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Abstract

Large groups of bats can achieve coordinated collective motion relying only on echolo-
cation while experiencing the so-called Cocktail Party Problem: in order to echolocate
they need to hear the echoes of their own call, but in groups the echoes overlap with
conspecifics’ emissions and the echoes thereof, resulting in masking and jamming effects.
It is still unclear how they manage to maneuver in such conditions. To shed light on co-
ordination mechanisms in crowded environments, biologists and engineers teamed up to
implement the Ro-BAT platform as a robotic model of swarms of active sensing agents.
Previous work realised a first prototype of a Ro-BAT capable of passive sound source
localisation.

In this thesis I propose a second version of the Ro-BAT capable of active echolocation,
equipped with an electrostatic ultrasonic transducer for emission, and an array of Micro-
Electro-Mechanical System (MEMS) microphones specifically designed for ultrasound
recording. I also implemented a signal processing pipeline for handling the incoming
echoes of the emitted call to establish the relative position of nearby obstacles in terms of
range and angle. For the angle, I tested three different Direction of Arrival (DOA) esti-
mation algorithms, being them Delay and Sum (DAS), the Capon method, and Multiple
Signal Classification (MUSIC), in static conditions. I then chose the most efficient one,
i.e. DAS, to be included in the final pipeline for obstacle avoidance. The robot was then
tested in lab experiments regarding its ability to autonomously navigate an arena with
reflective obstacles only through echolocation.

The tests’ results show that my bioinspired robot, mainly assembled with consumer-
grade hardware, is capable of locating obstacles with a good level of accuracy thanks to
the echoes of the robot’s emission and steer its path accordingly to avoid collisions. The
proposed solution can therefore be considered a starting point to be scaled to a full swarm
of active sensing agents. This robotic model could then be used to perform control studies
to deepen the understanding of collective behaviour mediated by acoustics in swarms of
biological and robotic agents.

Keywords: ultrasound, echolocation, Direction of Arrival estimation, swarm robotics,
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collective behaviour.
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Abstract in lingua italiana

Gruppi numerosi di pipistrelli sono in grado di muoversi in modo coordinato sfruttando
solamente l’ecolocalizzazione nonostante siano sottoposti al Problema del Cocktail Party:
per ecolocalizzare devono necessariamente percepire gli echi del proprio richiamo, ma in
gruppo questi sono spesso sovrapposti a richiami di altri pipistrelli, e agli echi derivanti.
Questi segnali possono mascherare o disturbare la ricezione dei propri echi. Non è ancora
stato spiegato del tutto come i pipistrelli riescano a destreggiarsi in condizioni simili. Per
approfondire la ricerca su meccanismi di coordinazione in ambienti affollati, biologi ed
esperti di robotica riuniti in un team hanno progettato la piattaforma Ro-BAT come
un modello robotico di uno sciame di agenti che percepiscono in maniera attiva. Lavori
precedenti si sono concentrati sulla realizzazione di un primo prototipo di Ro-BAT in
grado di localizzare passivamente sorgenti sonore.

In questa tesi io presento una seconda versione del Ro-BAT in grado di ecolocalizzare,
equipaggiato con un trasduttore elettrostatico per l’emissione di ultrasuoni e con una
schiera di microfoni MEMS specificamente ideati per la registrazione di ultrasuoni. Ho
anche implementato una catena di processamento dei segnali che permette al robot di
stabilire la posizione relativa di ostacoli nei dintorni, in termini di distanza e angolo,
tramite gli echi percepiti. Ho testato tre diversi algoritmi per la stima della Direzione di
Arrivo in condizioni statiche, i quali sono Delay and Sum (DAS), il metodo di Capon, e
Multiple Signal Classification (MUSIC). Il più efficiente dei tre, DAS, è stato integrato
nel comportamento di evitamento degli ostacoli impiegato. Il robot è stato poi messo alla
prova in esperimenti di laboratorio, testando la sua capacità di navigare autonomamente
un’arena con ostacoli riflettenti solamente sfruttando l’ecolocalizzazione.

I risultati ottenuti nei test indicano che il mio robot bioispirato, assemblato in gran parte
con materiali di qualità per il consumatore, è capace di localizzare ostacoli con un buon
grado di accuratezza tramite gli echi della sua emissione. La soluzione proposta può
quindi essere considerata come un punto di partenza per scalare verso un intero sciame di
agenti che percepiscono in maniera attiva. Il risultante modello robotico può quindi essere
usato per studi di controllo per approfondire la conoscenza del comportamento collettivo
mediato tramite l’acustica in sciami di agenti biologici e robotici.



Parole chiave: ultrasuoni, ecolocalizzazione, stima della Direzione d’Arrivo, robotica
degli sciami, comportamento collettivo.
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1| Introduction

A fascinating and still disputed topic in biology is how large groups of echolocating bats

can coordinate their collective movement while emerging from their roost location for

foraging, sometimes, in groups comprising up to a few millions individuals [31]. Bats are

active sensing agents, meaning that in order to extract information on their surroundings

they probe the environment with short and powerful ultrasonic emissions and listen back

to the echoes generated by re�ectors around them. Therefore, they are expected to be

very susceptible to signals which may mask or jam the echoes they use for echolocation.

This condition is a widely studied phenomenon in acoustics, and it is labelled as "the

cocktail party problem" [4]. The intensity at which bats are expected to experience this

disruptive phenomenon on their echolocation process has led researchers in the �eld to

elevate this condition to the "cocktail party nightmare" [38]. Despite this, they still

proceed in coordinated group �ights on a daily basis, with few to no collisions reported.

Theoretical modelling has individuated bottlenecks in the sensory abilities of bats and

other echolocating agents [5]: their ability to locate other individuals decreases for in-

creasing group sizes. As a matter of fact, a robotic model of a group of active sensing

agents can be a helpful tool to validate the theoretical studies, while also giving insights

into real world mechanisms of which the full comprehension is still lacking. The Ro-

BAT platform has been ideated with this twofold purpose in mind. On the one hand,

modelling active sensing agents with robots lets researchers perform control studies on nu-

merous parameters which could in�uence the e�cacy of active sensing in physical swarms,

as opposed to simulations. In simulated experiments, simplifying hypothesis are often in-

troduced, with the risk of not fully encapsulating the complexities of the real world in

their full extent. The data extracted from such work could then be used to explain bi-

ological mechanisms happening in swarms of which we do not have a full understanding

yet. On the other hand, synthesising bioinspired behaviours for robots could lead to the

development of new technologies, such as a cost-e�ective on-board localisation system for

a coordinated collective motion mediated by acoustics.
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1.1. Aim

After the successful implementation of a small robot capable of passive sound source

localisation [9], the following step was represented by extending the capabilities of the

very same robotic platform by equipping it with the necessary tools to perform active

echolocation. Therefore the aim of this thesis is the development of ultrasound emission

and reception devoted hardware, as well as the implementation of a signal processing

pipeline which emulates the echolocation process performed by bats. The developed

technology should then be deployed on the compact and �exible robotic platform already

tested previously.

1.2. Hosting Institution

During my thesis work, I was hosted at the Centre for the Advanced Study of Collective

Behaviour (CASCB), an interdisciplinary excellence research cluster based at the Univer-

sity of Konstanz that includes biologists, psychologists and roboticists with the common

goal of pushing forward the study of the behaviour of individuals reunited in collectives of

various nature, being them animal groups, human crowds, or decentralised robot swarms.

