POLITECNICO
MILANO 1863

SCUOLA DI INGEGNERIA INDUSTRIALE
E DELLINFORMAZIONE

Echolocation for the RO-BAT Plat-
form: Biomimetic Autonomous
Mobile Robot Navigation Exploit-
ing Ultrasonic Echoes

TESI DI LAUREA MAGISTRALE IN
Music AND AcousTic ENGINEERING
INGEGNERIA ACUSTICA E MUSICALE

Author: Gabriele Baroli

Student ID: 221120

Advisor: Prof. Fabio Antonacci

Co-advisors: Dr. Thejasvi Beleyur, Prof. Dr.-Ing. Heiko Hamann,
Dr. Andreagiovanni Reina

Academic Year: 2024-25



////M//////////é N 1 \\\\\\\ / \m\\ %
2N /// \ 117717/ s
//// N\ //// ////::_:::\\\ //) \\\ \\\\
NN 779477770770 00 /2 2
NN N e otrts
oty HH1100177 070070 2 2
SO 77752777777 000 2 2 2 2 27
J ///// /// N //// ////N///////////é __ ________,5\ I \\\\\\\ \\w\\ \\\\\\\\\\\\\\ =
~ 3N M s
N T e
—— f ot
—— = R
- ““\\\\\\\\\\\\\\\\\\m\\\w\w\\ 77 /////////////,/////////////// //// ///UU/
N RN R
1 NN
5577 NN
2 T I A O O



Abstract

Large groups of bats can achieve coordinated collective motion relying only on echolo-
cation while experiencing the so-called Cocktail Party Problem: in order to echolocate
they need to hear the echoes of their own call, but in groups the echoes overlap with
conspecifics’ emissions and the echoes thereof, resulting in masking and jamming effects.
It is still unclear how they manage to maneuver in such conditions. To shed light on co-
ordination mechanisms in crowded environments, biologists and engineers teamed up to
implement the Ro-BAT platform as a robotic model of swarms of active sensing agents.
Previous work realised a first prototype of a Ro-BAT capable of passive sound source

localisation.

In this thesis I propose a second version of the Ro-BAT capable of active echolocation,
equipped with an electrostatic ultrasonic transducer for emission, and an array of Micro-
Electro-Mechanical System (MEMS) microphones specifically designed for ultrasound
recording. I also implemented a signal processing pipeline for handling the incoming
echoes of the emitted call to establish the relative position of nearby obstacles in terms of
range and angle. For the angle, I tested three different Direction of Arrival (DOA) esti-
mation algorithms, being them Delay and Sum (DAS), the Capon method, and Multiple
Signal Classification (MUSIC), in static conditions. I then chose the most efficient one,
i.e. DAS, to be included in the final pipeline for obstacle avoidance. The robot was then
tested in lab experiments regarding its ability to autonomously navigate an arena with

reflective obstacles only through echolocation.

The tests’ results show that my bioinspired robot, mainly assembled with consumer-
grade hardware, is capable of locating obstacles with a good level of accuracy thanks to
the echoes of the robot’s emission and steer its path accordingly to avoid collisions. The
proposed solution can therefore be considered a starting point to be scaled to a full swarm
of active sensing agents. This robotic model could then be used to perform control studies
to deepen the understanding of collective behaviour mediated by acoustics in swarms of

biological and robotic agents.

Keywords: ultrasound, echolocation, Direction of Arrival estimation, swarm robotics,
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Abstract in lingua italiana

Gruppi numerosi di pipistrelli sono in grado di muoversi in modo coordinato sfruttando
solamente 1’ecolocalizzazione nonostante siano sottoposti al Problema del Cocktail Party:
per ecolocalizzare devono necessariamente percepire gli echi del proprio richiamo, ma in
gruppo questi sono spesso sovrapposti a richiami di altri pipistrelli, e agli echi derivanti.
Questi segnali possono mascherare o disturbare la ricezione dei propri echi. Non & ancora
stato spiegato del tutto come i pipistrelli riescano a destreggiarsi in condizioni simili. Per
approfondire la ricerca su meccanismi di coordinazione in ambienti affollati, biologi ed
esperti di robotica riuniti in un team hanno progettato la piattaforma Ro-BAT come
un modello robotico di uno sciame di agenti che percepiscono in maniera attiva. Lavori
precedenti si sono concentrati sulla realizzazione di un primo prototipo di Ro-BAT in

grado di localizzare passivamente sorgenti sonore.

In questa tesi io presento una seconda versione del Ro-BAT in grado di ecolocalizzare,
equipaggiato con un trasduttore elettrostatico per I’emissione di ultrasuoni e con una
schiera di microfoni MEMS specificamente ideati per la registrazione di ultrasuoni. Ho
anche implementato una catena di processamento dei segnali che permette al robot di
stabilire la posizione relativa di ostacoli nei dintorni, in termini di distanza e angolo,
tramite gli echi percepiti. Ho testato tre diversi algoritmi per la stima della Direzione di
Arrivo in condizioni statiche, i quali sono Delay and Sum (DAS), il metodo di Capon, e
Multiple Signal Classification (MUSIC). Il piu efficiente dei tre, DAS, ¢ stato integrato
nel comportamento di evitamento degli ostacoli impiegato. Il robot ¢é stato poi messo alla
prova in esperimenti di laboratorio, testando la sua capacita di navigare autonomamente

un’arena con ostacoli riflettenti solamente sfruttando 1’ecolocalizzazione.

I risultati ottenuti nei test indicano che il mio robot bioispirato, assemblato in gran parte
con materiali di qualita per il consumatore, ¢ capace di localizzare ostacoli con un buon
grado di accuratezza tramite gli echi della sua emissione. La soluzione proposta puo
quindi essere considerata come un punto di partenza per scalare verso un intero sciame di
agenti che percepiscono in maniera attiva. Il risultante modello robotico puo quindi essere
usato per studi di controllo per approfondire la conoscenza del comportamento collettivo

mediato tramite 1’acustica in sciami di agenti biologici e robotici.



Parole chiave: ultrasuoni, ecolocalizzazione, stima della Direzione d’Arrivo, robotica

degli sciami, comportamento collettivo.
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1 ‘ Introduction

A fascinating and still disputed topic in biology is how large groups of echolocating bats
can coordinate their collective movement while emerging from their roost location for
foraging, sometimes, in groups comprising up to a few millions individuals [31]. Bats are
active sensing agents, meaning that in order to extract information on their surroundings
they probe the environment with short and powerful ultrasonic emissions and listen back
to the echoes generated by re ectors around them. Therefore, they are expected to be
very susceptible to signals which may mask or jam the echoes they use for echolocation.

