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Abstract

A swarm is a self-organised group of agents that locally interact with each other and
with the environment to perform a common task. Individual agents are typically
simple, with limited capabilities and partial knowledge. Numerous studies inves-
tigated the problem of collective decision making in swarms which consists in the
process of how a swarm reaches an agreement. However, little attention has been
devoted to studying swarm resiliency. Resiliency from a swarm point of view is the
ability of the swarm to achieve its goal under disturbance. In this study disturbance
is considered as an attack characterised by malicious agents introduced in the swarm.
In this thesis we analysed swarm resiliency in collective decision making processes.
We focused on best-of-n decisions defined as the task of finding a collective agree-
ment over the most favorable option among a set of alternatives. We investigated
the resilience of four different behaviours taken from the literature through computa-
tional analysis. We focused on how different kinds of attacks affect the performance
of the four behaviours. To do so, we implemented DeMaMAS, a novel multi-agent
simulator for comparison of decentralised decision making strategies. DeMaMAS is
modular and allowed us to quickly re-implement the studied literature behaviours
through the composition of a sequence of reusable unitary modules. In fact, we de-
scribed all the investigated behaviours through a common structure which consists
in a sequence of phases. All behaviours are composed by the same phases which
can have different implementations. A specific implementation of a phase is what
we call module. Thanks to its modular architecture DeMaMAS allowed us to com-
pare and quantify the resiliency provided by each module. A further advantage of
DeMaMAS’s modular architecture is the possibility to implement malicious agents
by changing just a few modules. To test the resiliency, our tool is able to simu-
late heterogeneous swarms, in which agents composing the swarm can have different
behaviours. We decided to implement three types of malicious agents called wishy
washy, sect, and contrarian, respectively performing denial of service, slow down,
and wrong addressing. We analysed the performance on the four selected literature
behaviours exposed to the three investigated attacks in different conditions varying
the number of options, the difficulty of the decision problem, and the percentage of
attackers in the swarm. Our first result showed that in simple decision problems,
characterised by a low number of options and easily distinguishable alternatives, lis-
tening less is the best strategy for being more resilient. However, this strategy does
not work to make more difficult collective decisions. Our results also revealed the
importance of two modules to increase the swarm resiliency: the majority module,
in which an agent picks the most frequent option from its neighbourhood, and the
cross-inhibition, a module inspired by the nest-site selection process in honeybees
that allows the swarm to break decision-deadlocks in complex best-of-n problems.
Thanks to the modularity of DeMaMAS, once we identified the most resilient mod-
ule, we created a new behaviour combining them. The new behaviour showed the
best resiliency performance in terms of both speed and accuracy. Finally, we val-
idated the performance of the novel behaviour through a set of experiments on



physical devices. We implemented and tested two behaviours under a slow down
attack in a swarm of 50 simple robots called Kilobots. The results from the robot
experiments qualitatively matches the simulation results and confirms the benefits
of the proposed behaviour. The outcomes of this thesis have been useful to support
the analyses of a few research projects whose results will be disseminated through
the following manuscript:

• Swarm resiliency in collective decision making
(F. Canciani, M.S. Talamali, J.A.R. Marshall, A. Reina) in preparation for
the ICRA 2019 Workshop on Resilient Robot Teams, Montreal, Canada, May
20-24, 2019.

Additionally, DeMaMAS, which I designed and implemented, is currently used for
other research studies of which I will be acknowledged as a co-author.

KEYWORDS: resilience, collective decision making, swarm robotics
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Sommario

Uno sciame è identificato come un gruppo di agenti auto-organizzati che interagis-
cono con l’ambiente e localmente l’uno con l’altro per conseguire un obiettivo co-
mune. Gli agenti sono solitamente semplici, caratterizzati da capacità limitate e
da una conoscenza parziale. Numerosi studi hanno esaminato il problema relativo
al processo collettivo decisionale negli sciami, tuttavia sono stati fatti pochi studi
riguardo la resilienza negli sciami, ossia l’abilità dello sciame di raggiungere il proprio
obiettivo sotto l’influenza di un disturbo. In questo studio il disturbo viene consider-
ato come un attacco caratterizzato da un agente (o più agenti) malevolo introdotto
nello sciame. In questa tesi analizziamo la resilienza dello sciame in processi deci-
sionali collettivi. La nostra attenzione si concentra nell’area riguardante il best-of-n
definito come il compito di scegliere l’opzione migliore tra n alternative. Abbiamo
studiato attraverso l’analisi computazionale la resilienza di quattro comportamenti
proposti in letteratura. La nostra attenzione si è focalizzata su come diversi tipi di
attacchi influenzano le prestazioni dei quattro comportamenti. Per far ciò abbiamo
implementato DeMaMAS, un nuovo simulatore multi-agente per la comparazione
di strategie di decisione collettiva decentralizzate. DeMaMAS è modulare e ci ha
permesso di re-implementare velocemente i comportamenti studiati tramite la com-
posizione di una sequenza riutilizzabile di moduli unitari. I comportamenti presi in
considerazione possono essere descritti tramite una struttura comune, che consiste
in una sequenza di fasi. Tutti i comportamenti selezionati sono composti dalle stesse
fasi, che possono avere diverse implementazioni, chiamate moduli. Grazie alla sua
architettura modulare DeMaMAS ci ha permesso di comparare e quantificare la re-
silienza fornita da ciascun modulo. Un altro importante vantaggio della struttura
modulare di DeMaMAS è la possibilità di implementare agenti malevoli solamente
cambiando alcuni moduli. Per testare la resilienza, la nostra applicazione è capace di
simulare sciami eterogenei, in cui gli agenti che compongono lo sciame possono avere
diversi comportamenti. Abbiamo implementato tre diversi tipi di agenti malevoli
chiamati wishy wasy, contrarian e sect che eseguono rispettivamente denial of ser-
vice, slow down e wrong addressing. Abbiamo analizzato le prestazioni dei quattro
comportamenti scelti sotto l’influenza dei tre attaccanti in condizioni differenti, var-
iando il numero delle opzioni, la difficoltà del processo decisionale e la percentuale
di attaccanti nello sciame. Il nostro primo risultato ha mostrato che nei problemi
decisionali semplici, caratterizzati da un basso numero di opzioni e alternative facil-
mente distinguibili, ascoltare meno è la strategia migliore per essere più resilienti.
Tuttavia questa strategia non è più utilizzabile in problemi decisionali complessi.
I nostri risultati hanno rivelato l’importanza di due moduli che incrementano la
resilienza: il primo detto majority, in cui un agente sceglie l’opzione più frequente
dal suo vicinato; il secondo detto cross-inhibition, ispirato dal processo di selezione
di un nuovo sito per il nido dalle api, permette allo sciame di rompere le decisioni
soggette a dead-lock in problemi best-of-n complessi. Grazie alla modularità di De-
MaMAS, una volta identificati i moduli più resilienti, tramite l’utilizzo di questi
ultimi abbiamo creato un nuovo comportamento, il quale ha migliorato la resilienza



sia in velocità di decisione che accuratezza. Infine, abbiamo validato le prestazioni
del nuovo comportamento per mezzo di un insieme di esperimenti su dispositivi
fisici. Abbiamo implementato e testato due diversi comportamenti sotto l’effetto
di un attacco slow down in uno sciame di 50 robot semplici, chiamati Kilobots. Il
risultato degli esperimenti sui robot combacia qualitativamente con i risultati delle
simulazioni e conferma i benefici del comportamento proposto. L’esito della tesi è
stato utile per il supporto di analisi di alcuni progetti di ricerca, che verranno diffusi
tramite il seguente articolo:

• Swarm resiliency in collective decision making
(F. Canciani, M.S. Talamali, J.A.R. Marshall, A. Reina) in preparazione per
ICRA 2019 Workshop on Resilient Robot Teams, Montreal, Canada, Maggio
20-24, 2019.

In aggiunta, DeMaMAS, è correntemente usato per altri studi in cui verrò riconosci-
uto come co-autore.

Parole chiave: resilienza, processo collettivo decisionale,
sciame di robot
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Swarm resiliency in collective decision making

Chapter 1

Introduction

1.1 Context

Animals started to organise in large groups in the aim of increasing their chances of
survival [15]. As a result, this activity increases their ability of foraging, investigat-
ing the environment and reproducing in addition to the ability of surviving. For a
long time, different disciplines have been interested in social group dynamics such
as biology, psychology and physics. In the last years thanks to a rapid development
of information technologies, computer scientists have started to raise their interest
in the field of swarm dynamics and swarm robotics [9]. In this work we focus in
analysing swarm resiliency in collective decision making processes. For a better com-
prehension of the problem below we describe what we meant for swarm, collective
decision making and resiliency. The first element that needs to be explained is the
concept of swarm.

1.1.1 Swarm

Figure 1.1: There exist natural swarm such as (top row) School of fish (image by
joakant on Pixabay), locustus swarm (photograph by Pierre Holtz), flock of starlings
(photo by Wolstenholme images) and artificial swarm such as swarm of Colias robots
(photo by University of Lincoln), swarm of kilobots (image by University of Sheffield)
and a swarm of Alice micro-robots.

Chapter: 1 Francesco Canciani 1



Swarm resiliency in collective decision making

As showed in Figure 1.1 a swarm can be composed of animals such as honeybees,
ants, starlings or can be composed of simple robots as Colias, Kilobots and Alice.
We focus on swarm in artificial environment such as swarm of robots.

According to the definition of swarm robotics given by Dorigo and Sahin [4],
the goal of swarm robotics is the study of large number of relatively simple robots,
designed such that a desired collective behaviour emerges from the local interactions
among robots and between the robots and the environment. The collective behaviour
analysed in this thesis is called collective decision making and it is described in details
in the next section.

1.1.2 Collective decision making

We define collective decision making as follow:

“Collective decision making is a process concerned with how groups reach an
agreement”[2].

Collective decision making is one of the most important process for any artificial
system or living organism. Animals constantly have the need of making decisions for
surviving, reproducing, and foraging. In artificial systems such as robotic swarms,
the interactions among robots, based on simple behavioural rules, requires to use
a collective decision making process for solving a problem. The use of this process
allows the swarm to accomplish tasks that without a correct collaboration cannot
be done by single individuals. Extensive research has been carried out in the field of
collective decision making as discussed in detail in Section 2.1. Due to the frequent
use of this process in different scenarios a vast cases of problems are connected to
it. The chosen category of problems for this thesis is called best-of-n and a formal
definition is given in the following section.

1.1.3 Best-of-n

The best-of-n problem [44] related to self-organized systems can be described in
summary as follow:

“The problem of finding a collective agreement over the most favourable option
among a set of alternatives”.

The term option is used to abstract domain-specific concepts that are related to
particular application scenarios. The different options of the best-of-n problem
are referenced by using natural numbers from 1 to n. An agent is defined as an
individual of the swarm such as social insects and robots that is able to explore the
environment and communicate with other agents. Each option i is characterised by
a quality related to a function of one or more attributes of the environment, and
the value associated to the quality is represented by a number qi ∈ [0, ∞). Agents
are able to estimate the quality of the options. Considering a swarm of M agents,
the problem is solved as soon as the swarm makes a collective decision for the best
option, represented as the one characterised by the highest quality, among the set of
alternatives i ∈ {1, . . . ,n}. A collective decision is represented by the achievement
of a quorum threshold δ ∈ [0, 1] defined as the percentage of agents that have to
favour the same option. The problem of best-of-n can be viewed in details here [44].

Chapter: 1 Francesco Canciani 2



Swarm resiliency in collective decision making

The last definition needed to understand the considered problem is the concept of
swarm resiliency.

1.1.4 Resiliency in swarm

Swarms during their process of decision making, both in nature and artificial envi-
ronment, can find some problems related to intruders. The scope of this thesis is to
analyse if a swarm with particular social behaviour is able to resist to the attackers
and reach the prefixed goal. This task is called resilience and it is analysed in a col-
lective decision making perspective focused on best-of-n problems. From a swarm
point of view resilience is defined as

“the ability of the swarm to achieve its goal under disturbance”.

This kind of property needs to be tested under different conditions as the quality
level of the options in the environment, the level of noise and the portion of the
swarm affected by faults or attackers. This thesis tries to analyse various kind of
attackers over several collective decision making behaviours. A detailed description
of resiliency in swarm robotics it is explained in Section 2.2.

1.2 Problem statement and contributions

In the current literature lots of effort has been spent proposing collective decision
making behaviours in swarm robotics, but less in analysing resilience in the same
processes. This resilience analysis can help to identify which factors influence more
the performance of a collective decision behaviour under disturbance. In our work
we defined disturbance as an attack that can be described as malicious agents in-
troduced in the swarm. In this thesis we investigate swarm resiliency in collective
decision making, focused on the best-of-n decision problem.

We analysed the resilience of four different behaviours taken from the literature
under the influence of three different types of attackers performing respectively a
denial of service, slow down, and wrong addressing through computational analysis.
Our analysis was possible thanks to the implementation of a computational tool
called DeMaMAS. The modular structure of this tool allowed us to implement the
four behaviours taken from the literature by combining a sequence of reusable uni-
tary modules. All the three malicious agents can quickly be implemented in this tool
by correctly setting some of the modules that compose a behaviour. Another impor-
tant characteristic of DeMaMAS is the possibility to create heterogeneous swarms,
in which agents in the swarm have different behaviours. Due to the fact that re-
silience can be tested under several different conditions, this works is focused in a
restricted area of experiments characterised with the following list of statement:

1. The number of options n and their relative qualities qi are finite and constant
for the whole duration of the experiment. Each option i is referenced by using
natural numbers from 1 to n. Options are localized in the environment.

2. We focus in problems with one and only one superior-quality option and n−1
inferior-quality distractor options. A difficulty level is fixed and constant for
the whole duration of the experiments. The difficulty level is defined as the
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ratio between the highest quality relative to the best option over the lowest
quality associated to the worst one. With lower value we characterised simple
problems (e.g., 0.4).

3. A quorum threshold δ defined as the percentage of agents that has to favour
the same option to reach a decision is set to 0.8.

4. The number of agents M and the proportion between the number of agents and
malicious agents is fixed and constant for the whole duration of the experiment.

5. Agents are free to move in a bi-dimensional space.

6. Agents are able to detect an option in the environment and noisily estimate
its quality when they are in the proximity of the option location.

7. Agents have limited memory and can store only one option i and its quality
qi.

8. Agents are allowed to communicate with each others within a communication
radius r.

9. Agents can exchange only their option with their neighbours.

10. Agents are not able to detect attackers.

The contributions of this thesis are:

1. Creation of a modular multi-agent simulator for comparison of decentralised
decision-making strategies and testing resilience.