I was co-supervised by Dr. Andreagiovanni Reina, leader of the Group Intelligence and

Organisation research group, Dr. Thejasvi Beleyur, Principal Investigator of the newly

founded Active Sensing Collectives research group and ideator of the Ro-BAT Project,

and Prof. Dr.-Ing. Heiko Hamann, leader of the Cyber-Physical Systems research group.

Dr. Beleyur provided the necessary competences in bioacoustics and animal behaviour,

while both Dr. Reina and Prof. Hamann contributed to the thesis work with their robotics

insights.

A signi�cant contribution to the thesis work was also added by the Electronics Service

Centre of the University Workshop: thanks to them it was possible to design and fabricate

the needed electronics components in a relatively short span of time. Their support was

invaluable for the good results of the work presented in these pages.

1.3. Original Contributions

The content of this thesis collocates itself in the greater landscape of the Ro-BAT Project

at an initial step, in which the robotic model of active sensing agents is designed and

prototyped. Pushing forward what was established in the previous work [9], I designed

a microphone array based on Micro-Electro-Mechanical Systems technology, speci�cally
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intended for ultrasound recording. I also selected and tested the necessary hardware

components to connect the electrostatic transducer to the audio interface already in use.

On the processing side, I developed the capabilities of the robot in a modular fashion.

I coded the ranging mechanism, then the angle �nding mechanism, and ultimately I

combined the two together in a cohesive script for object localisation based on the echoes of

the emitted call. For the angle, I selected and adapted to the system three well established

methods for Direction of Arrival (DOA) estimation: Delay and Sum (DAS), Capon, and

Multiple Signal Classi�cation (MUSIC). I tested their performance in static conditions,

and chose the most e�cient one to be included in the �nal processing pipeline emulating

echolocation.

Finally, I coded an obstacle avoidance behaviour for the robot that I tested in lab exper-

iments. I organised an assessment of the performance of the robot with an autonomous

navigation of an arena with re�ecting obstacles, and extracted and analysed the data

gathered in such experiments.

The developed robotic platform was displayed as a representative example of the bio-

inspired robotics research carried out at the CASCB in numerous occasions to visiting

researchers and institutions. It was also showcased with live demos at a PhD gathering at

the University of Konstanz, and also at the annual spring retreat organised by the CASCB,

with a general good reception from experts in the �eld of robotics and behavioural biology.

1.4. Thesis Outline

The rest of thesis is structured in the following chapters.

Chapter 2 introduces the theoretical background needed for the comprehension of the

presented work, both in terms of problem statement and necessary tools and technologies

which were employed in the development of the robot. A state of the art on the mat-

ter of bioinspired sonar sensors for robotics and autonomous echolocating robots is also

presented.

Chapter 3 deals with the signal processing pipeline that was ultimately developed for

accomplishing the task given at the start of the thesis. The methods employed are de-

scribed in details, and an evaluation of the algorithms developed is given to the end of

justifying the choices taken at the moment of the e�ective deployment on the robot for

autonomous navigation.

Chapter 4 describes how the robot was implemented, giving a detailed description of the
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hardware pieces used and the �nal con�guration reached. The Chapter contains also the

characterisation procedures and results that were carried out on the �nal robot, in order

to assess the performance of the various components that constitute the prototype built.

Chapter 5 presents the testing modalities and the obtained results after the tests con-

ducted on the robot regarding its capability of navigating autonomously a controlled

environment while avoiding obstacles encountered on its route.

Chapter 6 , �nally, reports the conclusions that can be drawn from this work, and the

future developments of the project this thesis is a part of.
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2| Background and State of the

Art

This Chapter is structured in two main sections. Section 2.1 will introduce the fundamen-

tal concepts which are necessary for the comprehension of the rest of the thesis. Section

2.2 will give instead an overview of works in the �eld of bioinspired acoustic sensors and

robotic models of echolocating bats.

2.1. Background

The implementation of a robotic model of an echolocating bat implies the handling of two

distinct phases of the process: the emission of a loud, wide-band ultrasonic call, and the

recording and processing of the echoes generated by the presence of objects around the

agent. For the emission stage, advancements in transducer technology for robotics has

lead to the introduction of audio sources which are able to handle these strict operating

conditions. For the reception stage, instead, two di�erent strategies have been explored in

literature: microphone arrays, and binaural bat-inspired microphones. A comprehensive

analysis of the literature about both systems will be given in section 2.2. Microphone

arrays were chosen for the development of this thesis, following the route traced in [9].

2.1.1. Ultrasound Properties and Echolocation

Ultrasound is de�ned as a pressure wave with frequencies which exceed the upper human

hearing limit. Despite this being di�erent from individual to individual, a commonly

accepted de�nition states the beginning of the ultrasonic spectrum at around20 kHz[26],

which corresponds to a maximum wavelength of about17 mm. It is known that planar

pressure wavefronts undergo specular re�ection when their wavelength is much smaller

than the e�ective dimensions of the objects they hit, and so in most practical cases

ultrasonic propagation is treated with a geometrical approach [26].

Echolocation in its simplest form is then suited for objects which once hit by an ultrasonic
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wavefront cause the immediate return of an echo back to the position of the emitter: this

includes �at and smooth surfaces perpendicular to the direction of propagation of the

wavefront, objects made out of convex surfaces, and objects which cause the scattering of

the incident wave. To this merit, it has been proven that bats have a hard time around

smooth and �at arti�cial surfaces, both horizontal and vertical. In [15] for example is

shown that bats often try to drink from sheets of metal on the ground because they

mistake them for water bodies. In [16] instead is studied how �at vertical surfaces act as

a sensory trap for echolocating bats: such surfaces re�ect the emitted echolocation calls

away from the listener, causing the illusion of open �yways.

In order to develop a solid groundwork which might be expanded in the future, the robot

I built deals with the simple case of echolocating objects which cause an immediate return

of the echo to the listener, without considering more complicated scenarios in which the

emitted call bounces more than once on nearby objects before getting back to the listener.

2.1.2. Microphone Arrays

Multiple microphones distributed in space which record the same acoustic �eld constitute

an array of sensors. The advantage of having multiple microphones recording the same

scene is that spatial information can be extracted from the array recordings, such as the

direction from which a source arrives to the microphones. Conversely, it is also possible

to focus the array directivity pattern in a certain direction to enhance the reception of

the signals coming from that angle, while at the same time attenuating the unwanted

interferers from other directions. The �rst operation is called Direction of Arrival (DOA)

Estimation, while the second takes the name Beamforming.

Microphone arrays are usually classi�ed based on their geometry. The sensors can be

arranged in a line, which would constitute a linear array, or in more complex shapes

which can also be two- or three-dimensional. In the remainder of the Chapter a linear

geometry is considered, and in particular a uniform distribution of sensors in a line,

which is commonly referred to as a Uniform Linear Array (ULA). Fig. 2.1 reports the

situation in which a source located in the far �eld emits a signal which impinges on a

ULA composed ofM sensors. The planar wavefronts are perpendicular to the direction of

propagation, and hit the microphones in the array each with a speci�c delay with respect

to a microphone taken as a reference. The reference microphone is usually the �rst one

on the left.
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Figure 2.1: Source impinging from the direction� on a Uniform Linear Array. The angle

is measured from the axis of the array, and the microphone taken as a reference is the

�rst one on the left. If the source is in the far-�eld, the wavefronts are planar, and the

time delays between the arrival of the signal to each sensor in the array depend only on

the inter-element distance and on the DOA.