This condition is a widely studied phenomenon in acoustics, and it is labelled as "the
cocktail party problem" [4]. The intensity at which bats are expected to experience this
disruptive phenomenon on their echolocation process has led researchers in the eld to
elevate this condition to the "cocktail party nightmare" [38]. Despite this, they still
proceed in coordinated group ights on a daily basis, with few to no collisions reported.

Theoretical modelling has individuated bottlenecks in the sensory abilities of bats and
other echolocating agents [5]: their ability to locate other individuals decreases for in-
creasing group sizes. As a matter of fact, a robotic model of a group of active sensing
agents can be a helpful tool to validate the theoretical studies, while also giving insights
into real world mechanisms of which the full comprehension is still lacking. The Ro-
BAT platform has been ideated with this twofold purpose in mind. On the one hand,
modelling active sensing agents with robots lets researchers perform control studies on nu-
merous parameters which could in uence the e cacy of active sensing in physical swarms,
as opposed to simulations. In simulated experiments, simplifying hypothesis are often in-
troduced, with the risk of not fully encapsulating the complexities of the real world in
their full extent. The data extracted from such work could then be used to explain bi-
ological mechanisms happening in swarms of which we do not have a full understanding
yet. On the other hand, synthesising bioinspired behaviours for robots could lead to the
development of new technologies, such as a cost-e ective on-board localisation system for
a coordinated collective motion mediated by acoustics.
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1.1. Aim

After the successful implementation of a small robot capable of passive sound source
localisation [9], the following step was represented by extending the capabilities of the
very same robotic platform by equipping it with the necessary tools to perform active
echolocation. Therefore the aim of this thesis is the development of ultrasound emission
and reception devoted hardware, as well as the implementation of a signal processing
pipeline which emulates the echolocation process performed by bats. The developed
technology should then be deployed on the compact and exible robotic platform already
tested previously.

1.2. Hosting Institution

During my thesis work, | was hosted at the Centre for the Advanced Study of Collective
Behaviour (CASCB), an interdisciplinary excellence research cluster based at the Univer-
sity of Konstanz that includes biologists, psychologists and roboticists with the common
goal of pushing forward the study of the behaviour of individuals reunited in collectives of
various nature, being them animal groups, human crowds, or decentralised robot swarms.
| was co-supervised by Dr. Andreagiovanni Reina, leader of the Group Intelligence and
Organisation research group, Dr. Thejasvi Beleyur, Principal Investigator of the newly
founded Active Sensing Collectives research group and ideator of the Ro-BAT Project,
and Prof. Dr.-Ing. Heiko Hamann, leader of the Cyber-Physical Systems research group.
Dr. Beleyur provided the necessary competences in bioacoustics and animal behaviour,
while both Dr. Reina and Prof. Hamann contributed to the thesis work with their robotics
insights.

A signi cant contribution to the thesis work was also added by the Electronics Service

Centre of the University Workshop: thanks to them it was possible to design and fabricate

the needed electronics components in a relatively short span of time. Their support was
invaluable for the good results of the work presented in these pages.

1.3. Original Contributions

The content of this thesis collocates itself in the greater landscape of the Ro-BAT Project
at an initial step, in which the robotic model of active sensing agents is designed and
prototyped. Pushing forward what was established in the previous work [9], | designed
a microphone array based on Micro-Electro-Mechanical Systems technology, speci cally
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intended for ultrasound recording. | also selected and tested the necessary hardware
components to connect the electrostatic transducer to the audio interface already in use.

On the processing side, | developed the capabilities of the robot in a modular fashion.
| coded the ranging mechanism, then the angle nding mechanism, and ultimately |
combined the two together in a cohesive script for object localisation based on the echoes of
the emitted call. For the angle, | selected and adapted to the system three well established
methods for Direction of Arrival (DOA) estimation: Delay and Sum (DAS), Capon, and
Multiple Signal Classi cation (MUSIC). | tested their performance in static conditions,
and chose the most e cient one to be included in the nal processing pipeline emulating
echolocation.

Finally, | coded an obstacle avoidance behaviour for the robot that | tested in lab exper-
iments. | organised an assessment of the performance of the robot with an autonomous
navigation of an arena with re ecting obstacles, and extracted and analysed the data
gathered in such experiments.

The developed robotic platform was displayed as a representative example of the bio-
inspired robotics research carried out at the CASCB in numerous occasions to visiting
researchers and institutions. It was also showcased with live demos at a PhD gathering at
the University of Konstanz, and also at the annual spring retreat organised by the CASCB,
with a general good reception from experts in the eld of robotics and behavioural biology.

1.4. Thesis Outline

The rest of thesis is structured in the following chapters.

Chapter 2 introduces the theoretical background needed for the comprehension of the
presented work, both in terms of problem statement and necessary tools and technologies
which were employed in the development of the robot. A state of the art on the mat-
ter of bioinspired sonar sensors for robotics and autonomous echolocating robots is also
presented.

Chapter 3 deals with the signal processing pipeline that was ultimately developed for
accomplishing the task given at the start of the thesis. The methods employed are de-
scribed in details, and an evaluation of the algorithms developed is given to the end of
justifying the choices taken at the moment of the e ective deployment on the robot for
autonomous navigation.

Chapter 4 describes how the robot was implemented, giving a detailed description of the
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hardware pieces used and the nal con guration reached. The Chapter contains also the
characterisation procedures and results that were carried out on the nal robot, in order
to assess the performance of the various components that constitute the prototype built.

Chapter 5 presents the testing modalities and the obtained results after the tests con-
ducted on the robot regarding its capability of navigating autonomously a controlled
environment while avoiding obstacles encountered on its route.

Chapter 6 , nally, reports the conclusions that can be drawn from this work, and the
future developments of the project this thesis is a part of.



2 ‘ Background and State of the
Art

This Chapter is structured in two main sections. Section 2.1 will introduce the fundamen-
tal concepts which are necessary for the comprehension of the rest of the thesis. Section
2.2 will give instead an overview of works in the eld of bioinspired acoustic sensors and
robotic models of echolocating bats.

2.1. Background

The implementation of a robotic model of an echolocating bat implies the handling of two
distinct phases of the process: the emission of a loud, wide-band ultrasonic call, and the
recording and processing of the echoes generated by the presence of objects around the
agent. For the emission stage, advancements in transducer technology for robotics has
lead to the introduction of audio sources which are able to handle these strict operating
conditions. For the reception stage, instead, two di erent strategies have been explored in
literature: microphone arrays, and binaural bat-inspired microphones. A comprehensive
analysis of the literature about both systems will be given in section 2.2. Microphone
arrays were chosen for the development of this thesis, following the route traced in [9].

