can analyze are, respectively: the number
of robots that could be actually allocated and the time required to
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achieve such allocation. By indicating with si(t) the internal state of
robot i at time t, we can define the number of allocated robot at each
time step t as:

R(t) =

20∑
i=1

(si(t) == Perform Task) (6)

We analyze this metric under two distinct points of view. On one
hand, we look at the number of robots allocated at each time step, an-
alyzing, for instance the maximum and minimum number of robots
allocated at a given time step t across a set of trials. On the other
hand, by looking at the evolution in time of this allocation function,
we can easily compare the performances of the methods.

4.2.2 Maximum error

In section Problem statement, we defined the allocation error ei(t)
for each cluster as the difference between the desired number of
robots in the cluster (i.e. the request ri) and the current number of
robots in the cluster (i.e. the occupation oi(t)). This measure easily
allow to understand and visualize how well the robots are allocated
on a certain cluster.

Our goal, on the other hand, is to distribute the robots uniformly
across the clusters, hence this value is of a little interest to us. Never-
theless, by computing an aggregate measure from all the clusters, we
could have a better view on the overall allocation.

Hence, we compute the maximum error across cluster:

emax(t) = max
i∈{1,··· ,4}

ei(t) = max
i∈{1,··· ,4}

(ri − oi(t)) (7)

Indeed, the value of emax(t) corresponds to the greatest difference
between request and occupation in all the clusters. Moreover, a uni-
form allocation of the robots is the one that better distributes the robot
across the clusters. This entails that, in case of a uniform allocation,
the error ei(t) in each cluster will not be null, but the maximum error
will be reduced, since the fair distribution of the robot will reduce the
differences ri − oi(t) in each cluster.

The notion of fair distribution is applied to determine the lower
bound for this metric, the optimal allocation error eopt:

eopt = b
m−n

C
c+ 1 (8)

Here,m corresponds to the global number of tasks, n is the number of
robots and C the number of clusters in the environment. The optimal
allocation error eopt corresponds to the value of emax(t) that would
be obtained by allocating iteratively one robot per cluster until their
complete allocation.
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4.2.3 Allocation levels

Another way to measure how evenly are the robots distributed
across cluster is to determine if certain allocation levels are reached.
The concept of allocation level is defined with respect to the relative
occupation oi(t)

ri
of each cluster. As a matter of fact, if the relative oc-

cupation of all the clusters is greater than a certain value x, we could
say that the allocation level x has been reached. Whenever this oc-
curs, we are also able to determine the time step o at which the level
is attained:

∧
i corresponds to
the logical AND

operation extended
to every cluster i. ox = arg min

t

(

4∧
i=1

oi(t)

ri
> x) x ∈ 0.25, 0.50 (9)

ox corresponds to the first time step at which the relative allocation
of all the clusters is above the desired threshold x.

The values of x are selected in order to have representative and
feasible measures for the cluster allocation. For this reason, given the
distribution of requests ri and the optimal allocation error eopt, the
value of 0.75 has been discarded since it was incoherent with respect
to the notion of fair allocation (i.e. the relative allocations of each
cluster in the case of a fair allocation are not guaranteed to be above
the aforementioned threshold). It should be noted that, given the
previous definition of fair allocation, it is required to attain at least
a relative occupation of all the clusters greater or equal than 0.5, in
order to achieve the optimal allocation error emax.

4.2.4 Cluster views

In section Scenarios we presented the developed scenarios and the
motivations behind their structure.

What we actually did, at design time, was formulating hypothesis
on how the structure of the environment could potentially affect the
performances of the methods.

In order to test our assumptions, we decided to measure the num-
ber of times that cluster i has been seen at time t:The cluster-robot

distance is measured
from the robot to the

closest TAM
belonging to cluster

i.

vi(t) =

t∑
s=0

20∑
k=1

(dik(s) 6 cr) (10)

Here, dik(s) represents the distance of robot k from cluster i at time
s, while cr corresponds the range of the omni-directional camera (50
cm in our experiments). Through the analysis of the number of visits,
we expect to assess whether the number of visits to a certain cluster
is biased by the nature of the scenario and whether the differences in
the methods have an impact on the exploration of the environment.
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4.3 allocation uniformity

The main goal of our methods is to diffuse the robots evenly across
the spatially distributed clusters.