2. Definition of a taxonomy for attacks in collective decision making problems
related to best-of-n.

3. Implementation, description and test of three different types of attacks each
one characterised by a different goal (Denial Of Service, Wrong Addressing
and Slow Down, for more details see Section 4.1.2).

4. From our experiments about resiliency we discovered that in simple problems,
characterised with a low number of options (2) and a low difficulty level (0.4),
listening less is the best strategy for being more resilient.

5. Through the comparison of literature methods under attacks, we discovered
two important modules that help in increasing the resiliency of a behaviour.
The first one called majority, in which the agent selects its new option accord-
ing to the one shared by the majority of individuals in their neighbourhood
and cross-inhibition, a module that allows the behaviour to break deadlocks
in complex problems (high number of options and high number of difficulty).

6. With the previous contribution we were able to create a new behaviour that
combines the two previous modules.

7. We validated the new behaviour through preliminary tests with 50 simple
robots called Kilobots.
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8. The outcomes of this thesis have been useful to support the analyses of a
few research project whose results will be disseminated through the following
manuscript:

• Swarm resiliency in collective decision making
(F. Canciani, M.S. Talamali, J.A.R. Marshall, A. Reina) in prepara-
tion for the ICRA 2019 Workshop on Resilient Robot Teams, Montreal,
Canada, May 20-24, 2019.

Additionally, DeMaMAS, which I designed and implemented, is currently used
for other research studies of which I will be acknowledged as a co-author.

1.3 Structure of thesis

The thesis has the following structure:

• Chapter 2 introduces the state of the art in collective decision making and
swarm resiliency fields.

• Chapter 3 explains in details the development, the usage and the powerful
modularity characteristics of DeMaMAS multi-agent simulator.

• Chapter 4 provides a detailed taxonomy of attacks and define the imple-
mented attackers.

• Chapter 5 describes how to set experiments with heterogeneous swarms in
DeMaMAS and the main results obtained through simulations.

• Chapter 6 describes in details the main components used in kilobots exper-
iments and the obtained results.

• Chapter 7 reports conclusions, main contributions and future works related
to the usage of DeMaMAS.
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Chapter 2

State of the art

This chapter provides an overview of the literature in the fields of collective decision
making and swarm resiliency.

2.1 Collective Decision Making (CDM)

Inspired by natural swarm approaches in problem solving, in the past years, the sci-
entific community increased its interest for collective decision making [2]. Collective
decision making processes are useful in a lot of different problems, below we present
a selection of some interesting cases.

• Aggregation and clustering : the challenge to position each component of the
swarm close to each others in one location that is unspecified. Some solu-
tions are inspired by different natural flock such as ladybugs [17] and young
honeybees [38]. Clustering is a subsection of aggregation tasks that includes
collecting objects due to particular feature (e.g., colour, size or age) in specific
locations, one example of this behaviour is related to the termite collection of
resources. From a collective decision making point of view the swarm needs to
decide where to aggregate and how to aggregate the objects. In this context
some of the most important works are the papers by Schmickl et al. [33] [34]
and Kernbach et al. [13], about the BEECLUST algorithm.

• Collective construction: a collective construction goal is defined as a construc-
tion of buildings or any other architectural objects. From a CDM perspective
the swarm needs to decide where to build the artifact. Possible solutions are
inspired by how social insects, like wasps, ants and termites decide where and
how build their own home [47]. Relative to collective construction some inter-
esting works are proposed by Theraulaz and Bonabeau [41] [42], in which it is
proposed a building behaviour modelled as cellular automata.

• Collective motion and flocking : the task of collective motion is to synchronise
the movement of the whole swarm. This behaviour is observed in flocks of
birds. From a collective decision making stand point at any time all the
individuals composing the swarm need to decide the direction and the speed
of the flight. An important model of flocking is described and proposed by
Reynolds [27]. In this work three basic rules for simulating a bird flock are
suggested: (1) Alignment: adaptation of direction based to the one of your
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neighbours. (2) Cohesion: stay close to your neighbours. (3) Separation: avoid
collision, trying to stay not to close to your neighbours.

Lots of effort has been spent on the previous tasks and various interesting models
have been proposed. In order to check the reliability of the proposed algorithms and
models, scientists decided to use simulators and swarms of robots as real-world
models. A lot of the previous and following described works use simulation and
swarms of robots.

Related to the scope of this thesis on the best-of-n category, defined as the set of
problems of finding a collective agreement over the most favourable option among
a set of alternatives, different models can be used for solving these tasks and some
interesting cases are discussed in details. Below we discuss in details only models
considering discrete options and assume a spatial environment. For completeness
we also briefly report models using different assumptions.

Models adopting a non-spatial environment also called urn models are explained
by Hamann [8] [9] and by Eigen and Winkler [5].

In the paper of Hegselmann and Krause [10] and Kuramoto [16] there are models
handling a continuum option assumption.

The most relevant works related to the scope of the thesis are reported and
described in the following list.

• The Voter model is a simple but powerful model for collective decision making
problems proposed by Clifford et al. [3]. It has very useful properties adopted
in several other algorithms. The following definition describes the behaviour
of the Voter model:

an agent ‘i’ considers the options of its neighbourhood and picks one of them at
random. The agent ‘i’ switches to the selected option if and only if its previous
option is different from the new one.

This behaviour that seems apparently counterproductive helps the swarm to
converge to the correct decision. A presence of a majority in the flock permits
to converge to the best option, represented as the one with the highest quality,
because it is more likely for the majority-option to be picked by a random
selection [3].

• Majority : The behaviour of the majority model is explained as follows:

“the agent selects its new option to the one shared by the majority of individuals
in their neighbourhood”[7].

In case of a tie, the new option is chosen at random from the most m-frequent
picked from its neighbourhood. There are several different versions of the
majority model, two of the most significant are the following:

– Simple-Majority: an agent i, after checking its neighbourhood, counts
the occurrence mj of each option Oj and switches to the most frequent
one Ok where k = argmax mk.

– Quorum-Majority: instead using a most frequent approach in this variant
a quorum that needs to be satisfied in order to pick the new option is
added[18].

Chapter: 2 Francesco Canciani 7



Swarm resiliency in collective decision making

• DMMD stands for Direct Modulation of Majority-based Decisions, it is a
model developed by Valentini et al. [45]. This model combines the behaviour
of the majority with the modulation of positive feedback, the individuals ad-
vertise their options for a time proportional to the assessed quality. In the
analysis reported in their paper [45] it is demonstrated that DMMD is faster
but less accurate than the voter model.

• DMVD stands for Direct Modulation of Voter-based Decisions [46], it is char-
acterised by a combination of voter model and modulation of positive feedback
as described in the previous model.

• K-unanimity : The behaviour of k-unanimity is summarised as follow:

“an individual selects its new option Oj if and only if all the last k-observations
in its neighborhood are identical to Oj, otherwise it does not select any”[32].

The “k” parameter represents the number of neighbours that are evaluated for
choosing the new option.

• CDCI stands for Collective Decision through Cross-Inhibition [26], this model
is inspired by experimental and theoretical studies of the nest-site selection be-
haviour observed in honeybee swarms (Apis mellifera) [35] [26] [25]. The main
idea behind that method is to break deadlocks thanks to a cross-inhibition
behaviour, like the one that bees use during their decision making process for
the selection of the best nest-site. This strategy copies the option of a random
neighbour and if its status is uncommitted or the copied option is equal to its
past one it switches to the new option, otherwise it flips uncommitted.

Another interesting model that is not used for our scope is the Sznajd model [37],
also called USDF (“Unite we Stand Divided we Fall”). Its principle is described as
follow: The option of an individual ‘i’ can assume only two values
Oi = 1 or Oi = -1 and only two neighbours. In each time step two individuals options
Oi+1 and Oi are picked randomly. The opinion of the two neighbors Oi-1 and Oi+2

are updated as follow:

• If OiOi+1 = 1 then Oi-1 = Oi+2 = Oi

• If OiOi+1 = -1 then Oi-1 = Oi+1 and Oi+2 = Oi

This model can end in a stalemate. A stalemates is a situation that we want to
avoid in our models, because in most of CDM problems one of the main goal is to
reach consensus that permits to take a decision.

Also, in natural processes some deficiencies have been discovered in collective
decision making approaches. One of the most representative problems is performed
by the pheromone trails, released by a group of ants while searching for resources.
It can happen that the trails form a loop which traps them. The swarm is not able
to detect the situation and keep circling until they eventually die. After noticing
several issues, the scientific community starts to propose new solutions. Another
problem related to swarms and collective decision making is called swarm resiliency.
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2.2 Swarm resiliency

An individual is resilient if it is able to resist disturbance. According to the defini-
tion of resiliency provided in Section 1.1.4, from a collective decision making point
of view, a swarm is resilient if it is able to achieve its prefixed goal also adding
disturbances, such as intruders. An intruder is able to manipulate and alter the
behaviour of the swarm. Several works investigated swarm robotics relative to fault
detection [14] [40] and the concept of security itself [12] [11] but limited effort has
been devoted to swarm resilience.

Most studies about swarm resilience assume that is not possible for the agents
to detect an intruder. It is also assumed that individuals composing the swarm are
connected by a static network topology and they are not allowed to move freely. The
intruder is characterised by a physical failure, due to a component malfunctioning or
depletion of energy, or malicious behaviour. Another assumption is that the number
of adversaries is not known a priori.

An example of work using the previous assumptions is the paper by Hyongju
et al. [21]. In this paper a resilient version of the classical rendezvous problem is
described with a strictly relation to the Byzantine problem in distributed computing
[43]. The proposed algorithm is called DRY-Sync and is based on the computation
of interior Tverber points for each fault-free robot in the swarm. The strength of
the previous algorithm is supported by accurate analysis and simulations.

Kelsey et al. [31] assume a time-varying network instead of a statistic one and de-
scribe an accurate analysis of an alternative version of Weighted-Mean Subsequence-
Reduced (W-MSR) [48]. The main contribution is related to the addition of a control
policy that guarantees the connectivity of the agent above a given critical thresh-
old. Thanks to the combination of the control policy and the W-MSR algorithm a
resilient flocking behaviour is preserved.

An interesting paper assuming time-varying networks with a fixed number of
intruders F is the one by Saldana et al. [29]. The proposed method relies on
network typologies satisfying the well-known property called (2F + 1)-robustness.
The novelty in the algorithm is given by the addition of a sliding window approach
extending the classical W-MSR. The main difference with the classical W-MSR is
that the agent during the time interval of the window phase takes into account all
values received by its neighbours. This approach guarantees a better resilience than
the classical one.

Finally, Strobel et al. [36] present a blockchain solution for managing byzantine
attacker in a swarm robotics collective decision making scenario. This approach
increases considerably the resiliency thanks to the establishment of a secure swarm
coordination mechanisms able to identify and exclude intruders.

No studies about swarm resiliency are conducted assuming a fixed number of
intruders, a spatial bidimensional model in which agents are allowed to move freely
and no detection of adversaries is performed. One of the main contributions of
this thesis is to test and explore resiliency in best-of-n problems under the previous
assumptions.
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Chapter 3

Multiagent simulator DeMaMAS

Figure 3.1: DeMaMAS logo.

This chapter presents the multi-agent simulator, its architecture and usage.
The purpose of the project is to provide a modular tool that is simple to use and

extendable for future work in the field of decentralised collective decision making
problems. DeMaMAS is the name of the application, an acronym that stands for
Decision Making Multi-Agent Simulator, whose goal is the comparison of decen-
tralised collective decision-making strategies. The logo used to represent the tool is
shown in Figure 3.1. The application is accessible through the GitHub platform on
the following link: https://github.com/DiODeProject/DeMaMAS
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3.1 Main components

In this section we present the principal components that constitute the multi-agent
simulator. A simulation is composed basically of a finite number of agents M ,
options n, totems T , an environment (torus), a set of messages, a time step limit
t̄s ∈ [0, ∞) and a quorum value δ ∈ [0, 1]. As described above, the main goal of a
simulation is to try to solve a best-of-n problem. A screen shot of simulation can
be seen in Figure 3.2. The parameters (50 in total) that have to be set in order to
run a simulation are discussed in details in Section 3.3. An execution ends when
the quorum value δ or the time step limit t̄s is reached. Each principal component
involved in a simulation is composed of a set of parameters, that represent its own
characteristics and define its behaviour. In the following five sections we explain in
details how each principal component works and its main characteristics.

Figure 3.2: A graphical execution of DeMaMAS with 100 agents, 2 different options
represented with the 2 different totems (red and green) and a quorum set to 0.8.

3.1.1 Option

As said in Section 1.1.3 we focus on the best-of-n task, described as the problem
of finding a collective agreement over the most favorable option among a set of
alternatives. We use the term option to abstract domain-specific concepts that are
related to particular application scenarios. In our simulator each different option i is
characterised by an unique identifier id and a quality qi. The identifier of the option
is an integer number varying from 1 to the number of options n in the environment.
Each quality qi is characterised by a float value qi ≥ 0.
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3.1.2 Totem

The totem is another main components of a simulation. A totem is an instance of an
option i and it is visualised as a big dot with a colour related to the corresponding
option i as showed in Figure 3.2. The main attributes of those components are listed
below:

• id : it is a unique identifier (integer) that identifies a totem (static).

• message: it is a class that contains information that are shared through agents
(static).

• option: it is an integer that represents the option i related to the totem (static).

• quality : it is an integer that represents the quality qi related to the option i of
the totem (static).

• position: it is a parameter that represents the x and y coordinate that describes
the position of a totem (static).

• radius : it is a float value r that represents the communication radius (static).

The main difference between a totem and an agent is characterised by a static status
for the totem and a dynamic one for the agent. A totem never changes its option
i, quality qi , and position for the entire execution of the simulation, while an agent
can change its option i, estimated quality q̃i and position each time step.

3.1.3 Agent

The agent is the main component of our system, in our graphical simulation in Figure
3.2 it is represented as a little dot with a colour that represents its current option.
Agents are allowed to communicate with each others within a communication range
with radius r, to move freely in the space using a random walk, and to detect an
option i in the environment and estimate its relative quality q̃i. The estimation
introduces a noise factor ζ taken from a normal distribution. They have a finite
memory and can store only one option i per time with its relative estimated quality
q̃i. Agents cannot collide with other agents, because their bodies are not material.
In our case of study agents can share only their option i without its estimated
quality q̃i. Its principal behaviour is represented by a list of parameters, each one of
them can be static or dynamic. A static parameter never changes its value during
the whole execution of the simulation, otherwise is dynamic. The most important
parameters are listed and described below:

• id : it is a unique identifier (integer) that identifies an agent (static).

• option: it is an integer from 1 to n that represents the option of the agent
(dynamic).

• message: it is a class that contains information that are shared through agents
(dynamic).