2.1.1. Ultrasound Properties and Echolocation

Ultrasound is de ned as a pressure wave with frequencies which exceed the upper human
hearing limit. Despite this being di erent from individual to individual, a commonly
accepted de nition states the beginning of the ultrasonic spectrum at aroun20 kHz [26],
which corresponds to a maximum wavelength of about7 mm It is known that planar
pressure wavefronts undergo specular re ection when their wavelength is much smaller
than the e ective dimensions of the objects they hit, and so in most practical cases
ultrasonic propagation is treated with a geometrical approach [26].

Echolocation in its simplest form is then suited for objects which once hit by an ultrasonic
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wavefront cause the immediate return of an echo back to the position of the emitter: this
includes at and smooth surfaces perpendicular to the direction of propagation of the
wavefront, objects made out of convex surfaces, and objects which cause the scattering of
the incident wave. To this merit, it has been proven that bats have a hard time around
smooth and at arti cial surfaces, both horizontal and vertical. In [15] for example is
shown that bats often try to drink from sheets of metal on the ground because they
mistake them for water bodies. In [16] instead is studied how at vertical surfaces act as
a sensory trap for echolocating bats: such surfaces re ect the emitted echolocation calls
away from the listener, causing the illusion of open yways.

In order to develop a solid groundwork which might be expanded in the future, the robot

| built deals with the simple case of echolocating objects which cause an immediate return
of the echo to the listener, without considering more complicated scenarios in which the
emitted call bounces more than once on nearby objects before getting back to the listener.

2.1.2. Microphone Arrays

Multiple microphones distributed in space which record the same acoustic eld constitute
an array of sensors. The advantage of having multiple microphones recording the same
scene is that spatial information can be extracted from the array recordings, such as the
direction from which a source arrives to the microphones. Conversely, it is also possible
to focus the array directivity pattern in a certain direction to enhance the reception of
the signals coming from that angle, while at the same time attenuating the unwanted
interferers from other directions. The rst operation is called Direction of Arrival (DOA)
Estimation, while the second takes the name Beamforming.

Microphone arrays are usually classi ed based on their geometry. The sensors can be
arranged in a line, which would constitute a linear array, or in more complex shapes
which can also be two- or three-dimensional. In the remainder of the Chapter a linear
geometry is considered, and in particular a uniform distribution of sensors in a line,
which is commonly referred to as a Uniform Linear Array (ULA). Fig. 2.1 reports the
situation in which a source located in the far eld emits a signal which impinges on a
ULA composed ofM sensors. The planar wavefronts are perpendicular to the direction of
propagation, and hit the microphones in the array each with a speci c delay with respect
to a microphone taken as a reference. The reference microphone is usually the rst one
on the left.
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Figure 2.1: Source impinging from the direction on a Uniform Linear Array. The angle

is measured from the axis of the array, and the microphone taken as a reference is the
rst one on the left. If the source is in the far- eld, the wavefronts are planar, and the
time delays between the arrival of the signal to each sensor in the array depend only on
the inter-element distance and on the DOA.

2.1.3. Signal Model

Considering an array ofM sensors and a single source in the far- eld impinging on the
array from a certain direction , the signal recorded by thek-th microphone in the array
can be modelled as:

yk(n) = he(n) s(n &)+ e(n) (2.1)

where s(n) is the source signal measured at the sourde,(n) is the impulse response of
the microphone, ( is the propagation delay from the position of the source to the sensor,
and e(n) is the additive noise present at the sensor. For a Uniform Linear Array, the
relation between the propagation delay at thé-th channel and the direction of arrival of
the source is the following:

<= (k 1)dsin( )

for 2] 90;90] andk=1;:::;M (2.2)

whered is the inter-element distance, is the source DOA, andc is the sound speed in
air, considered equal ta343ms?'. Now, the equation that models the array signal can
be greatly simpli ed by assuming a narrow-band source, which is not always the case,
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especially for ultrasonic sources. Nonetheless, a wide-band source can be ltered with a
Iter bank to be separated in multiple narrow-band components, which can be processed
individually. This justi es the use of a narrow-band model also for signals which are
wide-band in nature.

A narrow-band signal with known carrier frequency . takes the form:

s(n)=(n)cosf cn+ (n)] (2.3)

where (n) and (n) are respectively the time-varying instantaneous amplitude and phase.
The signal is analysed in the time-frequency domain by means of a Short Time Fourier
Transform (STFT) employing a rectangular window (e.g. no windowing on the extracted
frames) and a unitary hop-size, a method also known as sliding Discrete Time Fourier
Transform (DTFT). The extracted frames are indicated ass;(n), and their DTFT is
indicated asS;(! ). If the attention is focused on the carrier frequency ., the e ect that
the STFT has on a narrow-band signal is equivalent to a demodulation of a bandpass
signal followed by a low-pass ltering, if (n) and (n) are slowly-varying in the extracted
frame. The result is a baseband signal of the form:

S(to= (e © (2.4)
which is only function of time. The notation can be simpli ed by considering(t) , S(! ),
eliminating the frequency dependency.

Working in the STFT domain, the complete array model for a single source can be derived
starting from:

yk(t) = Hi(! o)s(t)e ' =« + e(t) (2.5)

where Hi(! ) is the frequency response of thk-th sensor evaluated for = ! .. This
equation is the STFT of Eq. 2.1. Using a vectorial representation, the array signal for a
single source can be written as:

y(t) = a( )s(t) + e(t) (2.6)

Assuming ideal linear acoustic propagation, Eq. 2.6 can be extended to the caseNof
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sources impinging on the array withN di erent DOAs as:

y(t) = As(t) + e(t) (2.7)
whereA =[a( 1);:::;a( n)]istheM N propagation matrix, and
s(t) = [si(t);:::;sn (1)]" is the source vector.

The propagation vectors can be simpli ed by introducing the notion of spatial frequency:

this quantity, de ned as

dsin( )
oo torpg (2.8)

is directly related to the DOA of the source, and if substituted into the propagation vector
formulation leads to

a()= Lels::iel™M sl (2.9)

where the sensors' frequency responses were also assumed télpe.) = Hy(! () = =
Hu (') = 1. From the propagation vector expression in 2.9, it is clear how the array
samples a complex sinusoid of frequenty, with a unitary sampling frequency.