In order to achieve these results, we improved the Naive method by
introducing probabilistic mechanisms (Probabilistic) and informed de-
cisions Informed) to favor the redistribution of the robots from crowded
clusters to the empty ones.

Here, we analyze the performances of the three methods, by focus-
ing on the final allocation achieved by each of them on a set of 50
simulations. Each simulation is characterized by a seed value, which
will be used to initialize the simulator’s internal random number gen-
erator, thus influencing the stochastic behavior of the method. As a
matter of fact, the seed will influence the initial robot placement and
orientation and all the probabilistic decisions made by the methods.
We run each simulation for 1000 s, corresponding to 10000 simulated
time steps, using the same set of 50 seeds for all the different methods,
on the same scenario.

In order to evaluate the final allocation, we compute the maximum
error across cluster emax(t) and the number of allocated robots R(t)
for t = 10000. Instead of presenting the whole distribution of values,
we decided to aggregate the values using non-parametric statistics,
namely median value and interquartile range. Moreover, since we
are dealing with integer values (e.g. number of tasks or robots) the
computation of some statistics (e.g. mean) could results in decimal
values having no real, physical meaning.

The results are shown in Tables 6 and 7.

4.3.1 Maximum error

method scenario

uniform biased corridor

statistic Median (q25, q75) Median (q25, q75) Median (q25, q75)

naive 3 (3,4) 4 (4,5) 6 (6,6)

probabilistic 3 (3,3) 3 (3,4) 5 (4,5)

informed 3 (3,3) 3 (3,3) 5 (4,5)

Table 6: Summary of the values of the maximum allocation error emax(t) at
t = 10000 for a swarm of 20 e-pucks with 25 available tasks.
Median values and corresponding inter-quartile ranges are com-
puted across 50 trials of 10000 time steps each.
The optimal allocation error eopt is equal to 2.
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Table 6 reports the median maximum error across the clusters at
the end of the experiment.

The inter-quartile range is added in order to give informations con-
cerning the dispersion of the values (by definition, half of the values
of the sample are included in the inter-quartile range).

At a first glance we can observe that no method is able to achieve
the optimal allocation error emax of 2 tasks, but on scenario Uniform
and scenario Biased the Probabilistic and Informed methods are able to
reach an error of 3 tasks, with no variability.

Furthermore, by comparing the methods we are able to see that
the enhanced methods (i.e. Probabilistic and Informed) have similar
performances and both clearly outperform the Naive one.

Also, by looking at the different scenarios, we can see an increase
in the values of the median maximum error and in its variability,
indicating a growing complexity of the environments.

4.3.2 Allocated robots

method scenario

uniform biased corridor

statistic Median Range Median Range Median Range

naive 20 (12,20) 20 (9,20) 19 (6,20)

probabilistic 20 (20,20) 20 (20,20) 20 (18,20)

informed 20 (20,20) 20 (20,20) 20 (18,20)

Table 7: Summary of the values of the number of allocated robots R(t) at
t = 10000 for a swarm of 20 e-pucks with 25 available tasks.
Median values and corresponding ranges (min,max) are computed
across 50 trials of 10000 time steps each.

Table 7 offers a complementary vision on the final allocation, dis-
playing the median number of allocated robots.

Here, instead of focusing on the inter-quartile range, the whole
range of the 50 sampled values is presented, in order to verify whether
all the methods are able to allocate all the robots or some problems
arise.

As for the median values, all the methods are able to achieve the
complete allocation of the robot, except the Naive method on scenario
Corridor.