• neighbours : it is a list composed by all the agents that is in the radius range
of the agent (dynamic).
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• position: it is a parameter that represents the x and y coordinates that describe
the position of an agent, this value can change through the execution of the
simulation (dynamic).

• quality : it is a float that represents the estimated quality perceived by the
agent, this value can change during the simulation (dynamic).

• radius : it is a float value that represents the communication radius of an agent
(static).

• create message: it is a string that represents the method used for communica-
tion purpose (dynamic).

• update algorithm: it is a parameter that represents the rule that computes
how to select the new option for the agent (static).

• update model : it is a parameter that represents how to compute the update of
the new option (static).

Each agent of the swarm can be in four different states, as showed in Figure 3.3.

Figure 3.3: Possible agent configurations motifs, each one of the different circles
represents how an agent in the relative status is represented in the simulation.

• Commitment status : describes the level of information that an agent has.

– Committed : The agent has an option i with its estimated quality q̃i and
the colour of the agent represent its current option.

– Uncommitted : The agent does not have an option and a quality. From a
graphical point of view it is represented with a grey little dot.

• Activity status : describes which activity an agent can perform.

– Interactive: The agent is allowed to communicate with others. It can
share its own option i and can use the information given by its neighbours.
It has the same graphical representation of the committed status.
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– Latent : The agent is not allowed to share and gather any kind of infor-
mation with its neighbours and with the environment. One example of a
latent state is when an agent is in a resampling state.

∗ Resampling : the agent has an option i, received by one of its neigh-
bours, but needs to estimate the relative quality q̃i. To estimate q̃i it
requires to go to the related totem where the option was previously
sampled by its neighbours. The colour showed in the graphical simu-
lation represents the current option i, but it has a smaller dimension
and it is darker.

3.1.4 Message

The message represents the communication packet that can be shared among agents
and totems. A message is defined as a class in the DeMaMAS simulator and its main
parameters are:

• id : it is a integer representing the identifier of the sender of the message.

• option: it is a integer that describes the option of the sender.

• totemPos : it is a list of length two that displays the x and y position of the
totem where the option came from.

• visible: it is a Boolean set to False if the sender is in latent status, otherwise
is set to True.

3.1.5 Environment

The simulation runs over an environment characterised by a single parameter called
environment size that describes the dimension of the x and y axes considered iden-
tical. The environment is a torus. A torus is defined as a surface or solid formed
by rotating a closed curve, especially a circle, about a line which lies in the same
plane but does not intersect it. An example of torus can be viewed in Figure 3.4.
In DeMaMAS the 2D visual representation of the torus allows agents and totem to
cross the boundaries.

Figure 3.4: Torus representation in 3D, public domain via Wikimedia Commons.
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3.2 Architecture

The novel modular structure of DeMaMAS is realised after a deep study and compre-
hension of different behaviours relative to decentralised collective decision making
problems. After a long investigation we noticed that all the investigated behaviours
have a common structure which consists in a sequence of phases, represented in
blue in Figure 3.5. All behaviours are composed of the same phases which can have
different implementations. A specific implementation of a phase is what we called
module. More generally we divided the execution of a behaviour in three different
sections called respectively sensing, thinking and acting as showed in black in Figure
3.5. In the sensing section, the agent perceives the options and receives the informa-
tion from its neighbours. During the thinking section an agent is able to select the
new option and update it. It is composed of four different phases called discovery,
process social, modulation self-social and update model. In the acting section the
individual creates the message with its new information and spreads it, this section
is composed by the create message phase.

Thanks to its modularity DeMaMAS allowed us to quickly re-implement the
investigated behaviours through the composition of a sequence of reusable unitary
modules.

Figure 3.5: Execution flow graphical representation, in black we represent the three
different sections and in light blue the different phases.

In the following sections we describe in details each one of the previous phases
and modules depicted in Figure 3.5 and with more details in Figure 3.6, in which we
show all the already implemented modules. For each one of these phases we describe
the already implemented modules.
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Figure 3.6: DeMaMAS detailed architecture, with the light blue rounded rectan-
gles we represented the phases and with black rounded rectangles the implemented
modules.
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3.2.1 Modulation self-social

The phase called modulation self-social allowed the user to update the agent discov-
ery and social strength. Each agent has two values called social-strength (ρ ∈ [0, 1])
and self-strength (% ∈ [0, 1]), which allow the agent to modulate the balance re-
spectively in process social and discovery. If ρ is set to 0 the agent is not able
to perform process social, while if % is set to 0 the agent is not able to perform
discovery. If ρ ∈ (0, 1) or % ∈ (0, 1) it means respectively that the social-strength
and self-strength modulate the probability of applying process social and discovery.
If ρ and % are set equal to 1, it means that they do not influence how the agent
performs process social and discovery phases. In DeMaMAS as showed in Figure
3.7 we already implemented three different module:

• Constant: The agent never updates its social-strength value ρ and its self-
strength value %.

• Step-time: The agent updates its social ρ and self % strength after a fixed time
step t̂.

• Step-time-value: The agent updates its social ρ and self % strength according
to a function f(q̃) defined as follow:

f(q̃) =
t̂ ∗Q
q̃

Where Q ∈ [0,∞) is the maximum quality, t̂ is a fixed time step and q̃ is the
estimated quality. And it is used as follow:

ρ, % =

{
update, if ts ≥ f(q̃)

not update, otherwise

Where ts is the current time step of the simulation.

Figure 3.7: Modulation self-social graph, with the light blue rounded rectangle we
represented the phase and in black rounded rectangles the implemented modules.

Chapter: 3 Francesco Canciani 17



Swarm resiliency in collective decision making

3.2.2 Update model

In this section it is explained in details how the update module works and which
modules are already implemented.

The main goal of that phase is managing the options received by the agent and
updates its own option according to the selected module. In the update model two
different modules called direct switch and cross inhibition are already implemented,
as showed in Figure 3.8. They are explained in details in the relative subsections
below.

In this phase in addition to the previous modules it is already implemented a sub-
module called decay that allowed the agent to forgive its option i and its estimated
quality q̃i.

Figure 3.8: Update model phase motif, with the light blue rounded rectangle we
represented the phase and in black rounded rectangles the implemented modules.

Direct switch

Figure 3.9: The motif is a graphical representation of how the direct switch module
works. In this figure O1 represents an option with identifier 1 represented in red and
O2 with identifier 2 represented in blue. The gray circle identified with the letter u
depicts the uncommitted status.

The direct switch module allows the agent to change its own option with the se-
lected new one j (that is different to its previous one i) without pass through the
uncommitted phase. An explanation figure is shown in Figure 3.9. When an agent
is in an uncommitted phase as soon as it selects a new option this module granted
the agent to switch directly to it. If the agent already has a own option i and selects
a new one j 6= i it is allowed to substitute its option from i to j.
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Cross-inhibition

Figure 3.10: The motif is a graphical representation of how cross inhibition module
works. In this figure O1 represents an option with identifier 1 represented in red and
O2 with identifier 2 represented in blue. The gray circle identified with the letter u
depicts the uncommitted status.

The cross inhibition module is inspired by the nest-site selection process in honeybees
that allows the swarm to break decision-deadlocks in complex best-of-n problems.
An agent that uses this update module cannot switch directly from its option i from
the selected new one j 6= i without pass through the uncommitted phase. When the
agent pass through the uncommitted phase it loses both option i and its estimated
quality q̃i. In case the agent is in an uncommitted phase it is allowed to switch
directly to the new selected option j.

Decay

The decay sub-module allows the agent, at the end of the model update phase, to
forgive the values of its current option i and the estimated quality q̃i, and go back
to the uncommitted state, in which the agent has no option, if and only if either
discovery and process social are not performed. In DeMaMAS two different modules
concerning decay that use a parameter of the agent called decay-strength γ ∈ [0, 1]
are already implemented:

• Constant : the agent performs decay according to the following rule:{
perform decay, if γ > U(0, 1)

not perform decay, otherwise

Where U(0, 1) identifies a function that returns a random value from uniform
distribution with variance equal to 1 and average equal to 0.

• Probabilistic: the agent performs decay according to the following rule:{
perform decay, if (γ / q̃i) > U(0, 1)

not perform decay, otherwise

Where U(0, 1) identifies a function that returns a random value from uniform
distribution with variance equal to 1 and average equal to 0, and q̃i is the
estimated quality related to the option i of the agent.
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3.2.3 Create message

In this paragraph we discuss in details how the create message module works and
which modules are already implemented. The create message phase is responsible
for the creation and spread of the message containing the information gathered by
each agent. Up to now we implemented a constant and a probabilistic modules. In
the following two sections we discuss in details how the constant and probabilistic
modules work.

Figure 3.11: Create message module, with the light blue rounded rectangle we
represented the phase and in black rounded rectangles the implemented modules.

Constant

The constant module allows the agent to create and spread each k-time steps, with
k ∈ [0,∞), the message containing the collected information. If the current time
steps is not a multiple of k the new message is set to not visible and the neighbours
of the agent are not allowed to receive its message in this time step.

Probabilistic

The probabilistic module allows the agent to create and share its message with a
probabilistic function related to the estimated quality q̃i defined as:

g(q̃i) =
(ρ ∗ q̃i)
Q

And used with the follow rule:{
allow spreading, if g(q̃i) ≥ U (0,1)

do not allow spreading, otherwise

Where ρ ∈ [0, 1] represents the social-strength, Q ∈ [0,∞) means the maximum
quality, q̃i ∈ [0, Q] the estimated quality, and U(0, 1) identifies a function that
returns a random value from uniform distribution with variance equal to 1 and
average equal to 0. Using a probabilistic module an agent having a high estimated
quality q̃i has more probability to spread its option through its neighbours.

Chapter: 3 Francesco Canciani 20



Swarm resiliency in collective decision making

3.2.4 Update option

In this section we discuss in details the discovery and process social phases that can
be viewed as part of a more general phase called update option. A motif is showed
in Figure 3.12. The two modules works in an mutually exclusive way. The discovery
process is always executed before the process social and if it returns a result different
from none the process social section is not execute. In the next two subsections, the
specifics of the discovery and process social modules are explained.

Figure 3.12: Update option module, with the blue rounded rectangles we represented
the phases and in black rounded rectangles the implemented modules.

Discovery

The discovery phase allows the agent to specify which module is used during the
exploration of the environment, relatively to the detection of totems. It specifies
what happens when an agent detects a totem in its radius area. In the discovery
phase, as showed in Figure 3.13, two modules labelled as always and probabilistic
are already implemented.

Figure 3.13: Discovery phase motif, the two implemented module respectively called
always and probabilistic are represented with black rounded rectangles.

• Always: When a behaviour uses the always module if an agent detects a
totem, it is allowed to get all the information from the totem including the
related option i and the estimated quality q̃i. This information is returned and
used to the next module called update model, while if the agent is not able
to detect a totem the module returns none and the next module used is the
process social. This module allows an agent to always discover the presence
of a totem if it is inside its sensing radius.
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• Probabilistic: This module allows a probabilistic behaviour when an agent
detects a totem inside its radius. The agent uses the information gathered
from the totem (i, q̃i), in function of h(q̃i), defined as:

h(q̃i) =
(% ∗ q̃i)
Q

And used with the follow rule:

returned values =

{
(i, q̃i), if h(q̃i) ≥ U (0,1)

(none, none), otherwise

Where % ∈ [0, 1] indicates the self-strength and q̃i express the estimated discov-
ered quality, Q indicates the maximum quality, and U(0, 1) identify a uniform
distribution with variance equal to 1 and average equal to 0.

Process Social

The process social phase described how an agent uses the information received from
its neighbours and how it selects the new option received by others agents. As shown
in Figure 3.14 many modules are already implemented and they can be divided in
two different categories:

• Malicious module: mad, minority, and zealot.

• Literature module: k-unanimity, majority, and random.

Figure 3.14: Process social motif, the already implemented module called random,
mad, minority, majority, k-unanimity, and zealot are represented with black rounded
rectangles.

In the following list we depicted how each process social module works.

• K-Unanimity : The first method presented is called k-unanimity.

The main rule of this process social behaviour can be summarized as follow:

“an agent computes its new option to i if and only if all the last k-observations
stored in its list of neighbours are of option i, otherwise it does not select
any”[32].

The “k” parameter represents the number of neighbours that are evaluated for
choosing the new option per each time step.
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In the implementation on DeMaMAS of k-unanimity it is assumed that if the
number of observations stored in the agent’s list of neighbours is less than k,
no option is selected.

Due to the fact that DeMaMAS is based on time step and not on real time,
it is supposed that each time step the list of messages is shuffled in order to
introduce a random order to the list.

• Mad : In accordance to the definition written in the Cambridge dictionary, a
mad subject is unable to behave in a reasonable way, due to an unpredictable
behaviour this module is part of the attacks. It is modelled as following: the
agent selects a new option i each time step due to a random function. This
kind of conduct can introduce a noise in the system and it is used for testing
the resiliency of the swarm.

• Majority : The behaviour of that module can be described as follows: “the
agent selects its new option i to the one shared by the majority of individuals in
its neighbourhood” [7]. In case of a tie, the new option i is chosen by random
from the most m-frequent (with m ∈ [1...number of shared option in the list
of neighbours]) selected from its neighbourhood.

• Minority : The minority module as an opposite behaviour of the majority
one and its definition is the following one: “the agent selects its new option i
to the one shared by the minority of individuals in its neighbourhood” [19]. In
case of a tie, the new option is chosen by random from the least m-frequent
(with m ∈ [1...number of shared option in the list of neighbours]) selected from
its neighbourhood.

• Random : The agent selects its new option i by choosing a random one from
its neighbours, independently on the quality of the options.

• Zealot : A zealot is defined as an entity that has a very strong option about
something and tries to make others have them too. In accordance to the
previous definition a zealot behaviour is characterised by an agent that never
selects a new option and quality. This is an attack module and it is used for
testing the resiliency of the swarm.

If after using the chosen module an agent did not pick a new option, the process
social phase returns none otherwise return the new selected option i.
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3.3 Documentation

In this section, we describe in details the different sections of parameters that can
be found in the configuration file of the deMaMAS simulator and how to set and
use them. The configuration file is divided in nine different subsection:

1. Experiment (Section 3.3.1)

2. Model and update (Section 3.3.2)

3. Message (Section 3.3.3)

4. Movement (Section 3.3.4)

5. Agent ant totem settings (Section 3.3.5)

6. Decay (Section 3.3.6)

7. Interaction function (Section 3.3.7)

8. File (Section 3.3.8)

9. Graphic and plot (Section 3.3.9)

For each subsection the meaning of each parameters is described. A copy of the
whole documentation can be also found at the following link:

https://github.com/DiODeProject/DeMaMAS

Chapter: 3 Francesco Canciani 24

https://github.com/DiODeProject/DeMaMAS


Swarm resiliency in collective decision making

3.3.1 Experiment

In this part of the documentation we summarise all the basic parameters that an
experiment needs in order to set the general components of the simulation. A general
summary of parameters contained in the experiment section can be seen in Figure
3.15

Figure 3.15: Experiment parameters overview, with the black rounded rectangles
we indicate the name of the parameters, and next to the blue dots we list the range
in which the parameters has to be set or a possible configuration in case of Arrays.