2.1.3. Signal Model

Considering an array ofM sensors and a single source in the far-�eld impinging on the

array from a certain direction � , the signal recorded by thek-th microphone in the array

can be modelled as:

yk(n) = hk(n) � s(n � � k) + ek(n) (2.1)

wheres(n) is the source signal measured at the source,hk(n) is the impulse response of

the microphone,� k is the propagation delay from the position of the source to the sensor,

and ek(n) is the additive noise present at the sensor. For a Uniform Linear Array, the

relation between the propagation delay at thek-th channel and the direction of arrival of

the source is the following:

� k = ( k � 1)
dsin(� )

c
for � 2 [� 90� ; 90� ] and k = 1; : : : ; M (2.2)

where d is the inter-element distance,� is the source DOA, andc is the sound speed in

air, considered equal to343 m s� 1. Now, the equation that models the array signal can

be greatly simpli�ed by assuming a narrow-band source, which is not always the case,
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especially for ultrasonic sources. Nonetheless, a wide-band source can be �ltered with a

�lter bank to be separated in multiple narrow-band components, which can be processed

individually. This justi�es the use of a narrow-band model also for signals which are

wide-band in nature.

A narrow-band signal with known carrier frequency! c takes the form:

s(n) = � (n) cos[! cn + � (n)] (2.3)

where� (n) and � (n) are respectively the time-varying instantaneous amplitude and phase.

The signal is analysed in the time-frequency domain by means of a Short Time Fourier

Transform (STFT) employing a rectangular window (e.g. no windowing on the extracted

frames) and a unitary hop-size, a method also known as sliding Discrete Time Fourier

Transform (DTFT). The extracted frames are indicated asst (n), and their DTFT is

indicated asSt (! ). If the attention is focused on the carrier frequency! c, the e�ect that

the STFT has on a narrow-band signal is equivalent to a demodulation of a bandpass

signal followed by a low-pass �ltering, if� (n) and � (n) are slowly-varying in the extracted

frame. The result is a baseband signal of the form:

St (! c) = � (t)ej� (t ) (2.4)

which is only function of time. The notation can be simpli�ed by considerings(t) , St (! c),

eliminating the frequency dependency.

Working in the STFT domain, the complete array model for a single source can be derived

starting from:

yk(t) = Hk(! c)s(t)e� j! c � k + ek(t) (2.5)

where Hk(! c) is the frequency response of thek-th sensor evaluated for! = ! c. This

equation is the STFT of Eq. 2.1. Using a vectorial representation, the array signal for a

single source can be written as:

y (t) = a(� )s(t) + e(t) (2.6)

where y (t) = [ y1(t); : : : ; yM (t)]T , a(� ) = [ H1(! c)e� j! c � k ; : : : ; HM (! c)e� j! c � k ]T and e(t) =

[e1(t); : : : ; eM (t)]T .

Assuming ideal linear acoustic propagation, Eq. 2.6 can be extended to the case ofN
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sources impinging on the array withN di�erent DOAs as:

y (t) = As (t) + e(t) (2.7)

whereA = [ a(� 1); : : : ; a(� N )] is the M � N propagation matrix, and

s(t) = [ s1(t); : : : ; sN (t)]T is the source vector.

The propagation vectors can be simpli�ed by introducing the notion of spatial frequency:

this quantity, de�ned as

! s , ! c
dsin(� )

c
(2.8)

is directly related to the DOA of the source, and if substituted into the propagation vector

formulation leads to

a(� ) =
�
1; e� j! s ; : : : ; e� j (M � 1)! s

� T
(2.9)

where the sensors' frequency responses were also assumed to beH1(! c) = H2(! c) = � � � =

HM (! c) = 1 . From the propagation vector expression in 2.9, it is clear how the array

samples a complex sinusoid of frequency! s, with a unitary sampling frequency.

2.1.4. Spatial Aliasing and E�ective Array Aperture

Since the array is e�ectively sampling a sinusoid with a given frequency, the Nyquist-

Shannon theorem must hold also in this case to avoid the aliasing phenomenon, which

introduces ambiguity in the representation of a certain DOA due to the appearance of

grating lobes in the array directivity pattern.

The condition to be satis�ed is:

j! sj � � (2.10)

Substituting to the spatial frequency its de�nition, and introducing the wavelength� =
2�c
! c

the condition becomes:

j2�
dsin(� )

�
j � � (2.11)

The anti-aliasing condition can be conveniently expressed as a function of the inter-element

distanced:

d �
�
2

(2.12)

This condition establishes the minimum wavelength that won't be aliased by an array

with a sensor distanced. The maximum frequency which won't cause spatial aliasing can

therefore be written as:

f max =
c

2d
(2.13)
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For larger frequencies it is then necessary to use densely packed microphone arrays, to

make sure the spatial aliasing phenomenon is avoided.

Microphone arrays exhibit also an empirical lower frequency bound, given by the relation-

ship between the wavelengths of the recorded signal and their aperture. Their functioning

is based on capturing a phase di�erence between signals impinging on each sensor in the

array. If the wavelength of an incoming signal is comparable to the array aperture, given

by:

L = M � (d � 1) (2.14)

the phase di�erence between each channel becomes negligible since the wavefront vary

too slowly. A good rule of thumb for an e�ective microphone array aperture states that

the aperture should be at least twice the maximum wavelength recorded. This can be

translated to a condition on the frequency of the recorded sounds as:

f min =
c

2L
(2.15)

The array designed for the active sensing Ro-BAT is composed of eight microphones with

an inter-element distance of2:7 mm. The two frequency bounds are then:

(
f min = 9:1 kHz

f max = 63:5 kHz

2.1.5. Direction of Arrival Estimation Problem Formulation

As stated previously, the spatial frequency of a signal is directly related to its Direction of

Arrival (DOA). The problem of DOA estimation can then be formulated as a spatial spec-

tral estimation of the impinging signals on the microphone array. Two popular methods

for accomplishing this task are spatial �ltering, and subspace based methods.

Spatial Filtering

One possible approach to DOA estimation is constituted by spatial �ltering. This strategy

consists in designing a linear �lter which will combine the array signals in such a way that

constructive interference will enhance signals arriving from directions of interest, and

destructive interference will attenuate signals coming from unwanted directions. Delay

and Sum [12] and the Capon method [7] are classical examples of such �lters. In general,

for an array of M elements the �lter will be composed byM complex weightsh =

[h1; :::hM ]H , where the superscriptH indicates the hermitian transpose. The �ltered
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signal takes the form:

yF (t) =
MX

k=1

hk � yk(t) = hH y (t) (2.16)

The power of the �ltered signal is then:

E
�

jyF (t)j2
	

= hH Rh (2.17)

whereR is the covariance matrix of the array data, de�ned as:

R = E
�

y (t)y H (t)
	

(2.18)

The operator E indicates the statistical expectation. Since the array signal is �nite in

time, in most practical cases the covariance matrix is swapped for its sample estimate,

de�ned as:

R̂ =
1
K

KX

t=1

y (t)y H (t) (2.19)

The power of the �ltered signal constitutes a good indication of the energy coming from

a certain direction � , so by comparing the energy coming from all the directions it is

possible to compute a spatial spectrum, whose peaks correspond to directions from which

signals impinge on the array.

Subspace Based Methods

An alternative to spatial �ltering for DOA estimation is represented by methods which

separate the covariance matrix of the array data into a signal subspace, which is related to

the signals impinging on the array, and in a noise subspace, related to the noise introduced

by the sensors. These methods are based on a series of assumptions, which are:

ˆ Exactly N sources impinge on the array fromN distinct directions, thus leading to

N distinct spatial frequencies.N must be also lower thanM , which is the number

of sensors in the array.