The same trend described in Maximum error can be observed here:
there is a clear difference between the Probabilistic and Informed meth-
ods’ performances and the Naive one.
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The remarkably low minimum number of allocated robots of the
Naive method can be explained through the absence of the stalemate
check. In fact, since no scenario presents obstacles or considerably
narrow passages that could cause the robots to get stuck in them, we
could safely suppose that after a sufficiently long time all the robots
will eventually be allocated. Moreover, the same figures for the min-
imum numbers of allocated robots are not present in the Probabilistic
and Informed method, where the stalemate condition is used.

Another view of the data concerning the number of allocated robot
R(t) can be found in the annex, section A.2.

4.3.3 Allocation levels

method scenario

uniform biased corridor

level 0.25 0.50 0.25 0.50 0.25 0.50

naive 0.900 0.660 0.240 0.020 0.200 0.020

probabilistic 1.000 0.800 0.800 0.440 0.800 0.040

informed 1.000 0.740 0.900 0.680 0.800 0.060

Table 8: Summary of the probabilities to reach allocation levels o25 and o50
across 50 trials within 10000 time steps for a swarm of 20 e-pucks
with 25 available tasks.

Table 8 summarizes the probabilities to reach the allocation lev-
els 25% and 50% within the chosen experiment duration (10000 time
steps). The analysis of this results allows us to highlight the limita-
tions of the proposed methods. In fact, no method is able to achieve
high probabilities for the allocation level 50% (necessary condition for
an optimal allocation), on all the scenarios. Nevertheless, the Informed
and Probabilistic methods are able to successfully achieve the 25% al-
location level on all the trials, and the 50% level in a relevant number
of simulations.

The Naive method also have fairly good performances on the sce-
nario Uniform, but the probabilities have a significant drop on scenar-
ios Biased and Corridor. We suppose that this variation is determined
by the combination of the biased placement of the clusters across the
scenario Biased and the greedy allocation rule of the Naive experiment,
which hinder the possibility of having a uniform allocation. Another
possible explanation for the performances of the Naive method on sce-
nario Corridor, especially for the allocation level 25%, can be given by
looking at Table 10. In case Naive-scenario Corridor we can observe a
high variability on the number of allocated robots, reaching a min-
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imal value of 6 units. By referring to Table 4, we can observe that
this value is smaller than the number of requests of a single cluster,
thus making the likelihood of a uniform allocation across the clusters
really low, using a greedy approach.

It should be noted that the performances of the other two methods
are also affected by the change in scenarios. However, the impact
of this change is less dramatic than the Naive one, with the Corridor
still being the most difficult to tackle (i.e. the one having the smallest
values for the cumulated probabilities of o25 and o50).

Again, by comparing the performances of the different methods,
we notice the similarity between the Probabilistic and Informed meth-
ods’ results. The only remarkable difference is the higher value for
the probability of reaching 50% allocation in scenario B. This result
can be related with the use of the odometry in a reasonably large en-
vironment, as the one depicted in Figure 16. The wider nature of
this environment limits the number of encounters among the robots,
after the initial deployment phase. Considering our implementation
of the random walk in both the Probabilistic and Informed methods, less
encounters between the robots implies a reduced number of random
turns, which in turn limits the exploration of the environment. Due to
the odometry-based change of direction, to avoid returning to already
visited clusters, the Informed method presents an higher probability
to make random turns, thus it should better explore the environment
and potentially achieve a more uniform distribution.

4.4 allocation speed

The Allocation uniformity section has been devoted to the evalua-
tion of the uniformity of the allocation across clusters, mainly through
the analysis of the final results achieved by the methods.

Another interesting point-of-view on our data can be given by an-
alyzing how the methods have achieved these results, instead of re-
straining ourselves to the final values of the proposed metrics.

The simulation setup is the same as above, 50 simulations of each
method, on each scenario of 10000 time steps each (1000 s), using the
same set of seeds on each scenario to ensure the same initial condition
to all the methods.