• colours : it is a vector of string that represents the colours that are used to
show agents and totems options. All the list of available colour can be found
https://matplotlib.org/examples/color/named colors.html.

• composition: it is a vector of floats that represent sub-population proportions
in which the swarm is divided. Each element of this vector range in [0,1] and
the sum of all the elements need to be equal to 1.

• compositionLabels : it is a vector of String used by the simulator to display the
used behaviour in the legend that appears during a graphical simulation.

• environmentSize: it is a float that represents the dimension of the environment
(the environment is a square).
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• noiseStandardDeviationValue: it is a float that represents the noise (ζ) that
the agent adds to its evaluation of the quality from the totem during discovery
and resampling.

• numberOfAgents : it is an integer that represents the number of agents in the
environment.

• numberOfOption: it is an integer that represents the number of different op-
tions that can be shared by agents and totems.

• numberOfSimulation: it is an integer that represents the number of simulations
that are executed per configuration file.

• startingPoint : it is a Boolean that represents if in the environment there are
fixed starting points where agents are created at the initial time step or if they
are generated at random positions.

• numberOfStartingPoint : it is an integer that represents the number of starting
locations (points) where agents are created at the initial time step. This
parameter is used only when startingPoint = True.

• numberOfSteps : it is an integer t̄s that indicates the maximum duration of
the entire simulation in time steps.

• numberOfTotems : it is a vector of integers that represents the number of
totems in the environment. If the length of the vector is 1, all options have
that number of totems (e.g. numberOfTotems = [3] all options have 3 totems),
otherwise the vector length must be equal to the number of options (i.e.,
len(numberOfTotems) == numberOfOption) and each option will have the
respective number of totems.

• quorum: it is a float that represents the quorum (δ) (i.e., proportion of the
swarm) to be reached to finish the simulation, if it is set to 0, the simulation
runs until the time step limit t̄s.

• seed : it is an integer that represents the random seed of this simulation. If 0
the seed is selected randomly. When several experiments are executed, each
experiment has a new random seed incremented by 1.
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3.3.2 Model and update

Figure 3.16: Model and update parameters overview, with the black rounded rect-
angles we indicate the name of the parameters, and next to the blue dots we list the
range in which the parameters has to be set or a possible configuration in case of
Arrays.

• discoveryMethod : it is a vector of strings that represents the modules used
during the discovery phase by the agents. It determines how the agent makes
a discovery based on the quality estimated from the totem.

– always : when an agent enters in a totem it always discovers the option
given by the totem. This module is described in details in Section 3.2.4

– probabilistic: when an agent enters in a totem it discovers with a probabil-
ity as a linear function of the estimated quality. This module is described
in details in Section 3.2.4.

• kUnanimityParameter : it is an integer that represents the factor “k” in the
k-unanimity module.

• maxQuality : it is a float Q that represents the maximum quality that can be
set in the environment.

• qualityValues : it is a vector of floats that represent the qualities assigned to
the totems. The vector should have a length equal to the number of options
(numberOfOption); if the length is longer (len(qualityValues) > numberOfOp-
tion), the exceeding values are ignored; if the length is shorter
(len(qualityValues) < numberOfOption), the first values len(qualityValues)-1
are assigned to the respective options (totems) and all the remaining options
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have the same quality as the last vector value. For instance, for numberOfOp-
tion = 5 and qualityValues = [6,5,4] the option #1 will have quality 6, the
opinion #2 will have quality 5, and the options #3, #4, #5 will have quality
4.

• updateRule: it is a vector of strings that represent the modules that are
used by the swarm in order to compute the option to input in the update-
Model. The vector length should match the number of subpopulations (i.e.,
len(composition)).

– kUnanimity : the agent picks from its neighbours the option i if and only
if the last k-received-options are identical to i.

– mad : the agent selects its new option i each time step due to a random
function.

– majority : the agent picks from its neighbours the option that is more
frequent.

– minority : the agent picks from its neighbours the option that is less
frequent (light-attacker).

– random: the agent picks a random option from its neighbours.

– zealot : the agent never changes its own option and always share with all
its neighbours its option (attacker).

• updateModel : it is a vector of strings that represent which modules are used to
update the option of the agent. The vector length should match the number
of sub-populations (i.e., len(composition)).

– direct : if the agent receives a new option from a neighbour (using the
updateRule) it switches to the new option.

– crossInhibition: if an uncommitted agent receives a new option from a
neighbour (using the updateRule) it switches to that option. If a com-
mitted agent receives a new option different from its previous one from a
neighbour (using the updateRule) it switches to uncommitted.

• zealotOption: it is an integer that represents the option assigned to zealots.
It can range between 0 and numberOfOption. If it set to 0, the proportion
of the population composed by zealots has a equal distribution over the all
sub-optimal options in the environment. If it is set to a specific number i
excluding the 0 and 1 (in our simulator option 1 always has the best quality)
all the zealots have the same option i.

• zealotQuality: it is a float that represents the quality associated to the option
used by a zealot.
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3.3.3 Message

Figure 3.17: Message parameters overview, with the black rounded rectangles we
indicate the name of the parameters, and next to the blue dots we list the range in
which the parameters has to be set or a possible configuration in case of Arrays.

• msgType: it is a string that represents the structure of messages shared by
agents.

– simple: the agent shares only its own option.

• sendConstant : it is an integer that represents how many time step the agent
needs to wait to send a message.

• sendInfoMethod : it is a vector that represents which modules are used by
agents to share messages.

– constant : the agent shares its own message each sendConstant parameter
timestep. This module is explained in details in Section 3.2.3

– Probabilistic: the agent shares its message with a probability related to
the estimated quality q̃i. This module is explained in details in Section
3.2.3.

3.3.4 Movement

Figure 3.18: Movement parameters overview, with the black rounded rectangles we
indicate the name of the parameters, and next to the blue dots are listed the range
in which the parameters has to be set.

• moveDimension: it is a float that represents the dimension of the movement
of the agent.

• straightLength: it is an integer that represents how many time steps the agent
needs to wait in order to change its direction.
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3.3.5 Agent and totem settings

Figure 3.19: Agent and totem overview, with the black rounded rectangles we in-
dicate the name of the parameters, and next to the blue dots we list the range in
which the parameters has to be set.

• agentRadius : it is a float that represents the agent communication-radius.

• startWithOpinion: it is a Boolean that if True the simulation starts with all
the agents in a committed state, while if False it starts with all the agents in
an uncommitted state.

• totemRadius : it is a float that represents the totem communication-radius.

3.3.6 Decay

Figure 3.20: Decay overview, with the black rounded rectangles we indicate the
name of the parameters, and next to the blue dots we list the range in which the
parameters has to be set or a possible configuration in case of Arrays.

• decayMethod : it is a vector of strings that represents the methods that can be
used by the decay function by agents.

– constant : the agent forgets its own opinion with a function related to the
parameter decayStrength γ. A detailed description is given in Section
3.2.2.

– probabilistic: the agent forgets its own opinion with a probability func-
tion related to the parameter decayStrength γ. A deeper description is
provided in Section 3.2.2.
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• decayStrength: it is a vector of floats that is used as a parameter of the decay
function, each one of the can be identified with the symbol γ.

3.3.7 Interaction function

Figure 3.21: Interaction function overview, with the black rounded rectangles we
indicate the name of the parameters, and next to the blue dots we list the range in
which the parameters has to be set or a possible configuration in case of Arrays.

• interactionFunction: it is a vector of strings that represent the module called
modulation self-social (ρ, %).

– constant : the agent never updates its social-strength ρ and self-strength
%.

– stepTime: the agent updates its social-stregth ρ and self-strength % after
a fixed time step t̂.

– stepTimeValue: the agent updates ρ and % according to a function f(q̃).
This function is explained in details in Section 3.2.1.

• preStepSocialStrength: it is a vector of floats that represents how much an
agent can interacts with others before the condition in the interaction function
is verified. It represents the value ρ before the update.

• postStepSocialStrength: it is a vector of floats that represents how much an
agent can interact with others after the condition in the interaction function
is verified. It represents the value ρ after the update.

• preStepSelfStrength: it is a vector of floats that represents how much an agent
can interact with totems after the condition in the interaction function is
verified. It represents the value % before the update.

• posStepSelfStrength: it is a vector of floats that represents how much an agent
can interact with totems after the condition in the interaction function is
verified. It represents the value ρ after the update.

• initialTimeValue: it is a integer (t̂) used by the interactionFunction to calcu-
late when the condition in the function is verified.

Chapter: 3 Francesco Canciani 31



Swarm resiliency in collective decision making

3.3.8 File

Figure 3.22: File overview, with the black rounded rectangles we indicate the name
of the parameters, and next to the blue dots we list the range in which the parameters
has to be set or a possible configuration in case of Arrays.

• coloursFile: it is a vector of strings that represents an abbreviation of colours
name used by txt files that contains the results of the simulation.

• finalResultFileName: it is a string that is used as a name for creating a txt
containing only the final results of all simulations for a single configuration
file, if it is set to “null” no txt file is created.

• statisticsFileName: it is a string (path) that indicates what is the directory
path in which all the results have to be saved.

• resultFolderPath: it is a string that is used as a name for creating txt files for
each simulation, if it is set to “null” no txt file is created.

• testName: it is a string that represents the name of the test that we want to
run.
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3.3.9 Graphic and plot

Figure 3.23: Graphic and plot overview, with the black rounded rectangles we indi-
cate the name of the parameters, and next to the blue dots are we list the range in
which the parameters has to be set.

• animationInterval : it is an integer that represents how many milliseconds the
animation function plots an image during the simulation.

• graphSimulation: it is a Boolean that represents if the simulation is graphically
showed or run in the shell.

• plot : it is a Boolean that represents if the user needs a plot of the results or
not.
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Chapter 4

Attacks

In the previous chapter we showed how the multi-agent simulator works and was
provided a detailed description of each parameter that composed it. This chapter
is crucial in the identification of the potential threats that can affect a swarm. It
starts examining the definition of an attack, then moves to show a taxonomy of all
the possible attackers that can influence a swarm and ends with an explanation of
heterogeneous swarms.
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4.1 Classification

This section opens with a proper definition of attack, then continues with a descrip-
tion of the components that constitute it and ends with a detailed characterisation
of the possible adversary.

4.1.1 Attack definition

From a computer security point of view an attack is defined as an information se-
curity threat that implicates an attempt to alter, destroy, implant, obtain, remove
or reveal information without authorized access or permission. Thanks to the pre-
vious explanation in the following section it is discussed in details what are the
characteristics of an attack in a best-of-n collective decision problem.

4.1.2 Attacks in best-of-n

Lot of effort has been spent in the classification of attacks in computer security in the
past years. In the swarm robotics field less effort has been spent in categorization
and definition of attacks [11] [30]. We proposed a description of components that
constitute an attack. As represented in Figure 4.1 an attack consists of three main
elements:

Figure 4.1: Attack components motif, an attack is composed by three different
elements called goal, attacker and attack-vector.

1. Goal: it is the main purpose of an attack. The possible different goals of an
attack in best-of-n are summarised in Figure 4.2.

2. Attacker: it is the individual or agent (group of agents) that performs the
attack. A detailed description of the main characteristics of a malicious agent
are reported in Figure 4.3. In Section 4.1.3 we propose and depict five different
categories of attackers.

3. Attack-Vector: it represents the method used by an attacker to perform the
attack. Different types of attack-vectors are showed in Figure 4.4.
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The first component that we present is the goal, that defines the aim of the
attack. As shown in Figure 4.2 there are three different categories of goals that can
be performed in our scenario:

Figure 4.2: Goals of an attack motif, an attack can have three different goals: Denial
Of Service (DOS), slow down, and wrong addressing.

1. Denial of service (DOS): according to a computer security perspective it is
defined as a threat to the availability, normal functionality and associated
services of a system for their intended use by legitimate users. Related to
our problem a DOS is verified if the swarm is not able to reach a consensus
and as a consequence of that the swarm is not capable to choose one of the
possible n-options. This category of aims is the most brutal and dangerous
for a swarm, because it compromises the entire system behaviour. A DOS
can also be performed by more than one attacker, in this scenario it is called
DDOS that stands for Distributed Denial of Service, in our experiments are
considered both DOS and DDOS.

2. Slow down: the aspiration of that goal is to affect the system speed evolution
by a non-negligible delay in accomplishing the plan of the swarm. The swarm
reaches the consensus slower.

3. Wrong addressing: the system goal is redirected to a non-optimal solution, this
condition is strictly related to best-of-n problem. E.g., the swarm, instead of
choosing the best option over the n possible ones, chooses another one with a
quality strictly lower than the best.
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An attacker can reach its goal in many different ways, this different paths are
characterized by how the behaviour of an intruder is described and implemented.
As depicted in Figure 4.3 the main characteristics of a malicious agent are:

Figure 4.3: Attacker parameters component motif, an attacker is composed by three
parameters called knowledge, movement and infect.

1. Knowledge: is defined as a measure of the amount of information the attacker
has about the system, from the environment and the swarm.

• White-Box: an attacker has detailed knowledge of a swarm’s implemen-
tation that allowed it to undertake tailored attacks against that specific
system [100%].

• Grey-Box: an intruder has a knowledge between the bare minimum and
approximately the maximum [1-99%].

• Black-Box: a malicious agent has no prior knowledge of a swarm that it
wishes to attack [0%].

2. Movement: this characteristic represents how an attacker moves through the
environment.

• Static: the malicious agent maintains the same position during the whole
execution of the attack.

• Dynamic: the intruder can change its position during the attack.

3. Infect: it is a property of the attacker, that if set to True the malicious agent
can convert the behaviour of every non malicious agent it interacts with.
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An attacker to achieve its goal needs an attack strategy, in this context an attack-
vector can apply one or more of the four different categories of manipulations:

Figure 4.4: Attack vector component motif, an attacker can manipulate the goal,
the behaviour, the environment and the communication channel of an agent.

1. Goal: the attacker with its behaviour tries to change directly the goal of the
assaulted agent.

2. Behaviours: the intruder attempts to modify the behaviour of an agent (e.g.,
corruption of movement, update algorithm, quality sensor,...).

3. Environment: through the manipulation of the environment a malicious agent
can perform different kinds of damage, from sensor to physical one.