ˆ The covariance matrix of the source signalsR s = E
�

s(t)sH (t)
	

is full-rank.

ˆ The sensor noise is spatially white, with independent and identically distributed

components having identical variance. The covariance matrix of the error signals is

then E
�

e(t)eH (t)
	

= � 2I M . The noise is also uncorrelated to the source signals.
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Under these assumptions, the covariance matrix of the array data can be written as the

sum of two components, one related to the source signals and the other to the noise, as:

R = AR sA H + � 2I M (2.20)

By performing an eigenvalue decomposition and sorting the eigenvalues in ascending order,

it is possible to express the covariance matrix of the array data as:

R = [ U ; V ] � y
�
U H ; V H

� T
(2.21)

where the eigenvectors inU are associated to the eigenvaluesf � 1; : : : ; � N g and the eigen-

vectors in V to the eigenvaluesf � N +1 ; : : : ; � M g. The diagonal matrix � y contains the

sorted eigenvalues ofR . It is possible to prove that the eigenvectors inU are associated

to the source signals, therefore spanning the signal subspace, and the eigenvectors inV

are associated to the sensors' noise, giving origin to the noise subspace of the covariance

matrix. Each of the two subspaces found possesses properties which can be leveraged to

estimate the DOAs of the sources looked after. MUSIC [43] exploits the orthogonality of

the noise subspace to the propagation vectors corresponding to DOAs of actual sources,

while an example of a method that exploits properties of the signal subspace is constituted

by ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) [41].

The matricesU and V are obtainable if and only if the conditions reported above apply,

and the sources signal power is higher than the noise power.

2.2. State of the Art

In recent years the rapid development of mobile robotics has lead to a vast exploration

of sensing strategies with which a robot can acquire information on its surroundings to

then plan its movement strategy. Among these solutions a vast majority is focused on

cameras or light-based sensors, but also sound and in particular ultrasound emission and

echoes detection is currently being investigated. In this latter case, though, almost all of

the research made is dedicated to advanced sonar sensors for robotics and algorithms for

Simultaneous Localisation and Mapping (SLAM) exploiting acoustic signals inspired by

the echolocation capabilities of bats to various degrees. These works are mainly focused on

strategies that individual agents can exploit, and it is not clear if the proposed solutions

can scale to groups of agents. This is why a cheap and scalable platform such as the

Ro-BAT was designed, with the goal of tackling the cocktail party problem in swarms of

active sensing agents.
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Section 2.2.1 will give an overview of bioinspired sensors for localisation and navigation

based on acoustics. Most of the works presented in this Section come from the Cosys-Lab

at the University of Antwerp [39], and constitutes a great bulk of work on bat-inspired

sensory solutions for robotics.

In Section 2.2.2, instead, other works which present a full-�edged autonomous echolocating

robot are reviewed, presenting the novelty and advancements that they introduced, and

also underlying their strengths and weaknesses with respect to scalability.

2.2.1. Bio-Inspired Acoustic Sensors

Sonar sensing is surely not a novel area of research in engineering, but recent advancements

in behavioural studies on bats and a re�nement of the sonar technology involved have

sparked new interest for what a bioinspired sensor could bring to the table. In mobile

robotics, on the one side, new sensing strategies are explored for autonomous navigation

in complicated environments. On the other side, robotic models could help in improving

the knowledge on biological mechanisms which are not fully understood yet.

In [47] two di�erent types of audio receivers for a bioinspired sonar sensor are evaluated:

binaural microphones with 3D-printed replicas of bats' external ears are compared against

microphone arrays in combination with digital beamforming. The comparison was based

on an objective information theoretic performance measure that quanti�ed their localisa-

tion capabilities in the presence of realistic noise. The conclusions drawn in the paper are

that the two systems are more or less equivalent on the localisation performance side, but

a possible advantage in the array solution, despite the increased complexity in managing

more than two microphones, consists in the possibility to digitally steer the directivity

pattern of the sensor in desired directions without resorting to mechanical modi�cations

of the sensors, which would be needed in the case of two microphones encased in pinnae

replicas.

Both binaural microphones and microphone arrays were used to extract information then

fed to a SLAM model based on the mammalian hippocampus in subsequent works. In

[45], a biomimetic sonar sensor composed of an electrostatic ultrasound transducer and

two omnidirectional microphones encased in plastic replicas of a bat's pinnae is used as an

exteroceptive sensor, while interoceptive sensory input is given by the robot's odometry

retrieved by the motor commands. The echoes, which are �ltered by an Echolocation

Related Transfer Function (ERTF) given by the superimposed e�ect of the emitter's di-

rectivity and the spatial �ltering introduced by the arti�cial outer ears, are then processed

to extract a "cochleogram". This time-frequency representation of the recorded echoes
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is obtained by modelling the functioning of a bat's cochlea with a bank of gammatone

�lters. The obtained cochleograms are used as local view templates of the environment,

which combined with the robot's odometry constitute the input to the SLAM algorithm.

The result is a topological map of the environment. The paper's authors drove a robot

equipped with such sensor in an unmodi�ed o�ce environment, and a geometrically con-

sistent topological map was the result of the SLAM algorithm. The authors conclude that

cochleograms are in general su�ciently descriptive of a particular local view to be used

as a base for localisation and mapping of a large environment, despite still giving rise

to ambiguity in some cases. Such a system would work in conditions of scarce visibility

which are problematic for cameras or LIDAR sensors.

The other approach to SLAM [46] employs an array-based biomimetic sensor [48] con-

sisting of the same emitter as in the previous work, but on the receiving end a planar

random array of 32 condenser microphones is used in conjunction with a Delay and Sum

beamformer. The output of this sensor is a so-called "energy scape" representation of

the environment, where each point identi�ed by three coordinates (range, azimuth and

elevation) represents the energy re�ected back to the sensor from that particular location.

This sensor was exploited for obtaining both information on the nearby environment, and

also odometry data based on the acoustic �ow of consecutive snapshots acquired by the

device. The sensor was mounted on an electric wheelchair and driven in a typical o�ce

environment. A geometrically consistent topological representation of the environment

was obtained also for this case, by feeding to the SLAM algorithm the 3D energy scapes

as local view templates, and the odometry data extracted from the acoustic �ow model

as the interoceptive sensory input.

Both sensors architectures were re�ned in subsequent works: in [27] a biomimetic sonar

sensor based on the common big-eared bat (Micronycteris microtis ) outer ears replicas is

used to guide the autonomous navigation of a two-wheeled robot, in conjunction with a

subsumption architecture whose layers are:

1. Collision avoidance: the robot rotates on itself until its pathway is free of re�ec-

tors. This behaviour is triggered by the presence of obstacles under a certain range

threshold.

2. Obstacle avoidance: the robot proceeds on a curved trajectory distancing itself

from nearby obstacles, moving in the opposite direction with respect to the highest

amount of energy received between the two ears.

3. Straight drive: the robot proceeds forward at constant velocity along a straight line

when its pathway is free of obstacles.
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The input to the control system is constituted exclusively by data extracted from the

echoes received by the two microphones inside the bat ears replicas. The robot was suc-

cessful in performing an autonomous navigation of a cluttered environment. An interest-

ing modi�cation introduced to the sensor architecture was a ba�e around the ultrasonic

transducer, which enlarged its radiation pattern. The e�ect of ba�es on ultrasonic trans-

ducers was studied in [20], concluding that good-quality 3D-printed ba�es can enlarge the

narrow directivity pattern of electrostatic transducers to near-omnidirectionality without

signi�cant loss in the output power.