We try to gather information on the speed of the allocation by look-
ing at the evolution of the maximum error across clusters emax(t) and
the number of allocated robots R(t) for t ∈ {1, · · · , 10000}. The two
metrics allows us to focus on both the uniformity aspect and the allo-
cation velocity one. On one hand, the evolution of emax(t) allows us
to understand how much time do the methods require to bring the
overall error across clusters below a certain threshold, explaining also
how uniformly are the robots distributed across clusters at a certain
moment in time. On the other hand, R(t), captures how many robots
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are allocated to a task at a certain time step, making no distinction
among clusters. Through the comparison of the number of allocated
robots for the different methods, we are able to evaluate how fast is
each method in assigning the robots to the tasks. In addition, we
analyze the empirical cumulative distribution functions of the times
needed to reach the allocation levels 25% and 50% (o25 and o50) in
order to have a different standpoint on the uniformity of the allocation.

As for the emax(t) and R(t), side by side comparisons of the plots
including all the quantiles and the mean values can be found in the
annex, chapter A.

4.4.1 Scenario Uniform

By looking at Figure 18, we can see that, considering the median
number of allocated robots, Naive method is able to achieve the fastest
allocation in scenario Uniform (Figure 18b), with all the the 20 robots
successfully performing a task in less than 1500 time steps. Up to
500 time steps, the Probabilistic and Informed curves are paired but
eventually, the Probabilistic method achieves a faster allocation than
the Informed one.

However, the fastest allocation is not necessarily the fairest. As we
see in Figure 18a, the Naive method is also the one presenting the
highest median maximum error across clusters, while the plots of the
Probabilistic and Improved methods are superposed. The analysis of
the empirical cumulative distribution functions (Figure 19) confirms
this trade-off between speed and quality of the allocation.

A greedy method (i.e. Naive) is the one ensuring the fastest al-
location of the robots to the tasks, since the robots spend less time
exploring the environment. Nevertheless, given the structure of sce-
nario Uniform (Figure 15), with a central deployment area, equally
distant from all the cluster and the uniform distribution of the robot
at the beginning of the experiment, relatively high probabilities of sat-
isfying at least the 50% of the occupation of the cluster (i.e. o50) can
still be obtained. It should be noted that, by looking at the uniformity
of the allocation, even on the simplest scenario, methods Probabilistic
and Informed attain a smaller value of emax faster than the Naive one,
but finally, all the curves converge to the value of 3.

4.4.2 Scenario Biased

Figure 20 gives additional evidence in support of the hypothesis of
the existence of a trade-off between speed and allocation quality.

Again, the Naive method represents the upper bound in terms of
allocation velocity while being the lower bound in terms of maximum
median allocation error across cluster.
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By looking at Figures 20a and 20b, no remarkable differences can be
seen concerning the performances of Probabilistic and Informed meth-
ods.

With respect to scenario Uniform (Figure 18), we can observe that, in
scenario Biased, more time is required to reach the same levels of robots
allocation error. We explain this shift in the curves with the differ-
ences in the nature of the environment, more precisely the placement
of cluster 2. While in scenario Uniform it is as distant as all the other
clusters from the deployment area, in scenario Biased it is the farthest
one. As a consequence, more time is required to navigate through the
arena to actually reach tasks belonging to the second cluster, before
eventually deciding to allocate to them.

In addition, we suppose that the bias in the positioning of the clus-
ters could be a potential cause of the highest median maximum error
across cluster emax reached by the Naive method at the end of the
experiment.

In Figure 21, we can observe that the Naive method is able to reach
the 25% and 50% allocation levels in a smaller number of trials with
respect to the other methods. Moreover, whenever those levels are
reached, the time required to reach these allocation thresholds is
higher than both the Probabilistic and Informed methods.

Thus, we can conclude that the performances of the Naive method
are definitely worse than those of the enhanced methods on scenario
Biased.

4.4.3 Scenario Corridor

Figure 22 highlights the relative improvements the introduction of
probabilistic mechanisms and the use of odometry have brought to
the Naive method.

In Figure 22b we can see that the Naive method is slower than the
Probabilistic and Informed one and it is not able to reach the complete
allocation of the robots to the tasks. On the contrary, the enhanced
methods are able to attain this objective, with the Informed one being
the fastest.