4. Communication: an intruder can disturb the communications between agents
or intercept their signals and change them.

After an explanation of the elements that form an attacker, in the next section
we classify the different kinds of intruder that can be found in a Collective Decision
Making best-of-n problem.
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4.1.3 Attackers in best-of-n

As a result of the attack classification, which was established in the last section,
this part begins by dividing attackers in five different groups as showed in Figure
4.5. Each category can be explicit or implicit. An intruder is defined as an explicit
one, if its rival-behaviour is done by purpose otherwise is called implicit. The five
categories are:

Figure 4.5: Attackers types, an attacker in a best-of-n problems can be in one of the
five different categories. Error, jammer, repeater, killer, and hostile environment.

1. Error: an “Error-attacker” is an agent of our system that due to hardware or
software failure due to hostile-environment, noise or bad-programming, can be
an implicit-malicious-agent. In robot swarms, this kinds of error are very fre-
quent related to the complexity and weakness of the hardware. In DeMaMAS
this behaviour can be simulated easily introducing a “bug” in the code or by
adding a random noise function that can change the behaviours of the agents.
A more detailed characterisation is showed in Figure 4.6.

2. Repeater: it is able to spread a wrong information through the swarm. Given
a full knowledge of the system this attacker can perform a wrong addressing
attack and in extreme cases a DOS attack. In both robots and simulator cases,
this kind of attackers are easy to implement with a little modification of the
behaviour of the agent in the code. A more detailed description is given in
Figure 4.7.

3. Jammer: it is a malicious-agent that is able to interrupt communication flow
between agents in the swarm. This attacker introduces a disturb in the com-
munication between robots in the swarm and does not allow them to use the
classical communication channel. In the multi-agent simulator this behaviour
can be simulated by introducing a forbidden communication area. A deeper
explanation is provided in Figure 4.8.

4. Killer: it is a malicious agent that performs physical tampering. It provokes
physical damage to the agents in the swarm. Its aim is to reduce the popula-
tion, this behaviour can generates a DOS attack.

5. Hostile environment: A hostile environment is a malicious environment that
due to its morphology can provoke a wide range of damages to the agents.
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Error

As described before an error attacker is characterized by a hardware or software mal-
functioning, it can be the cause of different types of malicious agent. The complete
list is showed in Figure 4.6 reported below.

Figure 4.6: Error categories motif, an Error can be divided in four different categories
called mute, deaf, lame, and combo.

The Error classification is divided in four different categories:

• Deaf: an implicit-attacker is deaf if it is lacking the power of hearing. A
robot is suffering of deafness if it is not able to receive communication from
the other robots caused by a malfunctioning in the hardware related to the
communication sensing. In our multi-agent simulator an agent is deaf if it is
not able to receive any message from its neighbours.

• Lame: a lame is an individual that is not able to move correctly in the environ-
ment because of physical fault related to the hardware-movement section or
a malfunctioning related to a bad calibration (e.g., Kilobots). In DeMaMAS
a lame can be implemented by adding a function that generates an abnormal
movement behaviour.

• Mute: a malicious agent is mute if it is unable to speak, due to a fault in
the hardware communication section or to a bug in the implementation. In
DeMaMAS a mute-agent can be easily implemented by adding a silent function
that does not allow an agent to speak.

• Combo: an agent can be affected by more than one of the previous problems.
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Repeater

The repeater category is the most interesting to answer our research question. In
Figure 4.7 are highlighted three intruder that corresponding to those implemented
in DeMaMAS. A Repeater spreads a wrong information through the swarm. We
depicted four different types of intruders listed and described below:

Figure 4.7: Repeater categories motif, a repeater can be divided in four different
types called zealot, contrarian, liar, and wishy washy.

• Contrarian: it is a malicious agent that diffuses the option of the minority.
With this behaviour it provokes a slow-down to the system and in extreme
cases a DOS (or DDOS). This attacker is already implemented in DeMaMAS
and a detailed analysis will be provided in Section 5.2.

• Liar: it is an intruder characterized by a diffusion of an non-existent option
through the swarm. This attacker-behaviour can generate a DOS. This kind
of attacker is not implemented in DeMaMAS.

• Wishy Washy (WW): it is defined as a malicious agent that continuously
changes its option every time step. It spreads its option every time step and
with this behaviour it introduces a noise factor in the swarm. This behaviour
is already implemented in DeMaMAS by allowing the agent to switch option
every time step and to spread it. This attacker is very powerful and can
generate both slow down and DOS, its strength increases when the number
of option in the environment is increased. With an higher number of options
more noise is introduced in the system.

• Zealot: A zealot is defined as an intruder that has a very strong option about
something and tries to make others have them too. In our simulator it is
modelled as an agent that never changes its own option and spreads it through
the swarm every time step. Its main goal is to perform wrong addressing and
in extreme cases can degenerate in a DOS attack.

– Sect: it is defined as a group of zealots that spread the same option. This
variant is made by the needs of having an attacker that is able to perform
wrong addressing.
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Jammer

A Jammer is characterized by introducing a noise in the environment that produces
an interruption of the communication flow between agents in the swarm. Each
category can also perform a filter over specific selected targets. We say that a
Jammer performs a targeted filtering if it disrupts only a selected option, otherwise
performs an untargeted filtering. As showed in Figure 4.8 this category of attacker
is divided in two classes:

Figure 4.8: Jammer categories motif, a jammer can be of two different types constant
or discontinuous.

• Constant: a constant jammer disturbs the communications between agents
in a delimited area, characterized by its radius for the whole duration of the
attack.

• Discontinuous: a discontinuous jammer interrupts the communications be-
tween agents in a delimited area, characterized by its radius. This interrup-
tion is not continuous and can alter moment in which the communication in
its range is allowed and moment in which is not.
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Hostile environment

An hostile environment is a particular case of attackers in which the malicious agent
is the environment itself.

Figure 4.9: Hostile environment categories, an hostile environment can be considered
a trap or related to the morphology of the environment.

As showed in Figure 4.9 we categorised two different kinds of hostile environment:

• Trap: It is characterized by the insertion to an initial non-hostile environment
of an element that can cause different types of damages to the agents in the
swarm. This kind of attackers can be simulated by using the previous listed
attacker with a fixed position. The different kinds of traps can generate a
dangerous area, in which an agent can be physically damaged, a mute area in
which an agent is not able to speak, and a noise area in which an agent cannot
communicate.

• Morphology: The environment in this case due to its shape can perform dif-
ferent kinds of attacks. We divided the morphology categories as the same of
the trap one with the same meaning, but here the only difference is that the
attack is implicit.

Killer

The last kind of attacker that we defined is called killer. Through physical tampering
its goal is to perform a reduction of the population that consequently degenerates
in a denial of service.

Figure 4.10: Killer motif.
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4.2 DeMaMAS and heterogeneous swarms

In order to perform an attack against a swarm our simulator needs to generate
two different behavioural strategies. Thanks to its modularity, DeMaMAS allows
us to create heterogeneous swarms very quick. An attack is defined as a normal
agent that has only a different settings of the module in each different phase of the
simulator. In the next chapter we explain in details how to set the configurator file of
DeMAMAS in order to generate both literature and attacks methods. A screenshot
of a simulation is reported below in Figure 4.11.

Figure 4.11: A graphical execution of DeMaMAS using an heterogeneous swarm
with 100 agents (10% sect and 90% DMMD), 2 different options represented with
the 2 different totems (red and green) and a quorum set to 0.8.
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Chapter 5

Experiments

In Chapter 4 we described a classification of the possible kinds of attacks that affect
a swarm. In this chapter we start with a detailed description of how to set up the
investigated scenario, pass through the used analysis metrics and plots and conclude
with the obtained results.

5.1 Test description

To investigate the scenarios, we need to describe how to set up all the analysed
behaviours for testing the swarm resiliency and how to tune the parameters in order
to generate our case of investigation. For a detailed explanation of each behaviour
see Section 2.1. In this thesis we compared four behaviours from the literature and
a new one made ad hoc, against three different types of attacker. The five decision
making approaches are:

• CDCI stands for Collective Decision trough Cross-Inhibition, this behaviour
copies the option of a random neighbour at each application of the process
social and if its status is uncommitted or the copied option is equal to its past
one it switches to the new option, otherwise it flips uncommitted.

• CDMCI stands for Collective Decision through Majoritarian Cross-Inhibition.
This behaviour is created ad hoc for the aim of the dissertation and its be-
haviour selects the more frequent option shared by its neighbourhood at each
application of the process social and if its status is uncommitted or the copied
option is equal to its past one it switches to the new option, otherwise it flips
uncommitted.

• K-unanimity : the agent picks an option from its neighbours if and only if the
last k-received options are identical it applies direct switch in order to update
its own option with the selected new one.

• DMMD stands for Direct Modulation of Majority-based Decisions. The agent
picks the most frequent option from its neighbours and if it is different from
its previous one it switches to it. A more detailed description is provided in
Section 2.1.
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• DMVD stands for Direct Modulation of voter-based Decisions. The agent picks
a random option from its neighbours and if it is different from the previous
one it switches to it. A more detailed description is given in Section 2.1.

5.1.1 Literature behaviours parameters

• CDCI Collective Decision trough Cross-Inhibition:

– update model → cross-inhibition (Section 3.3.2)

– create msg → probabilistic (Section 3.3.3)

– update option:

∗ discovery → probabilistic (Section 3.3.2)

∗ process social → random (Section 3.3.2)

– modulation self-social: constant → ( self-strength = 1, self-social = 1)
(Section 3.3.7)

– decay: constant = 0 (Section 3.3.6)

• CDMCI Collective Decision trough Majoritarian Cross-Inhibition:

– update model → cross-inhibition (Section 3.3.2)

– create msg → probabilistic (Section 3.3.3)

– update option:

∗ discovery → probabilistic (Section 3.3.2)

∗ process social → majority (Section 3.3.2)

– modulation self-social: constant → ( self-strength = 1, self-social = 1)
(Section 3.3.7)

– decay: constant = 0 (Section 3.3.6)

• DMVD Direct Modulation of Voter-based Decisions :

– update model → direct switch (Section 3.3.2)

– create msg → probabilistic (Section 3.3.3)

– update option:

∗ discovery → probabilistic (Section 3.3.2)

∗ process social → random (Section 3.3.2)

– modulation self-social: constant → ( self-strength = 1, self-social = 1)
(Section 3.3.7)

– decay: constant = 0 (Section 3.3.6)
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• DMMD Direct Modulation of Majority-based Decisions :

– update model → direct switch (Section 3.3.2)

– create msg → probabilistic (Section 3.3.3)

– update option:

∗ discovery → probabilistic (Section 3.3.2)

∗ process social → majority (Section 3.3.2)

– modulation self-social: constant → ( self-strength = 1, self-social = 1)
(Section 3.3.7)

– decay: constant = 0 (Section 3.3.6)

• K-unanimity :

– update model → direct switch (Section 3.3.2)

– create msg → probabilistic (Section 3.3.3)

– update option:

∗ discovery → probabilistic (Section 3.3.2)

∗ process social → k-unanimity → k = 3 (Section 3.3.2)

– modulation self-social: constant → ( self-strength = 1, self-social = 1)
(Section 3.3.7)

– decay: constant = 0 (Section 3.3.6)
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5.1.2 Attacker behaviours parameters

After describing the parameters configurations that allowed us to simulate all the lit-
erature behaviour, in this section all the configuration to create the selected attacker
for the swarm are listed. The implemented attackers as said before are wishy washy,
contrarian, zealot and sect and are explained in details in the previous Section 4.1.3.

• Wishy Washy :

– update model → direct switch (Section 3.3.2)

– create msg → constant (Section 3.3.3)

– update option:

∗ discovery → always (Section 3.3.2)

∗ process social → mad (Section 3.3.2)

– modulation self-social: constant → ( self-strength = 1, self-social = 1)
(Section 3.3.7)

– decay: constant = 0 (Section 3.3.6)

• Contrarian :

– update model → direct switch (Section 3.3.2)

– create msg → constant (Section 3.3.3)

– update option:

∗ discovery → always (Section 3.3.2)

∗ process social → minority (Section 3.3.2)

– modulation self-social: constant → ( self-strength = 1, self-social = 1)
(Section 3.3.7)

– decay: constant = 0 (Section 3.3.6)

• Zealot :

– update model → direct switch (Section 3.3.2)

– create msg → constant (Section 3.3.3)

– update option:

∗ discovery → always (Section 3.3.2)

∗ process social → zealot (Section 3.3.2)

– modulation self-social: constant → ( self-strength = 1, self-social = 1)
(Section 3.3.7)

– decay: constant = 0 (Section 3.3.6)

– zealot option → 2 (Section 3.3.2)

– zealot quality → 5 (Section 3.3.2)
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• Sect :

– update model → direct switch (Section 3.3.2)

– create msg → constant (Section 3.3.3)

– update option:

∗ discovery → always (Section 3.3.2)

∗ process social → zealot (Section 3.3.2)

– modulation self-social: constant → ( self-strength = 1, self-social = 1)
(Section 3.3.7)

– decay: constant = 0 (Section 3.3.6)

– zealot option → 0 (Section 3.3.2)

– zealot quality → 5 (Section 3.3.2)
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5.1.3 General test parameters

For the resiliency tests, we used the high performance computing resource of the
University of Sheffield called iceberg (all the documentation of how using it can be
found here: https://www.sheffield.ac.uk/wrgrid/iceberg). In order to collect all the
needed data we uploaded DeMaMAS on the cluster, set and run different config-
uration files allowing us to submit thousands of different jobs that run in parallel
and gave us the results faster. We collected data on a set of 1440 different exper-
imental conditions, obtained by all the possible combinations for the three values
for the parameter numberOfOption = [2,4,6], by the use of four different difficulties
proportion corresponding to the parameter difficulty = [0.4,0.8,0.9,1] and six values
corresponding to the percentage of attacker in the swarm [0%,1%,5%,10%,15%,20%].
Each one of the previous configurations is performed for 5 different literature be-
haviours and 4 different attackers. For each one of the different 1440 configurations
are performed 100 different runs with different random seeds, for a total of 144000
experiments. In the following list the set up of each test is described:

• Literature behaviour vs attackers

– agent radius → 0.05 (Section 3.3.5)

– totem radius → 0.1 (Section 3.3.5)

– graph simulation → False (Section 3.3.9)

– plot → False (Section 3.3.9)

– environment size → 1 (Section 3.3.1)

– start with option → False (Section 3.3.5)

– starting point → False (Section 3.3.1)

– composition → [(1.0, 0.0), (0.99, 0.01), (0.95, 0.05), (0.90, 0.1), (0.85,
0.15), (0.8, 0.2)] (Section 3.3.1)

– max quality → 10 (Section 3.3.2)

– number of agents → [100] (Section 3.3.1)

– number of simulations → [100] (Section 3.3.1)

– number of steps → 10000 (Section 3.3.1)

– quorum → 0.8 (Section 3.3.1)

– msg type → simple (Section 3.3.3)

– number of options = number of totems → [2, 4, 6] (Section 3.3.1)

– difficulty → [0.4, 0.6, 0.8, 0.9, 1] (Section 3.3.2)

– standard deviation → [1] (Section 3.3.1)

– seed → 7777 (Section 3.3.1)
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5.2 Analysis

After the data collection process a deep exploration and understanding of the data
are performed. In order to visualise the performance of the behaviours we used three
different metrics called accuracy, convergence and time step.