2.1.4. Spatial Aliasing and E ective Array Aperture

Since the array is e ectively sampling a sinusoid with a given frequency, the Nyquist-
Shannon theorem must hold also in this case to avoid the aliasing phenomenon, which
introduces ambiguity in the representation of a certain DOA due to the appearance of
grating lobes in the array directivity pattern.

The condition to be satis ed is:
J's (2.10)

Substituting to the spatial frequency its de nition, and introducing the wavelength =

£& the condition becomes:

i2 dsin( )

j (2.11)

The anti-aliasing condition can be conveniently expressed as a function of the inter-element
distanced:

d 5 (2.12)

This condition establishes the minimum wavelength that won't be aliased by an array
with a sensor distancal. The maximum frequency which won't cause spatial aliasing can
therefore be written as:

= — (2.13)
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For larger frequencies it is then necessary to use densely packed microphone arrays, to
make sure the spatial aliasing phenomenon is avoided.

Microphone arrays exhibit also an empirical lower frequency bound, given by the relation-
ship between the wavelengths of the recorded signal and their aperture. Their functioning
is based on capturing a phase di erence between signals impinging on each sensor in the
array. If the wavelength of an incoming signal is comparable to the array aperture, given
by:

L=M (d 1) (2.14)

the phase di erence between each channel becomes negligible since the wavefront vary
too slowly. A good rule of thumb for an e ective microphone array aperture states that
the aperture should be at least twice the maximum wavelength recorded. This can be
translated to a condition on the frequency of the recorded sounds as:

c
The array designed for the active sensing Ro-BAT is composed of eight microphones with
an inter-element distance oR:7 mm. The two frequency bounds are then:

( fmin =9:1kHz

fmax = 63:5kHz

2.1.5. Direction of Arrival Estimation Problem Formulation

As stated previously, the spatial frequency of a signal is directly related to its Direction of
Arrival (DOA). The problem of DOA estimation can then be formulated as a spatial spec-
tral estimation of the impinging signals on the microphone array. Two popular methods
for accomplishing this task are spatial Itering, and subspace based methods.

Spatial Filtering

One possible approach to DOA estimation is constituted by spatial Itering. This strategy
consists in designing a linear Iter which will combine the array signals in such a way that
constructive interference will enhance signals arriving from directions of interest, and
destructive interference will attenuate signals coming from unwanted directions. Delay
and Sum [12] and the Capon method [7] are classical examples of such lters. In general,
for an array of M elements the Iter will be composed byM complex weightsh =
[hi;::hu]", where the superscript indicates the hermitian transpose. The ltered
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signal takes the form:
hd
ye(t) = he y(t)= h"y(1) (2.16)

k=1

The power of the lItered signal is then:
E jyr()j* = h"Rh (2.17)
whereR is the covariance matrix of the array data, de ned as:
R=E yty"(t) (2.18)

The operator E indicates the statistical expectation. Since the array signal is nite in
time, in most practical cases the covariance matrix is swapped for its sample estimate,
de ned as:

X
R= 1" yay"o (2.19)

t=1
The power of the Itered signal constitutes a good indication of the energy coming from
a certain direction , so by comparing the energy coming from all the directions it is
possible to compute a spatial spectrum, whose peaks correspond to directions from which
signals impinge on the array.

Subspace Based Methods

An alternative to spatial Itering for DOA estimation is represented by methods which
separate the covariance matrix of the array data into a signal subspace, which is related to
the signals impinging on the array, and in a noise subspace, related to the noise introduced
by the sensors. These methods are based on a series of assumptions, which are:

" Exactly N sources impinge on the array fronN distinct directions, thus leading to
N distinct spatial frequencies.N must be also lower thanM , which is the number
of sensors in the array.

" The covariance matrix of the source signaRs = E s(t)s" (t) is full-rank.

" The sensor noise is spatially white, with independent and identically distributed
components having identical variance. The covariance matrix of the error signals is
then E e(t)eM(t) = 2. The noise is also uncorrelated to the source signals.
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Under these assumptions, the covariance matrix of the array data can be written as the
sum of two components, one related to the source signals and the other to the noise, as:

R=AR A"+ 2y (2.20)

By performing an eigenvalue decomposition and sorting the eigenvalues in ascending order,
it is possible to express the covariance matrix of the array data as:

R=[U;V] , Uuf;vH "’ (2.21)
where the eigenvectors itJ are associated to the eigenvaluds 1;:::; ngand the eigen-
vectors inV to the eigenvaluesf y.1;:::; mQ. The diagonal matrix  contains the

sorted eigenvalues oR . It is possible to prove that the eigenvectors iJ are associated

to the source signals, therefore spanning the signal subspace, and the eigenvectoks in
are associated to the sensors' noise, giving origin to the noise subspace of the covariance
matrix. Each of the two subspaces found possesses properties which can be leveraged to
estimate the DOAs of the sources looked after. MUSIC [43] exploits the orthogonality of
the noise subspace to the propagation vectors corresponding to DOAs of actual sources,
while an example of a method that exploits properties of the signal subspace is constituted
by ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) [41].

The matricesU and V are obtainable if and only if the conditions reported above apply,
and the sources signal power is higher than the noise power.

2.2. State of the Art

In recent years the rapid development of mobile robotics has lead to a vast exploration
of sensing strategies with which a robot can acquire information on its surroundings to
then plan its movement strategy. Among these solutions a vast majority is focused on
cameras or light-based sensors, but also sound and in particular ultrasound emission and
echoes detection is currently being investigated. In this latter case, though, almost all of
the research made is dedicated to advanced sonar sensors for robotics and algorithms for
Simultaneous Localisation and Mapping (SLAM) exploiting acoustic signals inspired by
the echolocation capabilities of bats to various degrees. These works are mainly focused on
strategies that individual agents can exploit, and it is not clear if the proposed solutions
can scale to groups of agents. This is why a cheap and scalable platform such as the
Ro-BAT was designed, with the goal of tackling the cocktail party problem in swarms of
active sensing agents.
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Section 2.2.1 will give an overview of bioinspired sensors for localisation and navigation
based on acoustics. Most of the works presented in this Section come from the Cosys-Lab
at the University of Antwerp [39], and constitutes a great bulk of work on bat-inspired
sensory solutions for robotics.

In Section 2.2.2, instead, other works which present a full- edged autonomous echolocating
robot are reviewed, presenting the novelty and advancements that they introduced, and
also underlying their strengths and weaknesses with respect to scalability.