Although there is an improvement in the velocity of the alloca-
tion, it should be noted that the median maximum error across clus-
ters, even for the Informed method, converges to a value considerably
higher with respect to the optimal one.

Furthermore, the time needed to achieve the complete allocation
of the robots is more than four times higher than the one of scenario
Biased. Since this delay is observed in all the methods, we take it as
an evidence supporting our hypothesis of increasing difficulty of the
scenarios.

Figure 23 confirms the better overall performances of the Informed
method. In Figure 23a the steeper increase of the empirical cumula-
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tive density function shows that the 25% allocation level is reached
more often and in less time than the other methods. While the same
final probability value is reached by the Probabilistic method as well,
here the Naive methods displays its limits. Nevertheless, Figure 23b
attests that the 50% allocation level is rarely reached by all the meth-
ods, confirming the impossibility to achieve a uniform allocation in
this scenario.
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(a) Median emax(t). The dashed grey line represents the optimal
allocation error eopt. The differences among the curves are sta-
tistically significant. (Wilcoxon signed-rank test, p « 0.05).
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(b) Median R(t). The dashed grey line represents the total number
of robots in the experiment. The differences among the curves
are statistically significant. (Wilcoxon signed-rank test, p « 0.05)

Figure 18: Median values for the maximum error across clusters emax(t) and
the number of allocated robots R(t) for each of the three methods
on the scenario Uniform on 50 trials of 1000 s (10000 simulation
steps) each. Each trial is performed with 20 robots and 25 avail-
able tasks.
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(a) Allocation level: 25%.The differences among the curves are statis-
tically significant. (Mann-Whitney test, p « 0.05)
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(b) Allocation level: 50%. The differences among the curves are
statistically significant. (Mann-Whitney test, p « 0.05)

Figure 19: Empirical cumulative density functions for the allocation levels
ox x ∈ 0.25, 0.50 distributions of the three methods on the sce-
nario Uniform on 50 trials of 1000 s (10000 simulation steps) each.
Each trial is performed with 20 robots and 25 available tasks.
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(a) Median emax(t).Only differences among the Naive and Probabilis-
tic and Naive and Informed curves are statistically significant.
(Wilcoxon signed-rank test, p « 0.05)
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(b) Median R(t).Only differences among the Naive and Probabilis-
tic and Naive and Informed curves are statistically significant.
(Wilcoxon signed-rank test, p « 0.05)

Figure 20: Median values for the maximum error across clusters emax(t) and
the number of allocated robots R(t) for each of the three methods
on the scenario Biased on 50 trials of 1000 s (10000 simulation
steps) each. Each trial is performed with 20 robots and 25 avail-
able tasks.
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(a) Allocation level: 25%. The differences among the curves are
statistically significant. (Mann-Whitney test, p « 0.05)
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(b) Allocation level: 50%. The differences among the curves are
statistically significant. (Mann-Whitney test, p « 0.05)

Figure 21: Empirical cumulative density functions for the allocation levels
ox x ∈ 0.25, 0.50 distributions of the three methods on the sce-
nario Biased on 50 trials of 1000 s (10000 simulation steps) each.
Each trial is performed with 20 robots and 25 available tasks.



56 results

0 2000 4000 6000 8000 10000

0
2

4
6

8

Time steps

Ro
bo

ts

Naive Probabilistic Informed Optimal

(a) Median emax(t). The differences among the curves are statisti-
cally significant. (Wilcoxon signed-rank test, p « 0.05)
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(b) Median R(t). The differences among the curves are statistically
significant. (Wilcoxon signed-rank test, p « 0.05)

Figure 22: Median values for the maximum error across clusters emax(t) and
the number of allocated robots R(t) for each of three methods
on the scenario Corridor on 50 trials of 1000 s (10000 simulation
steps) each. Each trial is performed with 20 robots and 25 avail-
able tasks.
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(a) Allocation level: 25%. The differences among the curves are sta-
tistically significant. (Mann-Whitney test, p « 0.05)
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(b) Allocation level: 50%. The differences among the curves are sta-
tistically significant. (Mann-Whitney test, p « 0.05)

Figure 23: Empirical cumulative density functions for the allocation levels
ox x ∈ 0.25, 0.50 distributions of the three methods on the sce-
nario Corridor on 50 trials of 1000 s (10000 simulation steps) each.
Each trial is performed with 20 robots and 25 available tasks.
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4.5 scenario difficulty

After having discussed the properties of the different methods, we
now focus on these of the scenarios, by trying to characterize their
difficulty with respect to the achievement of a uniform allocation.