5.2.1 Metrics

Accuracy

A definition of accuracy from a best-of-n point of view is provided below. A sim-
ulation composed of a fixed number of agents M , reached a decision if a number
of agent m favor the same option i and their cardinality is greater or equal to the
quorum threshold δ set by the designer. Given a number of runs per simulation
R, we define accuracy as the number of runs r̂ that reached a decision to the best
option i* divided by all the runs R.

accuracy = r̂
R

Convergence

Given a number of agents M per simulation, a number of runs per simulations R,
convergence is defined as the number of runs r̃ that reached a decision divided by
R.

convergence = r̃
R

The convergence value is always greater than or equal to the accuracy one, due to
the fact that a simulation for taking a decision to the best option is taking a decision
first.

Time step

Time step is defined as the number of time steps t̃ that a run r of a simulation needs
to take a decision. If the run reaches the fixed time step limit t̄s without taking a
decision, the value of speed is set to the time step limit t̄s.

speed =

{
t̃, if r reached consensus

t̄s, otherwise

In our analysis when on the axis we plot the time step metrics we meant the average
of the time step over all the runs that compose a simulation.
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5.2.2 Data representation

The collected data are organised in text files containing a lot of information. Each
text file corresponds to the results given from a simulation, in our case it contains the
results of 100 different runs. A result relative to a run of a simulation is represented
as follow:

SEED: 7777
TS 0 R B Q D S
503 2 80 18 True [4, 4] [178, 28]
In the first line is reported the seed used for the run. In the second line are

written the abbreviation corresponding to:

• TS → Time Step

• 0 → number of uncommitted agents

• R → number of committed agent to option Red

• B → number of committed agent to option Blue

• Q → Quorum

• D → Discovery interactions

• S → Social interactions

In the third line are reported the corresponding data to each one of the previous
sections. The data of discovery and social interactions corresponds to [discovery
interactions for literature behaviour, discovery interactions for attack behaviour] and
[social interaction for literature behaviour, social interaction for attack behaviour].

For reading and elaborate all the data a parser that uses regular expressions was
implemented. It allowed us to to filter and plot different kinds of graphs through a
configuration file. Some of the most useful data representations are described below.
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General comparison plots

Figure 5.1: Different used plot types for general comparison and visual understand-
ing.

In Figure 5.1 we depicted three important types of plots that are used in our visual
representation. In the first graph we compared all the literature behaviours and
attackers. On the y-axis we vary the accuracy and the convergence, while on the
x-axis we report all the attacks. Convergence values are represented by the less
bright bar, brighter bars represent accuracy. In this plot the number of options, the
difficulty (the ratio between the option with the highest quality and that with the
lowest one, in our investigation we always have a best option and all the remaining
has the same quality) and the composition (the first element in the brackets is the
percentage of agents using a literature behaviour while the second element represents
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the percentage of agents characterised by a malicious behaviour) of the swarm are
fixed. This kind of graph summarises a lot of data and allowed us to visualise an
overall comparison between attacks and literature behaviours.

In the second plot on the vertical axis we vary both time steps (an average of all
the 100 different runs per simulation), accuracy and convergence, on the horizontal
axis we vary only the attacks. We fix the number of options, the difficulty, and
the composition. In this plot we highlighted how a single behaviour reacts to all
the different types of attacks. This graph is useful because in only one graph we
described time step, accuracy and convergence. The thin grey lines represent the
accuracy, the convergence is represented by thin-light-blue lines, while the different
coloured bars represent the time steps related to the compared behaviour.

In the last graph on the y-axis we vary the same metrics as the previous one
while in the x-axis we vary the composition in percentage of attackers. In this plot
the number of options, difficulty and the attacker type are fixed. The coloured lines
represent each compared literature-behaviour, the two different ticks represent accu-
racy and convergence as reported in the legend. This graph permits to understand
how each literature behaviour reacts on varying the same percentage of attacker in
the swarm.
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Detailed comparison plots

In the following plots more information are plotted in order to obtain a better
comprehension of how each behaviour reacts to each different attacker.

Figure 5.2: Different used plot types for detailed comparison and visual
understanding.

In Figure 5.2 we represented three different kinds of plots depicting more detailed
information with respect to the more general one described above in Figure 5.1.

In the first graph on the y-axis we vary accuracy and convergence while on
the x-axis we vary the types of attacker. Number of options, difficulty values and
composition are fixed. The brighter bars indicate accuracy while the less bright
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represent convergence. In this plot, per each behaviour and type of agent, we also
plot social and discovery interaction. The social interaction counter represents the
average number of times that the swarm changes its option due to a social behaviour,
while the discovery interaction identifies the average number of times related to a
discovery. In the red squares we report respectively the social (s:) and discovery (d:)
interactions related to the attacker, while in the blue ones we display respectively
the social and discovery interaction of the corresponding literature behaviour. This
plot is useful to have a deep comprehension of the interaction mechanism that each
behaviour applies to be more resilient.

In the middle plot on the y-axis we report time step, accuracy and convergence
represented respectively by the coloured bars, the grey lines and the light-blue lines,
while on the x-axis we vary the attackers. In this plot we summarised all the data
contained in one text file relative to an experiment. It is very useful because it
permits to deeply understand how the behaviours react under attack.

In the last graphs we represent on the x-axis the time-steps while on the y-axis
the accuracy metric. In this graph the lines represent the correlation between speed
and accuracy. Each dot represents respectively the number of different options [2,
4, 6]. The shadows represent the confidence interval of 95%.

Thanks to the previous charts some interesting results are discovered.
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5.3 Results

In this section we explain all the contributions provided by our investigation. The
first important result confirmed by our experiments is related to the behaviour of
the attackers. Each attacker is modelled to perform a different goal. As explained in
Section 4.1.3 a contrarian tries to perform a slow down of the system, a wishy washy
attempts to execute a Denial Of Service (DOS or DDOS that stands for Distributed
DOS) and a sect strives to accomplish a wrong addressing. The second important
result is given by the reaction of 3-unanimity in simple collective decision problems,
it has the worst performance in both time step and accuracy when the swarm is
not under attacks, but it becomes the best one when intruders are added in simple
problems. The third contribution is relative to the impact of using majority as a
process social and the last contribution is how cross-inhibition influences resiliency.
In the first three sections we report the data results relative to the behaviours of
the attackers.
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5.3.1 Contrarians perform slow down

As explained before a contrarian attacker aim is to perform a slow down. This kind
of attack tries to decrease the convergence speed of the swarm. After analysing the
collected data it is discovered that the attacker is able to perform its goal. One
example of a quite difficult case is reported in Figure 5.3. In this picture we show
four different plots in which on each plot on the x-axis we vary the attacker and on
the y-axis we vary the time steps and we fix the number of options, the difficulty
and the composition. From one plot to another we vary only the composition of
the swarm. Thanks to this visual representation it is highlighted that increasing
the number of contrarians in the swarm the number of time steps considerably
increases. By adding the interaction and discovery values per each behaviour we
also inferred that adding contrarians increases significantly both discovery and social
interactions, that it means the agents in the swarm change more frequently their
options. By continuously changing their option agents cannot reach consensus as
quick as before the introduction of the attackers. An exception is made for the
3-Unanimity behaviour because it is not able to converge without attacker in this
level of the problem. Contrarians can also perform a DOS if their percentage is very
high, 20% or more, due to the fact that some behaviours, like CDCI and DMVD,
are exposed to an high slow down that in some cases reach the maximum number
of step per experiments that is set to 10000 and the swarm is not able to make a
decision.

Figure 5.3: Bar charts representing a slow down performed by increasing the per-
centage of contrarians from 0% to 20%.
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5.3.2 Sect executes wrong addressing

During the testing of the different types of attacker we discovered that zealots are
performing DDOS instead of wrong addressing. This behaviour is due to the fact
that they spread different options, with the correlated consequence of introducing
an high level of noise, and are not able to redirect the swarm to a singular option.
In order to solve this problem and create an attacker able to perform a wrong
addressing a group of zealots that spread the same option is implemented and is
called sect. In Figure 5.4 we depicted the differenent results of applying an attack
composed by zealots spreading different options and an attack in which all zealots
spread the same option (sect). In this plot we vary on the vertical axis accuracy
and convergence, represented respectively by the brighter bars and the less bright
ones. In each plot we fix the number of options (4), the difficulty(0.8) and the
composition. Each different bar represents a literature behaviour as explained in
the legend. From one plot to another the only parameter that is varied is the
composition. These plots allow to represent the different effect performed by the
attackers, when the number of attacker increase to 1% to 5% it is evident that the
sect performs a wrong addressing because in each behaviour (excluding always 3-
unanimity) the value of the convergence is very close to 1, means that they always
reach a decision but to the wrong one, because the level of the accuracy is very
low. An attack composed by “independent” zealots on the contrary increases the
number of time steps and decreases the accuracy. This double effect means that
the behaviours are not able to reach a consensus and they are stuck in the decision
process.
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Figure 5.4: Comparison between the effects of sect and zealot. Zealot performs a
denial of service, while sect performs a wrong addressing.
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In the following Figure 5.5 from the previous Figure 5.4 the only parameters
that is changed is the number of options (from 4 to 2) for visualising also the
behaviour of 3-unanimity. It is also added the social and discovery interactions
represented by the blue rectangles. In this case contrary to the one represented in
Figure 5.3, red rectangles are not showed due to the fact that zealots never change
their option and they never perform discovery and process social. With this plot a
particular behaviour is depicted. From a number of intruders from 0 to 1 we notice
a considerable increase in social interaction due to the fact that the agents tries
to contrast the attacker by sharing more their options. Observing the differences
between the second and the fourth plot the number of social interactions decreases
due to the fact that the swarm cannot raise against the influence of the attacker and
agents converge quickly to the wrong option.
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Figure 5.5: Bar charts showing that sect can perform wrong addressing.
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Another proof of this observation is given by the graphs represented in Figure
5.6. In these plots on the y-axis we vary time steps, accuracy and convergence
respectively represented by the coloured lines (each colour refers to a different liter-
ature behaviours as it is shown in the legend) and the correspondence ticks shown
in the legend. From a plot to another we fix the number of options and the type
of the attacker and we vary the difficulty. In the first plot that represents the sim-
plest case in which there are only two options and the difficulty is low an unusual
behaviour is highlighted when the number of attackers switch from 1% to 5% and
from 5% to 10% this fact as said before can be explained due to the fact that until
the number of zealots composing the sect does not reach 10% of the population the
various behaviour tries to naturally contrast the attacker. As a result, their accu-
racy is better than the next case but their speed is far slower. When the percentage
of attacker reach the 10% or more the speed of the convergence process increases,
but the accuracy dramatically decreases, because the swarm converges very quick
to the wrong option. Another showed results is that increasing the difficulty of the
problem from 0.4 to 0.8 we notice that the behaviours stop to try to contrast the
attacker earlier, due to this evidences the power of the sect is increasing when the
difficulty level of the problem increases.

Figure 5.6: Plots showing how each behaviour reacts under different percentages of
composition (percentage of attackers in the swarm).
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5.3.3 Wishy Washy accomplishes a denial of service

A wishy washy introduces in the swarm an high level of noise. This fact is due to
its behaviour of continuously changing its selected option that is constantly spread
through its neighbours. Spreading a lot of noise in problems where the difficulty is
quite high (0.8) is able to perform a denial of service. In the bar charts showed in
Figure 5.7 on the y-axis we vary accuracy and convergence respectively represented
by the brighter bars and the darker ones, on the x-axis we vary the attacker, but
in this case the only considered one is the wishy washy. In each graph we fix the
number of options (4), difficulty (0.8) and we vary the composition between different
plots. In the first graph we show that each literature behaviour except 3-unanimity
is able to converge with an accuracy value near to 1. In the second plot we introduce
only one intruder the DMVD behaviour starts to have problems of convergence. In
the graphs of the second row the number of wishy washy increases and reach 5% and
10% of the swarm composition, these experiments demonstrate that just a bunch
of wishy washy are able to perform a DOS. In the third graph all the behaviours
are affected by the intruder and the best is able to reach a consensus only on the
60% of the simulations. In the last one the number of the malicious-agents reach
the 10% and the best behaviour reaches a consensus only on the 20% of the runs,
this demonstrates that the wishy washy is able to achieve the goal it is made for.
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Figure 5.7: Bar charts showing that the attacker type called wishy washy is able to
perform a denial of service.
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During the analysis on the data we discovered that the power of a wishy washy
increases when the number of the options increases, because it can spread more
noise. The previous statement is demonstrated in the Figure 5.8. In the x-axis we
vary the types of attackers, while on the y-axis we vary accuracy and composition.
In this triptych we maintained constant the difficulty and the composition and from
top to bottom we increased the number of options. These plots show that also in
simple problems where the difficulty is set to 0.4, increasing only the number of
options in the environment the intruder increases considerably its power and its
able to achieve its goal.

Figure 5.8: Series of plots showing that a wishy washy introduces more disturb and
perform a denial of service if the number of options increase.
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5.3.4 In simple problems, listening less is better

One of the main results is characterised by the reaction of the k-unanimity behaviour
in simple problems. In our experiments setting as described in Section 5.1.1 we
decided to set k equal to 3, it means that an agent picks a new option from its
neighbourhood if and only if the last 3 received options are equal. This kind of
behaviour is the most selective one, because it needs a lot of information for using
an information from its neighbourhood, due to this selectivity 3-unanimity is the
behaviour that has the worst performance in absence of attackers in both simple
and complex cases. These bad efficiency is showed in both Figures 5.9 and 5.10. In
both figures on the x-axis we vary the types of attacker and on the y-axis we vary
time step, accuracy and convergence, pictured by coloured bars, grey and light-blue
lines. In Figure 5.9 from top to bottom we vary the difficulty and it is clear that
3-Unanimity is the slower and the one with less accuracy compared to all the other
behaviours. As showed in Figure 5.10 it is the worst also in the case in which instead
of changing the difficulty from one plot to another we change the number of options.