In [22] instead, the array-based sensor architecture was re�ned by swapping the condenser

microphones for digital Micro-Electro-Mechanical Systems (MEMS) microphones, reduc-

ing costs and need for extra Analog-to-Digital conversion (ADC) equipment, and the

hardware implementation is completely embedded, constituting a plug-and-play sensor

for robotic applications. As a beamforming technique, the Delay and Sum method was

still used. The resulting sensor was then deployed on a mobile robot which was driven in

a cluttered corridor to realise a 3D map of the traversed environment. The data obtained

from the sensor was confronted with LIDAR measurements for validation. A reduced

form factor version of the sensor explained above was realised in [53]. Contrary to the

previous sensor model, this device works with narrow-band emissions and the Multiple

Signal Classi�cation (MUSIC) algorithm for retrieving the Direction of Arrival (DOA) of

the echoes. This device architecture reduces production costs with respect to the previous

sensor, but it su�ers from the multipath propagation of the echoes, generating "ghost"

re�ectors. A more in-depth simulation study on such sensor is found in [54], where di�er-

ent DOA estimation algorithms were employed with the cited sensor architecture varying

a number of parameters such as the Signal-to-Noise Ratio (SNR) of the received echoes,

the number of snapshots taken for the same scenario, the spacing of two closely placed

objects and the amount of objects which could be resolved by the sensor at the same time.

The authors conclude that the most limiting aspect of sonar sensors is the need for a high

dynamic range, since objects placed at sharper angles su�er from harsh attenuations due

to both the directivity of the transducer employed, and the reduced aperture of the array.

The SNR and the number of snapshots acquired do not present any signi�cant e�ect on

the localisation process, which is desirable since mobile robots need fast updating sensor

readings to operate, often in noisy conditions.

One last frontier of research in the sensor architecture �eld is represented by [28], in which

the aperture of an array based sensor is reduced by means of 3D-printed waveguides which

e�ectively realise an array geometry that could otherwise be impossible to reach due to

the physical dimensions of the MEMS microphones employed. This approach extends the
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frequency range at which ultrasonic microphone arrays can operate before incurring in

the spatial aliasing phenomenon, but introduces a signi�cant amount of attenuation in

the signals recorded by the microphones, and requires a calibration step before operation

for taking into account the phase shifts introduced by the ba�es. A notable result of the

integration of such ba�es to microphone arrays is a directivity pattern resemblant of a

bat Head-Related Transfer Function (HRTF), which is an interesting aspect for biological

modelling researches.

2.2.2. Autonomous Echolocating Robots

In addition to bioinspired sensors, another branch of research is focused on the realisation

of full-�edged robots which which can navigate autonomously relying on the information

extracted from the environment by probing it with short ultrasonic emissions.

A �rst example of an autonomous robot whose navigation strategy is based on the echolo-

cation capabilities of bats is represented by [57]. In this work, an autonomous robot was

equipped with a minimal biomimetic sonar sensor, consisting of an ultrasonic transducer

and two ultrasound sensors. The narrow-band signal emitted in combination with the

reduced dimensions of the transducer led to a radiation pattern comparable to the one

of a real bat, having a full width of 80-100� at � 6 dB. Objects could be located in range

by the time of arrival of the echoes, and in direction by the Time Di�erence of Arrival

(TDOA) at the two receivers. The sensor unit was mounted on a servomotor which could

steer the unit in the direction of the echoes received, to keep the localised obstacle in the

sensor's �eld of view (FOV). This strategy was borrowed by bats, which were shown to

turn their heads to focus speci�c re�ectors previously identi�ed. An Inter-Pulse Interval

(IPI) control mechanism based on the nearest obstacle distance was also implemented.

When navigating autonomously a rectangular arena with cylindrical obstacles, the head

steering mechanism was proven to perform better than a �xed sensor unit aligned with

the direction of motion, but the localisation of only the nearest obstacle did not perform

satisfyingly, leading to numerous collisions. It was for this reason that the authors also

implemented a Multi-Object-Detecting Navigation System (Multi-ODNS). This obstacle

localisation method took into account multiple echoes, corresponding to more than one

obstacle, and after locating each one a repulsion force vector was computed for each obsta-

cle as well. The direction in which the robot steered was then a consequence of choosing

to avoid the obstacle with the highest repulsion force vector. This new approach to ob-

stacle avoidance demonstrated itself to be successful where the Mono-ODNS previously

failed. This robot con�guration presents a bio-inspired obstacle avoidance behaviour in-

troducing also the possibility of mechanically steering the sonar sensor, which is a natural
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behaviour for bats. The emitter circuit is too simple, though, being only capable of emit-

ting 40 kHz short tones. The �exibility to model species of Frequency Modulating (FM)

bats is therefore excluded.

Another example of autonomous bio-inspired robot is constituted by [10]. The output

of this work is a fully autonomous terrestrial robot which can map the 2D structure of

a novel outdoor environment, label the obstacles as plants or non-plants, and then plan

a path accordingly to navigate while avoiding obstacles. This all-terrain, rugged robot

is equipped with an ultrasonic electrodynamic speaker, and two condenser microphones

specialised for ultrasound recording. The sensor head is mounted on a gimbal which

can rotate while maintaining stability. The A/D and D/A conversions are handled by

a high-end Data Acquisition (DAQ) board. The robot moves forward in steps of0:5 m,

then stops for30 sto acquire echoes from the environment by emitting three10 mssweeps

from 100 kHz to 20 kHz in the directions � 60� , 0� and 60� with respect to the driving

orientation to emulate the directivity of a bat's emission. The resulting echoes are pro-

cessed to individuate the distance and the angle from nearby obstacles, and the extension

of their contour. Audio features are also extracted from the received echoes to classify the

re�ectors encountered as plants or non-plants thanks to an arti�cial neural network. The

robot was capable of mapping the position of obstacles in a novel environment and their

contour with a satisfying degree of accuracy and planning its route accordingly without

any recorded collision. The classi�cation accuracy was also above the chance level of

50% of right decisions. This work implements an acoustic based autonomous navigation

method which is biologically plausible, even though with evident limitations related to the

movement speed of the robot and its emission strategy. Furthermore, the audio feature

based classi�cation of the type of obstacles encountered is an interesting introduction,

which could be further exploited in other settings, also in a swarm context. The dimen-

sions, slow reactiveness and the realisation cost of a single agent are not suited for swarm

robotics, though.

In [30], instead, a robotic model for the avoidance of non-localisable obstacles by bats is

presented. This work aimed at validating a minimal set of acoustic cues for reacting to

a series of non-localisable echoes, meaning a group of highly overlapping echoes caused

by complex re�ectors such as the vegetation among which bats �y in nature. The cues

taken into consideration are the Interaural Intensity Di�erence (IID), and the distance

from the closest obstacle. Moreover, also two di�erent navigation modalities are investi-

gated together with the primary question, being those the Fixed Head strategy, and gaze

steering according to a Delayed Linear Adaptive Law (DLAL). The robotic platform used

consists of a di�erential drive robot mounting a narrow-band ultrasonic transducer and
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two microphones encased in stylised plastic replicas of a bat's pinnae. The sensor unit

was mounted on a pan-tilt system which could emulate head movements observed in bats.