We choose to measure this difficulty in terms of the number of the
times that the different clusters are seen by the robots, following a
simple intuition: the higher the number of times a cluster is viewed,
the higher the likelihood a robot will decide to allocate itself to the
cluster. This naturally implies that, whenever there is a remarkable
difference in the number of views of the clusters, it would be difficult
to achieve a uniform allocation, since there exists a bias towards one
or more of the clusters.

Moreover, the distribution of the views across the clusters depends
on the exploration strategy adopted by the different methods. Since
the vi(t) metric consists of a cumulative sum of the number of views
of the cluster, we can assess the effectiveness of the exploration tech-
nique of the different methods by evaluating the magnitude of vi(t).

4.5.1 Scenario Uniform

The assumption of the simplicity of the scenario we made during
the design phase is confirmed by both Figure 24 and Table 9. For
all the methods, we can observe a quasi-uniform distribution of the
median values of the views at time t = 10000 to the clusters, for ev-
ery method. Regarding the number of times the cluster have been
seen, the Naive method is the one having the most limited variability
across clusters. Concerning the magnitude of the number of views,
we can observe a non-negligible difference among the enhanced meth-
ods (Probabilistic and Informed) with respect to the Naive one.

4.5.2 Scenario Biased

The scenario Biased is characterized by having cluster 1, 3, 4 closer
to the deployment area than cluster 2. This evident cluster distribu-
tion bias is confirmed by the magnitude of the median number of
views, as shown in Table 10, which, for all the methods, is similar
for the three closer clusters and completely different from that of the
isolated one. The difference is clearly displayed in Figure 25. More-
over, the Naive method has a median number of views of the cluster 2
which is ten times smaller than those of the Probabilistic and Informed
ones. We believe that the systematic ignorance of the isolated cluster
arises from the greedy allocation strategy without probabilistic redis-
tribution mechanisms adopted by the first method. Given the nature
of the Naive method, in fact, the robots will try to go past clusters
1, 3, 4 only when their requests will be completely satisfied.
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4.5.3 Scenario Corridor

The distinctive feature of scenario Corridor is the rectangular shape
of the arena, with a slightly smaller area than the other two. The clus-
ter are arranged linearly in descending order from the deployment
area: the cluster having the greater id is the closest one.

The narrower profile of the arena has a strong impact on the magni-
tude of the median number of views of the clusters (Table 11), which,
for example, for the Naive method, on cluster 4, becomes ten times
bigger than the corresponding value in scenario Uniform.

At a first glance, the fact that cluster 3 has a greater number of
views than cluster 4 for all the methods seems surprising. A possible
justification for this behavior is that the closer cluster is the one hav-
ing the higher likelihood to be seen and also the higher likelihood
to become fully occupied in a short time. As shown in Figure 26,
once its request has been satisfied, the cluster rebounds the robots
elsewhere in the environment, thus favoring the exploration of other
clusters.

Also, the method having the higher number of views on the clus-
ters closer to the deployment area is the Naive one, while v1(t) (the
farthest one) is the smallest one. This can be explained by the fact
that the Naive method do not possess any mechanism to perform an
efficient exploration of the environment. For this reason, especially
in a narrow environment like scenario Corridor, it is likely that a robot
will keep viewing the clusters that it has already decided to leave,
thus increasing the number of views without actually allocating.
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Figure 24: Median value of vi(t) for i ∈ {1, · · · , 4} on scenario Uniform
across 50 trials of 10000 time steps each. Each trial is performed
with 20 robots and 25 available tasks. The cluster disposition can
be seen in Figure 15. The differences among the curves are statis-
tically significant. (Wilcoxon signed-rank test, p « 0.05)