2.2.1. Bio-Inspired Acoustic Sensors

Sonar sensing is surely not a novel area of research in engineering, but recent advancements
in behavioural studies on bats and a re nement of the sonar technology involved have
sparked new interest for what a bioinspired sensor could bring to the table. In mobile
robotics, on the one side, new sensing strategies are explored for autonomous navigation
in complicated environments. On the other side, robotic models could help in improving
the knowledge on biological mechanisms which are not fully understood yet.

In [47] two di erent types of audio receivers for a bioinspired sonar sensor are evaluated:
binaural microphones with 3D-printed replicas of bats' external ears are compared against
microphone arrays in combination with digital beamforming. The comparison was based
on an objective information theoretic performance measure that quanti ed their localisa-
tion capabilities in the presence of realistic noise. The conclusions drawn in the paper are
that the two systems are more or less equivalent on the localisation performance side, but
a possible advantage in the array solution, despite the increased complexity in managing
more than two microphones, consists in the possibility to digitally steer the directivity
pattern of the sensor in desired directions without resorting to mechanical modi cations
of the sensors, which would be needed in the case of two microphones encased in pinnae
replicas.

Both binaural microphones and microphone arrays were used to extract information then
fed to a SLAM model based on the mammalian hippocampus in subsequent works. In
[45], a biomimetic sonar sensor composed of an electrostatic ultrasound transducer and
two omnidirectional microphones encased in plastic replicas of a bat's pinnae is used as an
exteroceptive sensor, while interoceptive sensory input is given by the robot's odometry
retrieved by the motor commands. The echoes, which are ltered by an Echolocation
Related Transfer Function (ERTF) given by the superimposed e ect of the emitter's di-
rectivity and the spatial Itering introduced by the arti cial outer ears, are then processed

to extract a "cochleogram". This time-frequency representation of the recorded echoes



14 2| Background and State of the Art

is obtained by modelling the functioning of a bat's cochlea with a bank of gammatone
lters. The obtained cochleograms are used as local view templates of the environment,
which combined with the robot's odometry constitute the input to the SLAM algorithm.
The result is a topological map of the environment. The paper's authors drove a robot
equipped with such sensor in an unmodi ed o ce environment, and a geometrically con-
sistent topological map was the result of the SLAM algorithm. The authors conclude that
cochleograms are in general su ciently descriptive of a particular local view to be used
as a base for localisation and mapping of a large environment, despite still giving rise
to ambiguity in some cases. Such a system would work in conditions of scarce visibility
which are problematic for cameras or LIDAR sensors.

The other approach to SLAM [46] employs an array-based biomimetic sensor [48] con-
sisting of the same emitter as in the previous work, but on the receiving end a planar
random array of 32 condenser microphones is used in conjunction with a Delay and Sum
beamformer. The output of this sensor is a so-called "energy scape" representation of
the environment, where each point identi ed by three coordinates (range, azimuth and
elevation) represents the energy re ected back to the sensor from that particular location.
This sensor was exploited for obtaining both information on the nearby environment, and
also odometry data based on the acoustic ow of consecutive snapshots acquired by the
device. The sensor was mounted on an electric wheelchair and driven in a typical o ce
environment. A geometrically consistent topological representation of the environment
was obtained also for this case, by feeding to the SLAM algorithm the 3D energy scapes
as local view templates, and the odometry data extracted from the acoustic ow model
as the interoceptive sensory input.

Both sensors architectures were re ned in subsequent works: in [27] a biomimetic sonar
sensor based on the common big-eared baflicronycteris microtis) outer ears replicas is
used to guide the autonomous navigation of a two-wheeled robot, in conjunction with a
subsumption architecture whose layers are:

1. Collision avoidance: the robot rotates on itself until its pathway is free of re ec-
tors. This behaviour is triggered by the presence of obstacles under a certain range
threshold.

2. Obstacle avoidance: the robot proceeds on a curved trajectory distancing itself
from nearby obstacles, moving in the opposite direction with respect to the highest
amount of energy received between the two ears.

3. Straight drive: the robot proceeds forward at constant velocity along a straight line
when its pathway is free of obstacles.
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The input to the control system is constituted exclusively by data extracted from the
echoes received by the two microphones inside the bat ears replicas. The robot was suc-
cessful in performing an autonomous navigation of a cluttered environment. An interest-
ing modi cation introduced to the sensor architecture was a ba e around the ultrasonic
transducer, which enlarged its radiation pattern. The e ect of ba es on ultrasonic trans-
ducers was studied in [20], concluding that good-quality 3D-printed ba es can enlarge the
narrow directivity pattern of electrostatic transducers to near-omnidirectionality without
signi cant loss in the output power.

In [22] instead, the array-based sensor architecture was re ned by swapping the condenser
microphones for digital Micro-Electro-Mechanical Systems (MEMS) microphones, reduc-
ing costs and need for extra Analog-to-Digital conversion (ADC) equipment, and the
hardware implementation is completely embedded, constituting a plug-and-play sensor
for robotic applications. As a beamforming technique, the Delay and Sum method was
still used. The resulting sensor was then deployed on a mobile robot which was driven in
a cluttered corridor to realise a 3D map of the traversed environment. The data obtained
from the sensor was confronted with LIDAR measurements for validation. A reduced
form factor version of the sensor explained above was realised in [53]. Contrary to the
previous sensor model, this device works with narrow-band emissions and the Multiple
Signal Classi cation (MUSIC) algorithm for retrieving the Direction of Arrival (DOA) of

the echoes. This device architecture reduces production costs with respect to the previous
sensor, but it su ers from the multipath propagation of the echoes, generating "ghost"

re ectors. A more in-depth simulation study on such sensor is found in [54], where di er-
ent DOA estimation algorithms were employed with the cited sensor architecture varying

a number of parameters such as the Signal-to-Noise Ratio (SNR) of the received echoes,
the number of snapshots taken for the same scenario, the spacing of two closely placed
objects and the amount of objects which could be resolved by the sensor at the same time.
The authors conclude that the most limiting aspect of sonar sensors is the need for a high
dynamic range, since objects placed at sharper angles su er from harsh attenuations due
to both the directivity of the transducer employed, and the reduced aperture of the array.
The SNR and the number of snapshots acquired do not present any signi cant e ect on
the localisation process, which is desirable since mobile robots need fast updating sensor
readings to operate, often in noisy conditions.