Figure 5.9: Comparison of behaviours varying difficulty. In this plot we show that
3-unanimity is the slower and the one with the lowest level of accuracy in problems
with number of options equal to 2 and varying the difficulty from 0.4 to 0.9.
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Figure 5.10: Comparison of behaviours varying number of options (2,4,6). In these
plots we showed the slowness of 3-unanimity in scenarios with the simplest analysed
level of difficulty (0.4).

Analysing the last two graphs we also notice that the only case in which 3-
unanimity has the same accuracy of the other behaviours is the simplest case in
which the number of the options is equal to 2 or 4 and the difficulty is very low
and set to 0.4. Unexpectedly when we plotted and examined the collected data we
notice that in this particular scenario 3-unanimity is the only one behaviour that
has a very high resilience through all the different types of attacks and it is the
only one that is able to face a wrong addressing attacks performed by a sect. In
Figure 5.11 we showed the high level of resiliency that characterises 3-Unanimity
in these simple cases. In these plots we vary on the vertical axis accuracy and
convergence, depicted respectively with brighter and darker bars, and on horizontal
axis the different types of attacker. In each plot we fix the number of options (2), the
difficulty value (0.4) and the composition of the swarm. The only parameter that
we vary from a plot to another is the composition. The plot positioned on the top
left corner represents the case in which the percentage of attacker is 0% and on the
bottom left we depicted the case in which the number of attacker is maximum and
set to 15%. The main difference that is showed is that the only attacker that has an
impact on the resiliency in these cases is the sect, that is able to perform a wrong
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addressing against all the behaviours except 3-unanimity. This weak behaviour has a
very high resiliency in simple scenarios because its ratio between discovery and social
interactions is completely different from the other behaviours. In order to show this
ratio we need to plot the social and discovery interaction per each behaviour.
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Figure 5.11: In this series of plots we vary the percentage of attacker and it is
showed that 3-Unanimity in this simple scenario is able to resist against every kind
of attackers.

In the following Figure 5.12 we plotted the discovery and social interaction values
per each literature behaviour. On the x-axis we report the attacker and on the y-axis
we vary time steps, accuracy and convergence respectively represented by coloured
bars, grey and light blue lines. In each one of these plots we fixed the number of
options (2), difficulty (0.4) and composition. From one graph to another the only
component that is varying is the composition. Thanks to the discovery and social
interaction values we highlighted that the discovery interaction of 3-Unanimity is
far higher compared to the other behaviours and also the social interactions are way
lower than the average of the others. These values mean that 3-Unanimity needs
more information in order to apply a process social and due to the noise introduced
by the sect it cannot apply most of the time its social behaviour and adopt more
frequently discovery. Thanks to the simplicity of the problem, characterised by a
lower number of options (2) and a very low difficulty (0.4) and to a probabilistic
discovery function related to the estimated quality of the option the probability
of discovering the correct options is far higher than the probability of the second
option. This fact permits to 3-Unanimity to converge to the correct option only
using discovery.
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Figure 5.12: In this plots is showed that 3-unanimity is the only behaviour that is
able to resist against sect in simple case with number of option equal to 2 and a
difficulty level set to 0.4.
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5.3.5 Majority contribution

Another important result that we obtained is the contribution given by the majority
module in increasing the resiliency of a behaviour. As described in Section 2.1 a
majority behaviour is characterised by the selection of a new option as the one shared
by the majority of individuals in the neighbourhood of the agent. This behaviour
allows the agent to use more information than a random behaviour. Thanks to
this advantage of considering more knowledge behaviours using majority are less
vulnerable to noise. In the following list of plots we explain in details the differences
between behaviours using as a social interaction a random behaviour and behaviours
adopting a majority strategy. In the plots of Figure 5.13 we analyse DMVD and
DMMD.
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Figure 5.13: DMMD and DMVD comparison bars plot showing that DMMD is more
resilient thanks to the use of the majority module.

The only difference between these behaviours is characterised by the different
social process phase. DMVD uses a random module, while DMMD selects a majority
one. Both behaviours using a probabilistic discovery and sharing of messages related
to the estimated quality and direct switch as update model module. In this series of
plots in Figure 5.13 on the vertical axis we vary time step, accuracy and convergence
represented respectively by coloured bars, where red represents DMMD and blue
represents DMVD, grey and light blue lines. On the horizontal axis we vary all the
different type of attackers. In each plot we fix the number of options (6), difficulty
value (0.4) and composition. From one plot to another we vary only the percentage
of attackers represented by composition values. The represented case is characterised
by a number of options equal to 6, in which there is only one with an high quality
(8) and all the other has lower quality (3.2). In this plot we show that a majority
process social helps in increasing resilience resulting in a faster decision process and
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in a higher level of accuracy. We can notice that in the second row DMMD is
performing in all the cases better than DMVD both from a accuracy and time step
point of view. Especially DMMD has a higher performance under the influences of
wishy washy, sect and zealot. Increasing the difficulty of the problem, we notice also
that DMMD is performing better also in contrarian case. In the following Figure
5.14 on the x and y axis we keep the previous metrics used in Figure 5.13 and from
a plot to another instead of varying the composition, here fixed to [0.9, 0.1], we vary
the difficulty, from 0.4 to 0.9.

Figure 5.14: DMMD and DMVD comparison bars plot showing that increasing the
difficulty level DMMD is able to resist more than DMVD against contrarian.

In this triptych is show that also in the contrarian case if we compared the two
behaviours in cases where the difficulty is very high DMMD has a better resiliency.
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In this second series of plots we depict the differences between CDCI (represented
in grey) and CDMCI (represented in orange). Both behaviours using cross-inhibition
as a update model module and a probabilistic module in discovery and create mes-
sage. The only difference is the process social module. CDCI uses a random, while
CDMCI a majority module.
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Figure 5.15: CDCI and CMDCI comparison bars chart showing that CDMCI is
more resilient in most of the feasible scenarios against contrarian, wishy washy and
sect until the number of attackers reaches 10%.

In Figure 5.15 on the vertical and horizontal axis we vary the same values as
in Figure 5.13. When the number of attackers reaches the 5%-10% we notice that
CDMCI is faster and has a higher level of accuracy. Until the number of zealots
composing the sect is below 10% CDMCI is also able to react against sect. In the
third graph a considerable difference in accuracy is showed when a sect is introduced
in the swarm. When the number of zealots composing the sect is greater than 5%
no behaviour is able to react to it in problems when the number of options is greater
than 4. In the third plot also wishy washy provokes a decrease in accuracy, because
it introduces more noise in the system because the number of options is very high
and it can switch over a high number of different options. In this case we show
that CDMCI has an accuracy to 60%, while CDCI equal to 23% and CDMCI is also
faster.
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Due to the fact that contrarians are the weakest attacker because their only goal
is to perform a slow down, in order to show that CDMCI is also way better than
CDCI in the contrarian case we need to increase the level of difficulty. In Figure 5.16
on the x and y axis we vary the same elements as the previous plots and is fixed the
composition to [0.9, 0.1] and number of options equal to 6. From one plot to another
we vary only difficulty from 0.8 in the first graph to 0.9 in the second one. As can be
noticed by the high level of the difficulty values in these plots we report two of the
most complex cases that we analyse. Thanks to this complexity in these plots we are
able to detect that CDMCI is faster and has a higher accuracy compared to CDCI,
meaning that CDMCI is more resilient also against contrarians. The difference in
accuracy between the two behaviours is very high from 30% to 40%. In the first plot
CDCI has an accuracy around 77% while CDMCI has 100%, increasing the difficulty
to 0.9 CDCI decreases to 22% while CDMCI has 65%. CDMCI is also faster than
CDCI, in the case with a level of difficulty equal to 0.8 the average number of time
steps is around 2300, while for CDCI is around 6250. In the most difficult explored
scenario CDMCI has an average of time steps equal to 6700, while CDCI equal to
9000.

Figure 5.16: CDCI and CMDCI difficulty comparison bars chart showing that in very
difficult scenarios characterised by a number of options equal to 6 and a difficulty
level equal to 0.8 and 0.9 CDMCI has a higher level of resiliency than CDCI.
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5.3.6 Cross-inhibition contribution

As said before in Section 5.3 another important result is characterised by how cross-
inhibition module contributes in increasing resiliency. Cross-inhibition in DeMaMAS
in considered as an update model module. Its behaviour can be explained through
the Figure 5.17. This module is responsible on how an agent updates its own option
after the selection of a new one. This module does not permit to directly switching
to a new option (different from its previous one), but imposes a constraint to pass
through the uncommitted phase u.

Figure 5.17: The motif represent a macro view of how cross-inhibition module works
in an experiment with 2 options, O1 represent the first option and O2 represent the
second available option, U represent the uncommitted state.

In the following series of plots we show that in our most difficult explored scenar-
ios the cross-inhibition module increases the resiliency against contrarians for all the
different percentages of attackers (1%, 5%, 10%) and against wishy washy and sect,
only if the percentage is less than 5%, than using a classical direct switch, which
allow the agent to change its own option to the new selected one, without passing
through the uncommitted state. In each graph on the x-axis we vary the type of
attackers, on the y-axis we vary time steps, accuracy and convergence represented
respectively by coloured bars, grey and light blue lines. In each graph we fix number
of options, difficulty and composition. From one graph to the following one we vary
only the composition of the swarm. In these plots we show that in complex problems
represented with a high number of options (6) and high level of difficulty (0.8 and
0.9), cross-inhibition helps to perform better, in both speed and accuracy.
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Figure 5.18: CDCI and DMVD comparison bar charts showing that in complex cases
with number of options equal to 6 and difficulty level equal to 0.8 CDCI performs
better than DMVD.

In the first series of Figure 5.18 we compare CDCI and DMVD, in which the only
difference between the two behaviours is that CDCI uses cross-inhibition and DMVD
uses direct switch as update model module. They both use a probabilistic discovery
module and create message. As showed in the legend CDCI is represented by the
grey bars, while the DMVD is displayed by the blue bars. When the percentage of
attackers is 1% the CDCI is faster and has a higher accuracy and convergence for
each type of the attackers. When the number of attackers increases and reaches 5%
and 10% in this type of complex scenario no one of the two behaviours is able to
react against wishy washy and sect, but only CDCI is able to have a significance level
of accuracy against contrarians, as showed in the second and third plots. Against
the other types of attackers in complex cases as showed in this series of plots, both
CDCI and DMVD have not a good resiliency due to the fact that in these particular
cases as said in Sections 5.3.2 and 5.3.3 these kinds of attacker increases a lot their
performance and no literature behaviours is able to resist under attack.
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In the following picture we analyse the most complex case, in which the number
of options is equal to 6 and the difficulty is set to 0.9. In the first plot in which the
number of attackers is equal to 0% we show that our new behaviour CDMCI has
a speed that is twice faster than DMMD and has an accuracy that is twice higher
compared to the one of DMMD. If we increase the percentage of attackers to 1%
we notice that CDMCI is still the best one. Against contrarians CDMCI is faster
and has an accuracy of 93% against a 50% of DMMD. Against wishy washy it is
faster and has an accuracy equal to 60%, while DMMD has only 20%. In facing
sect, CDMCI and DMMD have the same low accuracy equal to 20%, but CDMCI is
faster and has a convergence of 78%, while DMMD has only 36%. With the last two
plots in which the number of attackers increased to 5% and 10% neither CDMCI
and DMMD are able to resist to wishy washies and sect, but CDMCI has an higher
accuracy and speed against contrarians. In the case in which the percentage of
attackers is equal to 5% CDMCI is faster and has a better accuracy equal to 81%
while DMMD has 40%. In the last scenario in which the number of intruders is set
to 10% CMDCI is still faster and has a better accuracy equal to 62% while DMMD
has a low value equal to 18%.
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Figure 5.19: CDMCI and DMMD comparison bar charts showing that in the most
complex scenario with a number of options equal to 6 and level of difficulty equal
to 0.9 in some feasible cases CDMCI performs better than DMMD.

Thanks to all the previous analysis we discover that CDMCI, that uses both
cross-inhibition and majority modules, in most of the scenarios where the other
behaviours suffer more has a higher resilience. In the following plots we analyse
some of the most interesting cases in which we have complex problems, related to
the high percentage of attackers, number of options and difficulty and we show that
CDMCI has better performance than the other behaviours against contrarians and
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wishy washy, because related to this high complex problems no one is able to face
with sect. In the first plot of Figure 5.20 we show how CDMCI reacts in different
cases against contrarians. On the y-axis we vary the average number of time steps,
accuracy and convergence represented respectively by the coloured bars, the grey
lines and the light blue lines. On the x-axis we report the analysed attacker. In
the two plot we fix the number of options (6), the difficulty level (0.8), and the
percentage of attacker equal to 15%. In this two plots we show that CDMCI is
the only behaviour that is able to resist to contrarians maintaining an high level of
accuracy. In the first plot CDMCI has an accuracy near to 100% while CDCI has
an accuracy near to 40%, DMMD near to 78% and DMVD is the one that suffers
more, with an accuracy equal to 0%. In the second plot that represents one of the
most complex analysed scenario our novel behaviour has an accuracy around 50%
while all the other behaviours as an accuracy around 0%.In both plots CDMCI is
also the faster. Against contrarians we can confirm that in all our explored cases
CDMCI is the one with the highest resiliency.

Figure 5.20: Comparison of different behaviours in a complex case with a percentage
of attacker equal to 15% showing that CDMCI is the one that is more resilient against
contrarians.
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In the next triptych of plots in Figure 5.21 we show that in particular complex
cases CDMCI is able to resist more than the others behaviours.

Figure 5.21: Comparison of different behaviours in different scenarios against wishy
washy. This plots showing that is some cases where all the behaviours are less
resilient, CDMCI is the one with the highest level of resiliency.

On the vertical axis we vary accuracy and convergence depicted respectively with
brighter and darker bars. Each bar represents a different behaviour as explained in
the legend. In all the different plots we fix the difficulty level, set to the maximum
and equal to 0.9. From top to bottom we increase the number of options from 2 to
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4 and 6. In the first plot the percentage of attackers is equal to 10% while in the
other two plots is 1%. In the first plot CDMCI has an accuracy around 90% while
CDCI and 3-Unanimity around 72%, DMMD around 68% and DMVD around 61%.
In this first case with the high difficulty level of the problem (0.9) and a low number
of options (2) the group of wishy washy is not able to perform a proper denial of
service due to the limited number of options and all the behaviours are able to
converge. Increasing the number of options to 4 in the second plot a wishy washy
(1%) increases its ability to introduce more disturbance in the swarm and all the
behaviours except CDMCI are not able to face the disturbance introduced by only
one wishy washy. In this second plot CDMCI has a high level of accuracy around
98%, DMMD around 75%, CDCI around 52%, DMVD 21% and 3-Unanimity near
0%. In the last plot all the behaviours suffer on the introduction of only 1 wishy
washy, because the number of disturbances introduced is very high related to the
number of options equal to 6. CDMCI has an acceptable level of accuracy around
60%, CDCI around 23%, DMMD around 20%, DMVD and 3-Unanimity around 0%.
CDMCI is the only behaviour able to resist to the difficulty of the problem and the
high level of disturbance introduced by the wishy washy.
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Chapter 6

Attacks in real robots

In Chapter 5 we discussed how we set up the experiments and discussed the obtained
results. Based on the results we decided to reproduce four different scenarios in real
robots. Thanks to the opportunity given by the BET Lab (behaviour Evolution
Theory Laboratory, University of Sheffield, UK) we used simple robots called Kilo-
bots for implementing and testing the selected scenarios. In the following sections
we explain Kilobots, the Augmented Reality system for Kilobots called ARK, how
we set up the experiments, and the obtained results.
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6.1 Kilobot

Figure 6.1: Kilobot sketch.