cluster

method 1 2 3 4

naive 5650 4673 5464 5070

probabilistic 7866 5942 7420 6716

informed 7412 7198 8734 6481

Table 9: Summary of the median values of cluster views v(t) at t = 10000 in
scenario Uniform. Median values are computed across 50 trials of
10000 time steps each. Each trial is performed with 20 robots and
25 available tasks.
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Figure 25: Median value of vi(t) for i ∈ {1, · · · , 4} on scenario Biased across
50 trials of 10000 time steps each. Each trial is performed with 20
robots and 25 available tasks. The cluster disposition can be seen
in Figure 16. The differences among the curves are statistically
significant. (Wilcoxon signed-rank test, p « 0.05)

cluster

method 1 2 3 4

naive 13805 498 13231 11854

probabilistic 13390 4118 14405 12924

informed 12299 4726 11242 10457

Table 10: Summary of the median values of cluster views v(t) at t = 10000

in scenario Biased. Median values are computed across 50 trials of
10000 time steps each. Each trial is performed with 20 robots and
25 available tasks.
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Figure 26: Median value of vi(t) for i ∈ {1, · · · , 4} on scenario Corridor
across 50 trials of 10000 time steps each. Each trial is performed
with 20 robots and 25 available tasks. The cluster disposition can
be seen in Figure 17. The differences among the curves are statis-
tically significant. (Wilcoxon signed-rank test, p « 0.05)

cluster

method 1 2 3 4

naive 4363 28015 73242 57410

probabilistic 7247 23554 62802 49276

informed 7516 18148 47106 39893

Table 11: Summary of the median values of cluster visits v(t) at t = 10000 in
scenario Corridor. Median values are computed across 50 trials of
10000 time steps each. Each trial is performed with 20 robots and
25 available tasks.
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C O N C L U S I O N & F U T U R E W O R K

5.1 conclusion

The problem of allocating agents to tasks having a precise colloca-
tion is space is a recurrent problem in collective robotics.

In environmental monitoring, for instance, we may observe the
problem of having robots deployed in an unknown environment in
order to check for the presence of dangerous substances. Generally,
the size and the morphology of the environment prevents the robots
from having a global communication and from sharing knowledge
about the environment. Hence, each robot needs to rely only on
its own capabilities or eventually, communicate with the neighbor-
ing robots. Clearly, a centralized solution is technically unfeasible
and presents several disadvantages: single point of failure and lack of
scalability among all. Thus, devising a distributed method, possibly
emerging from the local coordination among the agents becomes the
only possible solution.

Our research question mainly arises from the need of finding effi-
cient solutions to such problems.

In this thesis, we consider a specific instance of the problem of allo-
cating robots to spatially distributed tasks, by fixing some constraints.
In our vision of the problem, we have a finite number of robots (n)
and a finite number of tasksm, with n < m. The tasks are distributed
in space according to precise circular patterns, denominated clusters.
Each cluster is characterized by the number of tasks it is composed
of (i.e. the cluster request) and the number of robots currently being
allocated to tasks belonging to the cluster (i.e. the cluster occupa-
tion). The robots, on the other hand, are homogeneous agents, with
a minimal set of sensors, endowed with local sensing and local com-
munication capabilities.

To the best of our knowledge, we are not aware of other studies
in the literature that try to solve a similar problem. For this reason,
we developed the Naive method to serve as a baseline for comparison
with our main contributions: the Probabilistic and Informed one. We
have decomposed the spatial allocation problem into two distinct sub-
problems, to be tackled independently and sequentially: task localiza-
tion and task allocation. Each method is characterized by a different
strategy to solve the aforementioned subproblems.