The obstacle avoidance behaviour was tested both in a rectangular arena with complex

re�ectors which produced highly overlapping echoes, and in a cluttered corridor whose

walls lined with egg cartons also re�ected the robot's calls in a non localisable fashion.

By comparing the two navigation strategies in conjunction with the set of cues chosen to

extract spatial information from the environment, the authors conclude that the IID and

the distance from the nearest obstacle is enough for achieving autonomous navigation,

despite collisions were reported, even though only in the 10% of obstacle interactions.

The robot was also able to complete the navigation of the corridor successfully. Contrary

to [57], they found that acoustic gaze scanning leads to a worse performance than lock-

ing the sensing direction to the motion direction. This is due to the amount of angular

information that can be extracted from overlapping echoes: in the case of highly clut-

tered environments steering the sensor unit does not improve the e�ciency of the motion.

The results reported in this work o�er a solid strategy for a simple obstacle avoidance

behaviour in heavily cluttered environments which relies on a minimal but robust set of

cues extracted from the echoes received. This strategy is mainly applicable to robots and

sensors whose receiving unit is constituted by a left and a right "ear". An application to

microphone arrays would require further elaboration.

2.2.3. Summary and Conclusions

In this Section a series of bioinspired sensor architectures and robotic platforms based on

acoustics were analysed and reviewed. The solutions presented are enormous sources of

inspiration for biomimetic acoustic sensor architectures, but are not thought for swarms

of echolocating agents: I instead argue that the presence of similar audio sources to the

ones employed would jam the sensors to various degrees, rendering them ine�ective in a

collective of active sensing robots. They can however constitute a �rst approximation of

the echolocation process that most bats exploit continuously during �ight.

Another point of crucial importance is the construction complexity of such solutions: they

all require the development of highly specialised hardware pieces and are generally expen-

sive and cumbersome if compared to small robotic platforms which are often employed

for swarm robotics, making their deployment not suitable for the context of this thesis.

A cheap and scalable robotic platform that emulates echolocating bats has not yet been

realised, and the Ro-BAT project aims at �lling this gap.
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This Chapter will describe the full signal processing pipeline devoted to the echoloca-

tion capabilities of the Ro-BAT and the conditions in which the robot is intended to

operate, together with some results regarding the implementation of Direction of Arrival

estimation algorithms. The hardware details and their characterisation is the topic for

Chapter 4, here only the necessary information for understanding the rationale behind

the methodologies employed is presented.

3.1. Signal Processing Pipeline

The signal processing pipeline that was developed is largely inspired by the work of Steckel

et al. [48] and further developments of the Cosys-Lab at the University of Antwerp [39].

Their idea of a sonar system based on a single emitter and multiple receivers is at the

basis of the content of this thesis. There are a few di�erences regarding the objective with

which the two systems are built, though: while their sensor is thought as a plug-and-play

reliable alternative for autonomous robotics navigation, the robot proposed in this thesis

is a �rst attempt to deploy active echolocation on a small mobile platform with the

greater objective of studying how a swarm of agents which base their movement strategy

on acoustic mechanisms can use active echolocation e�ectively to achieve a coordinated

collective behaviour.

The geometry of the problem posed is assumed to be two-dimensional: the robot moves

on a plane, so only two coordinates are necessary to establish the relative position of

objects around it. These two coordinates are the distance from the robot to the objects,

and the angle at which they are positioned with respect to the robot's longitudinal axis.

Assuming, as explained above, that the objects around the robot re�ect the emitted calls

back to the robot's position, the distance from the robot to the objects can be computed

by knowing the time di�erence between the instant in which the call is emitted, and

the instant in which the echoes are received. Regarding the incident angle of the echo,

Direction of Arrival estimation algorithms can be employed, after recording the received

echoes by means of a microphone array. Among the many di�erent array geometries, a
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Uniform Linear Array (ULA) con�guration has been selected for its simplicity, since it is

fully capable of handling a two-dimensional localisation problem.

The �eld of view (FOV) of the robot is by necessity its front half-plane, since the audio

source is pointed towards its front and the microphone array is linear, which introduces

a front-to-back ambiguity solved by only considering one of the two half-planes with

respect to the array orientation. The angular axis� is de�ned as � 2 [� 90� ; 90� ], where

� 90� corresponds to the robot's right hand side,90� to its left hand side, and0� is in

correspondence of its longitudinal axis.

Another simpli�cation introduced in the system is that the robot will focus only on the

�rst echo received, meaning that at every instant only the objects placed on a semi-circle

with the lowest radius with respect to the robot's position are located.

3.1.1. Call Emission and Array Recording

Since the Ro-BAT aims at emulating the echolocation strategies of Frequency Modulating

(FM) bats, the type of signal that constitutes the emitted call will be a wide-band chirp,

in particular of the linear type. This assures that all the frequencies of interest have the

same weight in the emitted signal. An example of a call signal used by the robot can be

seen in Fig. 3.1. After an emission, echoes will be generated by obstacles posed around

the robot. Both the call and the echoes are recorded by the microphone array, which

enables a spatial processing of the recorded audio.

The signal captured by thek-th microphone in the array after the emission of a call and

the reception of the subsequent echoes can be modelled as:

yk (n) = hk (n) �

 

sc (n) +
LX

i =1

� i sc (n � � i � � k)

!

+ ek (n) for k = 1; : : : ; M (3.1)

where hk(n) is the impulse response of the single sensor,sc(n) is the emitted call, � i

and � i are respectively the attenuation coe�cients and the propagation delays due to the

re�ection process,L is the number of echoes recorded,� k is the propagation delay due to

the position of the sensor in the array,M is the number of sensors in the array andek is

the noise present in each sensor.
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Figure 3.1: Time trend and spectrogram of the emitted signal.

3.1.2. Filtering and Ranging

The �rst step in the audio data processing is constituted by a matched �lter, described

by:

yMF
k (n) = F � 1 f Yk (j! ) � S�

c (j! )g (3.2)

whereYk (j! ) is the Discrete Fourier Transform (DFT) of the signal recorded by thei -th

microphone,S�
c (j! ) is the complex conjugate of the DFT of the call signal, and theF � 1

operator denotes the Inverse Discrete Fourier Transform. The output of the �lter will

be a series of scaled and time-delayed autocorrelation functions of the emitted call, if we

consider as negligible the spectral distortions introduced by the emission and re�ection

process. As a result, the call and the echoes onsets are easily individuated in the cross-

correlations, since they are in correspondence of the local maxima of the autocorrelation

functions. Other signals that do not match the template of the matched �lter will instead

be annihilated by the �lter.

To better perform a peak-�nding operation to reveal the position of the echoes, the

envelopes of the cross-correlations are extracted by taking the absolute value of their

Hilbert transform. Then, a di�erent strategy is applied to isolate the call and the �rst

echo, respectively.

ˆ Call detection: a mean envelope is computed by averaging all the envelopes ex-

tracted from the cross-correlations. The call onset is then retrieved by a peak-�nding

operation executed on the mean envelope, to have a more reliable estimate. The
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�rst index returned by the algorithm represents the time instant wanted, since it is

assumed that the call is the �rst relevant signal appearing in the analysed sequence.

ˆ Echo detection: for each envelope a peak-�nding operation is computed, start-

ing the search from a tolerance window of samples after the peak representing the

call, to avoid considering further oscillations belonging to the call autocorrelation

function as re�ections caused by very close objects. This introduces a "blind spot"

in the robot's �eld of view. The tolerance window which worked best in terms of

avoiding "ghost obstacles" versus locating obstacles as close as possible to the robot

corresponds to a radius of12:5 cm. For each envelope the �rst index corresponding

to a peak is returned, and the smallest among all of them is used as a reference to

compute the distance from the nearest object.