One last frontier of research in the sensor architecture eld is represented by [28], in which
the aperture of an array based sensor is reduced by means of 3D-printed waveguides which
e ectively realise an array geometry that could otherwise be impossible to reach due to
the physical dimensions of the MEMS microphones employed. This approach extends the



16 2| Background and State of the Art

frequency range at which ultrasonic microphone arrays can operate before incurring in
the spatial aliasing phenomenon, but introduces a signi cant amount of attenuation in
the signals recorded by the microphones, and requires a calibration step before operation
for taking into account the phase shifts introduced by the ba es. A notable result of the
integration of such ba es to microphone arrays is a directivity pattern resemblant of a
bat Head-Related Transfer Function (HRTF), which is an interesting aspect for biological
modelling researches.

2.2.2. Autonomous Echolocating Robots

In addition to bioinspired sensors, another branch of research is focused on the realisation
of full- edged robots which which can navigate autonomously relying on the information
extracted from the environment by probing it with short ultrasonic emissions.

A rst example of an autonomous robot whose navigation strategy is based on the echolo-
cation capabilities of bats is represented by [57]. In this work, an autonomous robot was
equipped with a minimal biomimetic sonar sensor, consisting of an ultrasonic transducer
and two ultrasound sensors. The narrow-band signal emitted in combination with the
reduced dimensions of the transducer led to a radiation pattern comparable to the one
of a real bat, having a full width of 80-100 at 6dB. Objects could be located in range

by the time of arrival of the echoes, and in direction by the Time Di erence of Arrival
(TDOA) at the two receivers. The sensor unit was mounted on a servomotor which could
steer the unit in the direction of the echoes received, to keep the localised obstacle in the
sensor's eld of view (FOV). This strategy was borrowed by bats, which were shown to
turn their heads to focus speci c re ectors previously identi ed. An Inter-Pulse Interval
(IP1) control mechanism based on the nearest obstacle distance was also implemented.
When navigating autonomously a rectangular arena with cylindrical obstacles, the head
steering mechanism was proven to perform better than a xed sensor unit aligned with
the direction of motion, but the localisation of only the nearest obstacle did not perform
satisfyingly, leading to numerous collisions. It was for this reason that the authors also
implemented a Multi-Object-Detecting Navigation System (Multi-ODNS). This obstacle
localisation method took into account multiple echoes, corresponding to more than one
obstacle, and after locating each one a repulsion force vector was computed for each obsta-
cle as well. The direction in which the robot steered was then a consequence of choosing
to avoid the obstacle with the highest repulsion force vector. This new approach to ob-
stacle avoidance demonstrated itself to be successful where the Mono-ODNS previously
failed. This robot con guration presents a bio-inspired obstacle avoidance behaviour in-
troducing also the possibility of mechanically steering the sonar sensor, which is a natural
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behaviour for bats. The emitter circuit is too simple, though, being only capable of emit-
ting 40 kHz short tones. The exibility to model species of Frequency Modulating (FM)
bats is therefore excluded.

Another example of autonomous bio-inspired robot is constituted by [10]. The output
of this work is a fully autonomous terrestrial robot which can map the 2D structure of

a novel outdoor environment, label the obstacles as plants or non-plants, and then plan
a path accordingly to navigate while avoiding obstacles. This all-terrain, rugged robot
is equipped with an ultrasonic electrodynamic speaker, and two condenser microphones
specialised for ultrasound recording. The sensor head is mounted on a gimbal which
can rotate while maintaining stability. The A/D and D/A conversions are handled by

a high-end Data Acquisition (DAQ) board. The robot moves forward in steps dd:5m,
then stops for30 sto acquire echoes from the environment by emitting thre&0 mssweeps
from 100kHzto 20kHz in the directions 60, 0 and 60 with respect to the driving
orientation to emulate the directivity of a bat's emission. The resulting echoes are pro-
cessed to individuate the distance and the angle from nearby obstacles, and the extension
of their contour. Audio features are also extracted from the received echoes to classify the
re ectors encountered as plants or non-plants thanks to an arti cial neural network. The
robot was capable of mapping the position of obstacles in a novel environment and their
contour with a satisfying degree of accuracy and planning its route accordingly without
any recorded collision. The classi cation accuracy was also above the chance level of
50% of right decisions. This work implements an acoustic based autonomous navigation
method which is biologically plausible, even though with evident limitations related to the
movement speed of the robot and its emission strategy. Furthermore, the audio feature
based classi cation of the type of obstacles encountered is an interesting introduction,
which could be further exploited in other settings, also in a swarm context. The dimen-
sions, slow reactiveness and the realisation cost of a single agent are not suited for swarm
robotics, though.

In [30], instead, a robotic model for the avoidance of non-localisable obstacles by bats is
presented. This work aimed at validating a minimal set of acoustic cues for reacting to

a series of non-localisable echoes, meaning a group of highly overlapping echoes caused
by complex re ectors such as the vegetation among which bats y in nature. The cues
taken into consideration are the Interaural Intensity Dierence (IID), and the distance

from the closest obstacle. Moreover, also two di erent navigation modalities are investi-
gated together with the primary question, being those the Fixed Head strategy, and gaze
steering according to a Delayed Linear Adaptive Law (DLAL). The robotic platform used
consists of a di erential drive robot mounting a narrow-band ultrasonic transducer and
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two microphones encased in stylised plastic replicas of a bat's pinnae. The sensor unit
was mounted on a pan-tilt system which could emulate head movements observed in bats.
The obstacle avoidance behaviour was tested both in a rectangular arena with complex
re ectors which produced highly overlapping echoes, and in a cluttered corridor whose
walls lined with egg cartons also re ected the robot's calls in a non localisable fashion.
By comparing the two navigation strategies in conjunction with the set of cues chosen to
extract spatial information from the environment, the authors conclude that the 11D and
the distance from the nearest obstacle is enough for achieving autonomous navigation,
despite collisions were reported, even though only in the 10% of obstacle interactions.
The robot was also able to complete the navigation of the corridor successfully. Contrary
to [57], they found that acoustic gaze scanning leads to a worse performance than lock-
ing the sensing direction to the motion direction. This is due to the amount of angular
information that can be extracted from overlapping echoes: in the case of highly clut-
tered environments steering the sensor unit does not improve the e ciency of the motion.
The results reported in this work o er a solid strategy for a simple obstacle avoidance
behaviour in heavily cluttered environments which relies on a minimal but robust set of
cues extracted from the echoes received. This strategy is mainly applicable to robots and
sensors whose receiving unit is constituted by a left and a right "ear”. An application to
microphone arrays would require further elaboration.