The Naive method simply consists of a random exploration of the
environment to find the tasks and a greedy allocation to them as soon
as they are detected.
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The Probabilistic method maintains the uninformed random walk
from the Naive method as exploration technique, but substitutes the
purely deterministic allocation rule with a probabilistic decision mech-
anism. Here, the probability of leaving a cluster to further explore the
environment is proportional to the cluster occupation. The use of this
stochastic decision mechanism should in principle, favor the redistri-
bution of the robots across the clusters, yielding to a more uniform
distribution. Moreover, a check on the occurrence of a stalemate, a sit-
uation that may occur when two robots decide to allocate to the same
task, has been introduced, along with a probabilistic decision mech-
anism to overcome this issue and increase the number of allocated
robots.

The Informed method is built upon the Probabilistic one, preserv-
ing the probabilistic allocation mechanism but upgrading the unin-
formed random walk to an informed one through the use of odom-
etry. Odometry is introduced to prevent multiple visits to clusters
whose occupation corresponds to the request (i.e not requiring addi-
tional robot to be allocated).

We decided to evaluate the performances of our methods with re-
spect to two relevant aspects: allocation uniformity and allocation speed.

In order to do so, we devised three scenarios: Uniform, Biased and
Corridor. Each one of them is characterized by the disposition of the
clusters in space and the positioning of the area where the robots are
initially deployed.

The Uniform one has a central deployment area which is equally
distant from all the clusters in the environment, while the Biased one
presents some clusters closer to the deployment zone than the others.
The Corridor one consists of a narrow arena, with the clusters linearly
deployed in the middle of it.

Concerning allocation uniformity, the Informed method performs bet-
ter than the Naive and Probabilistic one on all the designed scenarios.
However, no method is able to reach the ideal uniform allocation on
any of the scenarios. Regarding allocation speed, the Naive method
achieves a faster robot allocation than the Probabilistic and the In-
formed one on scenario Uniform and Biased, but it is outperformed
by both of them on the Scenario C. Furthermore, we observed that
there exist a trade-off between the two aspects we are interested in,
(i.e. a fast allocation comes at the expense of evenness in the distribu-
tion of robots and viceversa). Our analysis showed that the Informed
method is the one achieving the better balance between uniformity and
velocity.

We also devised a metric to assess the difficulty of a scenario with
respect to the problem of achieving a uniform allocation. In fact, by
looking at the number of times that every cluster is seen by the robots,
we are able to determine whether the distribution of this views is
even across cluster or it is biased towards certain ones. In the latter
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case, we can safely assume that the scenario is more difficult since the
applied method has to compensate for the differences in the views
repartitions.

To summarize, our contribution consists of three methods to achieve
the allocation of robots to tasks distributed in space and aggregated
in clusters. In terms of relative performances among the methods,
the Naive method is the one achieving the fastest allocation while the
Informed one allows to better distribute the robots across the clusters.
Nevertheless, there is a strong influence of the type of scenario on the
performance of the system.

5.2 future work

Since the development and test of the methods has occurred only
by means of simulation, our plan is to run experiments using the real
e-puck robots and the real TAMs.

Even though the error in the odometry has been modeled and no
communication is employed, further studies to verify the impact of
the real noise on the swarm performance should be performed.

Another interesting possibility would be to evaluate different prob-
abilistic rules for the allocation of the robots, in order to have a more
fine-grained control on the distribution of the robots across clusters.

A further study that could be made concerns the use of an inter-
cluster recruiting behavior, as occurring in some species of ants, to
direct robots from a cluster to another.

Last but not least, tests on the flexibility (i.e. the capacity of the
swarm to dynamically adapt to changes in the response), scalability
with respect to the number of tasks and robots and robustness of the
methods with respect to faults should necessarily be performed.



A
A D D I T I O N A L P L O T S

This appendix includes the figures that have been discarded from
the thesis due to the low readability on the paper version. The rele-
vant data from this plots have been represented in the thesis in a more
suitable way. In Maximum error the plots of the quartiles and means
of the maximum error across cluster are displayed side by side for a
better visual comparison, divided by scenario. In Allocated Robots
the plots of the quartiles and means of the number of allocated robots
are displayed side by side for a better visual comparison, divided by
scenario.
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