Having retrieved the two onsets needed, the range from the nearest object is then com-

puted according to:

� d =
1
2

c� t (3.3)

where� t is the time interval between the two peaks,c is the sound speed in air, considered

to be343 m s� 1, and � d is the estimated distance from the robot to the object. An example

of the full �ltering and ranging process is shown in Fig. 3.3, while the spectrogram of the

same audio recording is reported in Fig. 3.2.

Figure 3.2: Spectrogram of the emitted call and �rst echo. The audio was extracted from

the �rst channel of the array. The call and the echo are clearly distinguishable in the

time-frequency representation of the recorded audio.
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(a)

(b)

(c)

Figure 3.3: Example of the ranging process for locating an object placed at50 cmin front

of the robot. The three graphs refer to a single channel in the microphone array. It is

easy to see how much the matched �lter compresses in time the signals that match the

template by comparing (a) and (b). The envelope reported in (c), then, improves the

peak-�nding algorithm accuracy, which needs to be tailored properly nonetheless to avoid

locating the spurious peaks of the call's autocorrelation function as inexistent obstacles.
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3.1.3. Direction of Arrival Estimation Algorithms

The following step in the localisation process is the Direction of Arrival estimation. Two

of the possible strategies for this task are employing spatial �ltering, or parametrizing the

covariance structure of the array data to exploit the properties of one of its subspaces.

I implemented and tested two algorithms belonging to the spatial �ltering class, and a

third one belonging to the parametric methods class. One relevant note is that all three of

the algorithms implemented are e�ective on narrow-band signals, while the call emitted

by the robot is inherently wide-band. To accommodate this requirement, each algorithm

has been extended to a wide-band use case by means of an incoherent average [49, 56]:

the input signal is divided into sub-bands which are processed individually. The results

obtained by each sub-band are then averaged, and the DOA is computed on the basis of

this average. This method is de�ned as incoherent because a series of power spectra are

averaged, without maintaining any phase relationship between sub-bands.

The data fed to these algorithms is constituted of a rectangular window of length1 ms

centred on the cross-correlations portion corresponding to the echo identi�ed in the pre-

vious processing step. The advantages of passing the �ltered echo with respect to the

raw audio data are that the �ltered echo is much more isolated in the time history of the

signal, reducing the bleeding-in of the emitted call even when the obstacle is very close

to the robot, and also it contains the same amount of spectral information in a reduced

number of samples, resulting in a faster computation time.

The DOA estimation algorithms implemented are:

ˆ Delay and Sum (DAS): this algorithm focuses on passing undistorted the signals

coming from a speci�c direction�� , while attenuating the signals coming from all the

other directions. The array signal is assumed to be spatially white, meaning that

the covariance matrixR is an identity matrix I of rank M . The formalisation of

the equivalent optimisation problem is written as:

h( �� ) = arg min
h

hH h subject to hH a( �� ) = 1 (3.4)

The resulting �lter coe�cients are de�ned as:

h( �� ) =
a( �� )
M

(3.5)

wherea( �� ) = [1 e� j! s : : : e� j (M � 1)! s ]T is the propagation vector whose spatial

frequency! s corresponds to the direction�� , and M is the number of microphones
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in the array. It is worth noting how the obtained coe�cients are scaled complex

exponentials, which correspond to pure delays: the output of the �lter is the sum

of the signals captured by the array, each one of them with an appropriate phase

shift to create zones of constructive and destructive interference where it is desired.

The name with which this procedure is usually found in literature re�ects this very

property.

The resulting pseudospectrum, which derives from the power of the �ltered signal

evaluated at all the angles of interest� 2 [� 90� ; 90� ] is:

p(� ) =
aH (� )R̂a (� )

M 2
(3.6)

where R̂ is the sample estimate of the covariance matrix of the array data. The

DOAs of N sources are then estimated as the angles in correspondence of theN

highest peaks of the function:

pavg (� ) =
1
B

BX

i =1

pi (� ) (3.7)

whereB is the number of processed sub-bands.

ˆ Capon method: the second spatial �ltering algorithm developed is the so-called

Capon method. Contrary to the previous approach, this method puts e�ort into

attenuating the actual signals which impinge on the array from unwanted direc-

tions, while passing undistorted the signals coming from the desired direction. This

method is then data-dependent, since the corresponding optimisation problem takes

the form:

h( �� ) = arg min
h

hH Rh subject to hH a( �� ) = 1 (3.8)

The �lter coe�cients for every sub-bands assume the following form:

h( �� ) =
R � 1a( �� )

aH ( �� )R � 1a( �� )
(3.9)

whereR is the covariance matrix of the array data. The resulting pseudospectrum

for this spatial �lter is:

p(� ) =
1

aH (� )R̂ � 1a(� )
(3.10)

where once again the sample estimate of the covariance matrix̂R is used in place

of the actual covariance matrixR .
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Also in this case, the pseudospectra obtained from each sub-band elaboration were

averaged before seeking the directions of arrival, which are de�ned as the angles

corresponding to theN highest peaks of the averaged pseudospectrum as well.

The trade-o� between DAS and Capon is that the Capon method has a better

spatial resolution, meaning that it is able to discriminate between sources coming

from two very close points in space much better than what DAS can usually do, at

the cost of a more complex computation.

ˆ Multiple Signal Classi�cation (MUSIC): this algorithm belongs to the signal

subspace methods class. The subspace exploited by this method is the one generated

by the eigenvectors of the covariance matrix of the array data related to the sensors'

noise. It can be proven that such eigenvectors and the propagation vectors associated

to N distinct sources are orthogonal. So, once the eigenvector matrix related to noise

V̂ is estimated after an eigenvalue decomposition of̂R , the DOAs of N wideband

sources can be estimated in correspondence of theN highest peaks of the function:

pavg(� ) =
1
B

BX

i =1

pi (� ) (3.11)

where the pseudospectrum for each sub-band is de�ned as:

p(� ) =
1

aH (� )V̂ V̂ H a(� )
(3.12)

One important di�erence between this parametric method and the two spatial �lters

mentioned before is that the expected number of sources to be detected with MUSIC

must be known in advance. This translates well in the case in which only one obstacle

at a time is considered, but it would scale poorly when an unknown number of

obstacles which is greater than one would need to be treated by the robot.

3.1.4. DOA Algorithms Performance Comparison

Before deploying the full pipeline on the robot while it navigates, I tested and compared

the performances of the three algorithms developed in terms of their computation time,

spatial resolution, and accuracy for obstacles in various positions around the array. More

information on the robotic platform employed are given in Chapter 4, here only the

relevant tests results are displayed and explained.
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Computation Time

This metric is extremely important for real time use cases of the DOA estimators, since

it determines how responsive the system would be to an evolving environment. I ran each

algorithm for 20 times on the robot keeping the sampling frequency of the system �xed

at 176:4 kHz and feeding the same window of length1 ms of data to the algorithms. I

kept track of the di�erence in the time stamp between the instant in which the signal is

presented to the DOA estimator and the instant in which the pseudospectrum is available

for further analysis. The resulting mean computation times are shown in Tab. 3.1.

The collected data show that DAS has the highest computation speed among the three,

unsurprisingly: the required operations are relatively simple with respect to the other two

methods. Capon requires the inversion of a matrix with a large rank, and MUSIC employs

an eigenvalue decomposition of the same matrix followed by a sorting of its eigenvalues

and corresponding eigenvectors.