Kilobot is a simple robotic system for the development of swarms of robots. A
Kilobot is easy to program and can perform useful functions such as coordination
between many individuals. Another of its main characteristics is represented by its
low cost. In the field of swarms robotics the cost factor is essential due to the fact
that a swarm is composed of several robots. Its low cost is due to its simple and
cheap components. As depicted in Figure 6.1 it is composed of three legs that enable
the robot to move thanks to the vibrations crated by the two different vibration
motors taking the energy from the battery. It also has a debugging connection and
a power switch. All the complete details about its components are listed in the next
table taken from the Kilobot website: https://www.k-team.com/mobile-robotics-
products/kilobot. The Kilobot is designed to provide scientists with a physical
testbed for advancing the understanding of collective behaviour [28].
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6.1.1 Specifications

Elements Technical informations

Processor ATmega 328P (8bit @ 8MHz)

Memory 32 KB Flash used for both user program and bootloader,
1KB EEPROM for storing calibration values and other
data and 2KB SRAM

Battery Rechargeable Li-Ion 3.7V.
Each Kilobot has a built-in charger,
which charges the on board battery when +6 volts
is applied to any of the legs, and GND
is applied to the charging tab.

Charging Kilobot charger. Time for charge is about 3 hours.

Communication Kilobots can communicate with neighbours up to 7
cm away by reflecting infrared (IR) light
off the ground surface.

Sensing When receiving a message, distance to the transmitting
Kilobot can be determine using received signal strength.

Movement Each Kilobot has 2 vibration motors, which are independently
controllable, allowing for differential drive of the robot.

midrule Light Each Kilobot has a RGB LED pointed upward

Dimensions The diameter is 33 mm and the height is 34mm

Software The KiloGUI interface is available for controlling the controller
board, sending program files to the robots and controlling them.

Programming The open source development software WinAVR
combined with Eclipse gives a C programming environment.

Debug A serial output header is available on each robot for debugging
via computer terminal.
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6.2 ARK system

Due to the Kilobots low cost and their restricted range of capabilities, based on a
single sensor, a lot of experiments encountered several problems, in order to avoid
those issues an Augmented Reality for Kilobots system is implemented by the BET
Lab (Behaviour Evolution Theory Laboratory) group in 2017 [24] [6] (another aug-
mented reality system is proposed by Antoun et al. [1]). ARK increases the Kilobots
capabilities, thanks to an augmented reality environment these simple robots are al-
lowed to communicate among each other and access to their location and state. It
also automates some necessary steps for the configuration phase of an experiment;
e.g., positioning, motor calibration, ID assignment, these operations are typically
laborious and time consuming when done manually. ARK permits also advanced
functionalities e.g., log and record experimental data for subsequent analysis. The
system is composed of three different components:

• Base control station (BCS)

• Modified overhead controller (OHC)

• Overhead camera tracking system

The BCS allows to manage tracking, communication, virtual environments and
Kilobots. Its behaviour is divided in four sequential phases. In the first step the
control system receives camera images from each of the four cameras placed on
top of the Kilobot arena, due to a distortion of the images the system needs to
correct and interpolate them in order to obtain a single image that covers the entire
environment. Secondly the software permits the Kilobots to be identified and tracked
independently. Thirdly BCS allows the user to send unique messages to each Kilobot
related to their individual state (or the same message in broadcast). Last but not
least, the software shows a Graphical User Interface (GUI) to allow the user to
view the progress of the experiment and to configure the entire system. All the
necessary instructions for implementing experiments can be found in the DiODe
website: http://diode.group.shef.ac.uk/kilobots/index.php/ARK.

The OHC [20] provides full communication coverage of the arena, it allows the
transmission from the BCS to the Kilobots and both from and to the Kilobots. The
communication is guaranteed through infrared signals (IR). This implementation
works well when robots run on a smooth, large and glossy table that helps IR
signals reflect off the surface and reach the robot light sensor. In order to solve the
shadows and communication uncertainties challenge another light source directed
on the arena is added. The processing stage to send information to Kilobots is
permitted by the construction of packets that are sent to the OHC.

The tracking phase is guaranteed through a four overhead cameras which are
related to the BCS for processing purposes. The number of cameras can be changed
according to the modularity of the software. The software is able to find the Kilobots
in the arena and to perform an interpolation of the four images to create a single
image that covers the whole arena thanks to openCV panorama stitching module.
For more detailed information about each components of ARK please read [24].
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6.3 Testing resilience in Kilobots

Before starting the experiments with Kilobots and testing resilience, due to the com-
plexity of the system, we chose which literature behaviour and attacker need to be
tested. We decided to implement CDCI and CDMCI as literature behaviours and
contrarian as an attacker. We selected CDCI, CMDCI and contrarians to have a
preliminary validation of our novel behaviour, CDMCI, and for demonstrating that
contrarians perform a slow down. Before implementing the selected behaviours on
Kilbotos we prototyped them in a Kilobot simulator called ARGoS [23] [22]. For
implementing both literature and attacker behaviours on Kilobots we used the open
source code available online:
https://github.com/DiODeProject/Time-Varying-CDCI/blob/master/KilobotCode
/CDCI HighInteractionRate(r%3D100)/agentCDCIlocal r100.c.

We decided to use a swarm of 50 Kilobots in a squared environment (1mx1m)
and reproduce 4 different experiment conditions with a level of difficulty set to 0.4
(with an highest quality of 8 and a lowest one of 3.2), a number of options in the
environment equal to 2 and a quorum set to 80%. The 4 different conditions are
represented by the following settings:

1. 50 Kilobots using a CDCI behaviour in absence of intruders.

[Percentage of intruders equal to 0%]

2. 45 Kilobots using CDCI and 5 applying minority (contrarians).

[Percentage of intruders equal to 10%]

3. 50 Kilobots using CDCMI in absence of intruders.

[Percentage of intruders equal to 0%]

4. 45 Kilobots using CDMCI and 5 applying minority (contrarians).

[Percentage of intruders equal to 10%]

The swarm of Kilobots apply the same behaviour we used in DeMaMAS. The Kilo-
bots are free to move in the Kilobot arena using a random walk and are allowed to
communicate with each other exchanging only their option within a communication
radius set to 10cm. They store only one option per time, and if their new option
is picked from their neighbours they need to estimate the quality of the new option
by go resampling to the corresponding totem. The go resampling action is possible
tanks to the use of ARK that every 5s sends to the corresponding Kilobot the correct
direction for reaching the totem. Due to the calibration problems of Kilobots this
continuous updating of the direction is necessary. During the resampling time, as in
DeMaMAS, they are not allowed to speak and listen. ARK allows also the discovery
phase by sending the corresponding quality to the Kilobot in the communication
area of the option. After received the quality from ARK the Kilobot estimates it
by adding a noise factor. During the experiment Kilobots can collide, this situa-
tion cannot happen in DeMaMAS. The main differences between DeMaMAS and
Kilobots experiments are listed below:
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• Environment:

– DeMaMAS: torus (1x1)

– Kilobots: square with solid border (1mx1m)

• Number of agents:

– DeMaMAS: 100

– Kilobots: 50

• Time

– DeMaMAS: discrete (time steps)

– Kilobots: continuous (seconds)

• Number of simulation:

– DeMaMAS: 100 per experiment

– Kilobots: 5 per experiment (20 in total)

• Communication rate:

– DeMaMAS: every time step

– Kilobots: the system sometimes needs to stop the communication be-
tween Kilobots for updating the direction during the resampling phase
and for checking the id correspondence.

• Communication radius:

– DeMaMAS: 0.05 (relative to simulation unit of measurement)

– Kilobots: 10cm

• Totem radius:

– DeMaMAS: 0.10 (relative to simulation unit of measurement)

– Kilobots: 20cm

In Figure 6.3 we showed respectively 4 different frames of one of our 20 different
experiments, corresponding in a scenario with CDMCI and 5 attackers as showed in
Figure 6.2.

Figure 6.2: A Kilobot experiment captured with a video camera.
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Figure 6.3: Four frames of an experiment given by ARK with 2 options, 50 Kilobots
(5 contrarians and 45 using CDMCI), quorum set to 80%, and difficulty set to 0.4.
The green and red circle represents the two options. The best option is represented
in red. The highlighted Kilobots in the first picture represents the 5 contrarians.
In the following three frames we showed how the consensus is reached. In the last
frame the swarm reached the consensus on the best option.

For running an experiment as showed in Figure 6.3 we followed these steps:

• Charge all the 50 Kilobots

• Use the auto calibration provided by ARK

• Do a visual check that the calibration was done correctly

• Position each Kilobot in the environment

• Upload the code corresponding to the two different behaviours

• Assign a different ID per each Kilobot using the ID assignment function
provided by ARK

• Run the experiment

In the following section we described the obtained results.
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6.4 Results

In Figure 6.4 we showed the comparison between the results obtained between Kilo-
bots experiments and ARGoS simulations. On the x-axis we vary the used models,
in our case CDCI and CDMCI, on y-axis we vary the time in minutes. The red
box-plots represent the speed performance of each behaviour in presence of intrud-
ers, while the green box-plots display the speed performance in absence of intruders.
Outliers if present are represented with circles. All the 20 different runs of our Kilo-
bots experiments and the 100 different runs with ARGoS were able to reach the
consensus to the best option, due to the simplicity of the problem. As showed in
these plots we obtained that CDMCI is faster than CDCI in both cases without and
with intruders. In the first plot representing the Kilobots experiments we showed
that the average of the decision time of CDMCI in both cases in which the percent-
age of attackers is equal to 0% and 10% is lower. During our experiments only one
CDCI run with 0% of attackers can be considered as an outliers and is depicted with
a circle. The difference between the Kilobots experiment and ARGoS are related
to the difference based on the number of runs per experiment (100 for ARGoS and
5 for Kilobots). We showed that the results range in the same decision time, that
is between 1 and 4.5 minutes. These outcomes are a preliminary confirmation of
our previous result obtained in Chapter 5.3, in which we stated that CDMCI is
performing better in speed and accuracy compared to CDCI. In this plots we also
showed that a percentage of contrarians equal to 10% is able to perform a slow down
of the system. Under attacks the behaviours present an higher level of variance and
an higher average.

Figure 6.4: Box plot relative to Kilobots experiments and ARGoS simulations (100
runs per simulation).

Chapter: 6 Francesco Canciani 85



Swarm resiliency in collective decision making

Chapter 7

Conclusions and future works

We provided a novel modular tool called DeMaMAS for comparison of decentralised
collective decision making strategies. Thanks to its modular architecture we were
able to simulate heterogeneous swarms and test resiliency in collective decision mak-
ing problems focused on best-of-n. We compared four different literature behaviours
(CDCI, DMMD, DMVD, and 3-unanimity) and our new behaviour CDMCI with
three different types of attackers (contrarian, wishy washy and sect). The imple-
mented attackers perform different kinds of disservices. A contrarian causes a slow
down, a wishy washy causes a denial of service, and a sect causes a wrong ad-
dressing. We tested four literature behaviours in different scenarios varying the
percentage of attackers, the difficulty of the problem, and the number of options.
As a result of this analysis we obtained three main results. The first one is that the
3-unanimity behaviour in very simple scenarios, characterised by few options and
easily distinguishable alternatives, is the behaviour having a better resiliency. This
result is related to the high selectivity of 3-unanimity in selecting a new option,
that turns into a deafness if the information received is not matching the stringent
3-unanimity’s requirements. The deafness allowed the behaviour to avoid the noise
introduced by the attackers and be more resilient in simple problems where indi-
vidual actions (i.e., individual discovery) were sufficient to reach a consensus. The
second main result is that using a majority module in the selection of the new option
increases the resiliency in most of the studied cases, excluding the simplest one. The
third main result is that using a cross-inhibition module in complex cases increases
the resiliency of the behaviour especially in complex cases. This kind of module was
originally created for breaking deadlocks in symmetric quality problems and this be-
haviour makes the swarm more resilient to the malicious influences of an attacker.
After discovering which of the tested modules increase the resiliency of a behaviour,
we implemented a new behaviour called CDMCI that used both majority and cross-
inhibition. Comparing this novel behaviour with the four literature ones, we realised
that CDMCI has better performance in most of the analysed scenarios. In order to
have a preliminary validation for the CDMCI, we implemented and tested it in a
swarm of 50 Kilobots against a contrarian attack. The experiments on the physical
robots gave us results in agreement with the simulations, the CDMCI showed the
best performance in terms of speed, accuracy, and resiliency. The explored tests are
only a little part of the possible scenarios that DeMaMAS can simulate. Thanks
to its modularity, this tool allows a user to compare different behaviours and to
discover which module affects more the performance of each behaviour. In future

Chapter: 7 Francesco Canciani 86



Swarm resiliency in collective decision making

this tool can help in testing quickly new behaviours for collective decision making
problems. In DeMaMAS some additional modules are already implemented that
are not used for the purpose of this thesis, but they are created for ongoing studies.
The already implemented modules that can be used and compared in future are:

• message → super

– This new module allows the agent to share in addition to the option the
estimated quality.

• modulation self-social → step-time and step-time-value

– This two modules allowed the agent to update the social-strength (ρ) and
self-strength (%) during the execution of the experiment [39].

• decay → probabilistic

– This module allowed the agent to forget its option i and the relative
estimated quality q̃i with a probabilistic function.

• update model → self-inhibition

– This module allowed the agent to apply the following described behaviour.
If an uncommitted agent receives a new option from a neighbour it
switches to that option, if a committed agent receives a new option from
a neighbour that it is equal to its own option it switches to uncommitted.

• process-social → max-quality

– This module allowed the agent to pick from its neighbours the option
with the highest quality. This module can be used only if the agents use
the message module type set to super [39].

In addition of the previous modules another future work that can be done with
DeMaMAS is to combine more than one behaviour per time against attackers for
creating more resilient behaviours.
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