2.2.3. Summary and Conclusions

In this Section a series of bioinspired sensor architectures and robotic platforms based on
acoustics were analysed and reviewed. The solutions presented are enormous sources of
inspiration for biomimetic acoustic sensor architectures, but are not thought for swarms

of echolocating agents: | instead argue that the presence of similar audio sources to the
ones employed would jam the sensors to various degrees, rendering them ine ective in a
collective of active sensing robots. They can however constitute a rst approximation of
the echolocation process that most bats exploit continuously during ight.

Another point of crucial importance is the construction complexity of such solutions: they

all require the development of highly specialised hardware pieces and are generally expen-
sive and cumbersome if compared to small robotic platforms which are often employed
for swarm robotics, making their deployment not suitable for the context of this thesis.

A cheap and scalable robotic platform that emulates echolocating bats has not yet been
realised, and the Ro-BAT project aims at lling this gap.
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3 ‘ Signal Processing Methods

This Chapter will describe the full signal processing pipeline devoted to the echoloca-
tion capabilities of the Ro-BAT and the conditions in which the robot is intended to
operate, together with some results regarding the implementation of Direction of Arrival
estimation algorithms. The hardware details and their characterisation is the topic for
Chapter 4, here only the necessary information for understanding the rationale behind
the methodologies employed is presented.

3.1. Signal Processing Pipeline

The signal processing pipeline that was developed is largely inspired by the work of Steckel
et al. [48] and further developments of the Cosys-Lab at the University of Antwerp [39].
Their idea of a sonar system based on a single emitter and multiple receivers is at the
basis of the content of this thesis. There are a few di erences regarding the objective with
which the two systems are built, though: while their sensor is thought as a plug-and-play
reliable alternative for autonomous robotics navigation, the robot proposed in this thesis
is a rst attempt to deploy active echolocation on a small mobile platform with the
greater objective of studying how a swarm of agents which base their movement strategy
on acoustic mechanisms can use active echolocation e ectively to achieve a coordinated
collective behaviour.

The geometry of the problem posed is assumed to be two-dimensional: the robot moves
on a plane, so only two coordinates are necessary to establish the relative position of
objects around it. These two coordinates are the distance from the robot to the objects,
and the angle at which they are positioned with respect to the robot's longitudinal axis.
Assuming, as explained above, that the objects around the robot re ect the emitted calls
back to the robot's position, the distance from the robot to the objects can be computed
by knowing the time di erence between the instant in which the call is emitted, and
the instant in which the echoes are received. Regarding the incident angle of the echo,
Direction of Arrival estimation algorithms can be employed, after recording the received
echoes by means of a microphone array. Among the many di erent array geometries, a
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Uniform Linear Array (ULA) con guration has been selected for its simplicity, since it is
fully capable of handling a two-dimensional localisation problem.

The eld of view (FOV) of the robot is by necessity its front half-plane, since the audio
source is pointed towards its front and the microphone array is linear, which introduces
a front-to-back ambiguity solved by only considering one of the two half-planes with
respect to the array orientation. The angular axis is dened as 2 [ 90;90], where

90 corresponds to the robot's right hand side90 to its left hand side, and0 is in
correspondence of its longitudinal axis.

Another simpli cation introduced in the system is that the robot will focus only on the
rst echo received, meaning that at every instant only the objects placed on a semi-circle
with the lowest radius with respect to the robot's position are located.

3.1.1. Call Emission and Array Recording

Since the Ro-BAT aims at emulating the echolocation strategies of Frequency Modulating
(FM) bats, the type of signal that constitutes the emitted call will be a wide-band chirp,

in particular of the linear type. This assures that all the frequencies of interest have the
same weight in the emitted signal. An example of a call signal used by the robot can be
seen in Fig. 3.1. After an emission, echoes will be generated by obstacles posed around
the robot. Both the call and the echoes are recorded by the microphone array, which
enables a spatial processing of the recorded audio.

The signal captured by thek-th microphone in the array after the emission of a call and
the reception of the subsequent echoes can be modelled as:
!
X
Ye(n) = he(n)  sc(n)+ ise(N i« +e&(n) fork=1;::5M  (3.1)

i=1
where hy(n) is the impulse response of the single sensag(n) is the emitted call, ;
and ; are respectively the attenuation coe cients and the propagation delays due to the
re ection process,L is the number of echoes recorded, is the propagation delay due to
the position of the sensor in the arrayM is the number of sensors in the array angy is

the noise present in each sensor.
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Figure 3.1: Time trend and spectrogram of the emitted signal.

3.1.2. Filtering and Ranging

The rst step in the audio data processing is constituted by a matched Iter, described
by:
YE)=F YY) S.(') (3.2)
Yk kU c U: )9

whereYy (j! ) is the Discrete Fourier Transform (DFT) of the signal recorded by the-th
microphone,S; (j! ) is the complex conjugate of the DFT of the call signal, and the !
operator denotes the Inverse Discrete Fourier Transform. The output of the Iter will

be a series of scaled and time-delayed autocorrelation functions of the emitted call, if we
consider as negligible the spectral distortions introduced by the emission and re ection
process. As a result, the call and the echoes onsets are easily individuated in the cross-
correlations, since they are in correspondence of the local maxima of the autocorrelation
functions. Other signals that do not match the template of the matched Iter will instead

be annihilated by the lIter.

To better perform a peak- nding operation to reveal the position of the echoes, the
envelopes of the cross-correlations are extracted by taking the absolute value of their
Hilbert transform. Then, a di erent strategy is applied to isolate the call and the rst
echo, respectively.

~ Call detection: a mean envelope is computed by averaging all the envelopes ex-
tracted from the cross-correlations. The call onset is then retrieved by a peak- nding
operation executed on the mean envelope, to have a more reliable estimate. The
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rst index returned by the algorithm represents the time instant wanted, since it is
assumed that the call is the rst relevant signal appearing in the analysed sequence.

Echo detection: for each envelope a peak- nding operation is computed, start-
ing the search from a tolerance window of samples after the peak representing the
call, to avoid considering further oscillations belonging to the call autocorrelation
function as re ections caused by very close objects. This introduces a "blind spot"
in the robot's eld of view. The tolerance window which worked best in terms of
avoiding "ghost obstacles" versus locating obstacles as close as possible to the robot
corresponds to a radius o125cm For each envelope the rst index corresponding

to a peak is returned, and the smallest among all of them is used as a reference to
compute the distance from the nearest object.