DOA estimator Delay and Sum Capon method MUSIC

Computation time [ms] 68 145 162

Table 3.1: Mean execution times for the DOA estimation algorithms implemented

Spatial Resolution

The spatial resolution refers to the minimum angular separation that two sources must

have to be identi�able as separate by the DOA estimator. The metric that I chose to

give an estimate of the spatial resolution of the algorithms is the Half-Power Beam Width

(HPBW), a concept taken from the theory of phased array antennas. The HPBW is

de�ned as the angle between the two points of the main lobe of the pseudospectrum that

have a magnitude inferior by3 dB with respect to its maximum. Empty beer bottles of

the NRW (Nordrhein-Westfalen) model (height: 260 mm, base diameter: 64 mm) were

used as re�ectors, due to their availability and ideal geometrical and material properties

in relation to the robot's emission. One bottle was placed at50 cmof distance from the

robot, aligned with its longitudinal axis. The robot emitted its call, and the echo caused

by the object was recorded by the microphone array and �ltered with a matched �lter. The

output of the matched �lter was windowed with the usual rectangular window of length

1 mscentred on the autocorrelation function representing the echo, and this array signal

was then fed to the three DOA estimators. The resulting pseudospectra were interpolated

with a cubic spline by a factor of 25, to have a more accurate estimate of the main lobe

width, and then normalised with respect to their maximum. The two� 3 dB points were
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then seeked in the magnitude of the pseudospectra. The interpolated pseudospectra are

reported in Fig. 3.4.

DOA estimator Delay and Sum Capon method MUSIC

Half-Power Beam Width [� ] 19 4 4.6

Table 3.2: Half-Power Beam Width of the DOA estimators implemented. The cylindrical

obstacle was placed at0� and at 50 cmof distance from the robot

The obtained HPBW values are reported in Tab. 3.2, and they were obtained by averag-

ing �ve distinct detections. Once again the results are not surprising: DAS has the widest

main lobe among the three algorithms, while Capon and MUSIC have comparable perfor-

mances that exceed by a fair margin the one o�ered by DAS. This very simple experiment

is not intended to be an exhaustive analysis of the resolution capabilities of the three

algorithms, since the e�ect of only one parameter was investigated and just for one single

value of it. Instead, it is meant to be an indication of the general trend in the capabilities

of the algorithms once they would be deployed on a moving robotic platform: if multiple

sources need to be located with a good degree of separation, then more re�ned algorithms

can provide the desired performance. If instead the interest is focused on the presence

of obstacles of whatever nature in a general direction, then also a simpler algorithm like

DAS could be applied.

(a)

Figure 3.4: Pseudospectra obtained by applying the DOA estimation algorithms to the

echo generated by a cylindrical obstacle placed at a distance of50 cm(part 1).
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(b)

(c)

Figure 3.4: (continued) Pseudospectra obtained by applying the DOA estimation algo-

rithms to the echo generated by a cylindrical obstacle placed at a distance of50 cm. The

call employed is a linear descending sine sweep from60 kHz to 20 kHz, windowed with a

Tukey window with roll-o� factor � of 0.3.

Obstacle positions

This last veri�cation step takes into account how the position of the obstacles with respect

to the robot's axis plays a role in the accuracy of their localisation. To perform this test,

two bottles were placed at a distance of50 cm with an angle separation of30� , starting

from � 90� and spanning the entire frontal half-plane. The two tallest peaks were then

selected in the obtained pseudospectra as an indication of the position of the two objects.

What was observed for all the algorithms is a progressive decrease in the localisation

accuracy of both objects the farther they are positioned with respect to the robot's axis:

this is caused by how the acoustic power emitted by the robot is distributed in the
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frontal hemisphere. As it will be shown in Chapter 4, the radiation pattern of the source

employed is concentrated along its axis, so echoes are stronger if they are generated by

obstacles close to the robot's longitudinal axis. The performance of the DOA estimators

depends strongly on the SNR of the array signal: to a low signal power corresponds a

worse localisation performance in terms of accuracy. A comparison of the pseudospectra

obtained for various objects con�gurations is shown in Fig. 3.5.

(a) Objects positions: 0� , 30�

(b) Objects positions: � 30� , � 60�

Figure 3.5: Pseudospectra obtained by echoes coming from pairs of objects placed in

asymmetrical con�gurations around the robot (part 1).
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(c) Objects positions: 60� , 90�

Figure 3.5: (continued) Pseudospectra obtained by echoes coming from pairs of objects

placed in asymmetrical con�gurations around the robot.

The pair of objects placed in con�guration 1 (0� , 30� ) are located with good accuracy by

all three algorithms, despite the echo at0� producing a much more prominent peak in

the pseudospectra than the one coming from the side. In con�guration 2 (� 30� , � 60� )

the object closest to the front of the robot can still be recognised, but the obstacle placed

at � 60� is completely invisible to the robot. In the third and �nal con�guration ( 60� ,

90� ) the localisation performance is poor for both obstacles. The overall level of the

pseudospectra obtained can also give an indication about the received echoes strength:

comparing the pseudospectra in 3.5a with the ones in 3.5c, there is an excursion of about

20 dB between their maxima.

3.2. Final Remarks on the Processing Pipeline

In the previous Section the full signal processing chain that gives the robot the ability

to echolocate objects around itself has been detailed, and in particular great attention

was dedicated to the Direction of Arrival estimation algorithms that have been tested as

the mechanisms with which the robot would identify the directions from which echoes

arrive to the microphone array. Since the application for such a pipeline is on a mobile

platform whose focus is a real time reactive behaviour, in the end the decision to favour

reaction speed over detection accuracy was taken: DAS was the only algorithm which was

implemented and tested while the robot was performing an autonomous navigation of a

controlled environment. The other two algorithms, i.e. Capon and MUSIC, are still valid

as a more accurate alternative, when the computational power of the platform they are
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run on is enough to reduce their execution time to an acceptable level.
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4| Robot Design and

Implementation

This Chapter is dedicated to explaining the architecture of the robot that I built and

programmed, the active sensing Ro-BAT. I both present the details of every single com-

ponent and give an overview on how the system is intended to work as a whole. In Section

4.1, I go over the hardware components that constitute the robot, starting from its base

con�guration and detailing the added components for the intended functionalities. In

Section 4.2, I detail the acoustic measurements carried out to evaluate key aspects of the

transducer and microphones employed, such as their frequency response and directivity,

and how these quantities can in�uence the robot's capability to sense the world. In Sec-

tion 4.3, �nally, I explain how the signal processing pipeline described in Chapter 3 is

integrated into the robot's behaviour.

4.1. Hardware

The robot design process was strongly in�uenced by the decision to use consumer-grade

hardware wherever possible. This approach has a number of advantages: �rst, costs

and development time for the realisation of a single robot are decreased. Secondarily,

scalability is also improved, since once a satisfying prototype is established it can be

steadily replicated. These two features are well suited for a swarm robotics scenario. The

selection process for the single components and the design stage to reach a �nal working

prototype are explained. A picture of the �nal robot and a block diagram highlighting

the main components and their connections is shown in Fig. 4.1.

4.1.1. Robot Base Con�guration

The starting point for the development of my Ro-BAT consists of a Thymio II wireless

robot [37] by Mobsya [36] equipped with a Raspberry Pi Model 4B single-board computer

(SBC) [29], powered by an external power bank through the Pi's USB-C socket. It is a
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