Having retrieved the two onsets needed, the range from the nearest object is then com-

puted according to:
1

d= §C t (3.3)
where tis the time interval between the two peaksg is the sound speed in air, considered
tobe343ms?t and disthe estimated distance from the robot to the object. An example
of the full Itering and ranging process is shown in Fig. 3.3, while the spectrogram of the
same audio recording is reported in Fig. 3.2.

Figure 3.2: Spectrogram of the emitted call and rst echo. The audio was extracted from
the rst channel of the array. The call and the echo are clearly distinguishable in the
time-frequency representation of the recorded audio.
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Figure 3.3: Example of the ranging process for locating an object placed%icmin front

of the robot. The three graphs refer to a single channel in the microphone array. It is
easy to see how much the matched Iter compresses in time the signals that match the
template by comparing (a) and (b). The envelope reported in (c), then, improves the

peak- nding algorithm accuracy, which needs to be tailored properly nonetheless to avoid
locating the spurious peaks of the call's autocorrelation function as inexistent obstacles.
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3.1.3. Direction of Arrival Estimation Algorithms

The following step in the localisation process is the Direction of Arrival estimation. Two

of the possible strategies for this task are employing spatial Itering, or parametrizing the
covariance structure of the array data to exploit the properties of one of its subspaces.

I implemented and tested two algorithms belonging to the spatial ltering class, and a
third one belonging to the parametric methods class. One relevant note is that all three of
the algorithms implemented are e ective on narrow-band signals, while the call emitted
by the robot is inherently wide-band. To accommodate this requirement, each algorithm
has been extended to a wide-band use case by means of an incoherent average [49, 56]:
the input signal is divided into sub-bands which are processed individually. The results
obtained by each sub-band are then averaged, and the DOA is computed on the basis of
this average. This method is de ned as incoherent because a series of power spectra are
averaged, without maintaining any phase relationship between sub-bands.

The data fed to these algorithms is constituted of a rectangular window of lengthms
centred on the cross-correlations portion corresponding to the echo identi ed in the pre-
vious processing step. The advantages of passing the Itered echo with respect to the
raw audio data are that the Itered echo is much more isolated in the time history of the
signal, reducing the bleeding-in of the emitted call even when the obstacle is very close
to the robot, and also it contains the same amount of spectral information in a reduced
number of samples, resulting in a faster computation time.

The DOA estimation algorithms implemented are:

" Delay and Sum (DAS): this algorithm focuses on passing undistorted the signals
coming from a speci ¢ direction , while attenuating the signals coming from all the
other directions. The array signal is assumed to be spatially white, meaning that
the covariance matrixR is an identity matrix | of rank M. The formalisation of
the equivalent optimisation problem is written as:

h()=argmin h"h subjecttohta( )=1 (3.4)
h

The resulting lter coe cients are de ned as:

_a()
h()= = (3.5)
wherea( )=[1 el's ::: e lM D] is the propagation vector whose spatial

frequency! ¢ corresponds to the direction , and M is the number of microphones
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in the array. It is worth noting how the obtained coe cients are scaled complex
exponentials, which correspond to pure delays: the output of the Iter is the sum
of the signals captured by the array, each one of them with an appropriate phase
shift to create zones of constructive and destructive interference where it is desired.
The name with which this procedure is usually found in literature re ects this very

property.

The resulting pseudospectrum, which derives from the power of the Itered signal
evaluated at all the angles of interest 2 [ 90;90] is:

a"()Ra()

T (3.6)

p( )=
where R is the sample estimate of the covariance matrix of the array data. The
DOAs of N sources are then estimated as the angles in correspondence of the
highest peaks of the function:

X
Pas()= 5 PO) 37)

i=1
whereB is the number of processed sub-bands.

Capon method: the second spatial Itering algorithm developed is the so-called
Capon method. Contrary to the previous approach, this method puts e ort into
attenuating the actual signals which impinge on the array from unwanted direc-
tions, while passing undistorted the signals coming from the desired direction. This
method is then data-dependent, since the corresponding optimisation problem takes
the form:

h()=arg rr]nin h"Rh subjecttohta( )=1 (3.8)

The Iter coe cients for every sub-bands assume the following form:

R la()
at( )R *a()

h()= (3.9)

whereR is the covariance matrix of the array data. The resulting pseudospectrum
for this spatial lter is:

p( )= (3.10)

1
af ()R ta()

where once again the sample estimate of the covariance matkxis used in place
of the actual covariance matrixR .
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Also in this case, the pseudospectra obtained from each sub-band elaboration were
averaged before seeking the directions of arrival, which are de ned as the angles
corresponding to theN highest peaks of the averaged pseudospectrum as well.

The trade-o between DAS and Capon is that the Capon method has a better
spatial resolution, meaning that it is able to discriminate between sources coming
from two very close points in space much better than what DAS can usually do, at
the cost of a more complex computation.

" Multiple Signal Classi cation (MUSIC): this algorithm belongs to the signal
subspace methods class. The subspace exploited by this method is the one generated
by the eigenvectors of the covariance matrix of the array data related to the sensors'
noise. It can be proven that such eigenvectors and the propagation vectors associated
to N distinct sources are orthogonal. So, once the eigenvector matrix related to noise
\V is estimated after an eigenvalue decomposition &, the DOAs of N wideband
sources can be estimated in correspondence of thehighest peaks of the function:

e
pi( ) (3.11)

1
Pavg( ) = B
i=1

where the pseudospectrum for each sub-band is de ned as:

1

PO = 000

(3.12)

One important di erence between this parametric method and the two spatial lters
mentioned before is that the expected number of sources to be detected with MUSIC
must be known in advance. This translates well in the case in which only one obstacle
at a time is considered, but it would scale poorly when an unknown number of
obstacles which is greater than one would need to be treated by the robot.

3.1.4. DOA Algorithms Performance Comparison

Before deploying the full pipeline on the robot while it navigates, | tested and compared
the performances of the three algorithms developed in terms of their computation time,
spatial resolution, and accuracy for obstacles in various positions around the array. More
information on the robotic platform employed are given in Chapter 4, here only the

relevant tests results are displayed and explained.
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Computation Time

This metric is extremely important for real time use cases of the DOA estimators, since
it determines how responsive the system would be to an evolving environment. | ran each
algorithm for 20 times on the robot keeping the sampling frequency of the system xed
at 1764 kHz and feeding the same window of lengthh ms of data to the algorithms. |
kept track of the di erence in the time stamp between the instant in which the signal is
presented to the DOA estimator and the instant in which the pseudospectrum is available
for further analysis. The resulting mean computation times are shown in Tab. 3.1.
The collected data show that DAS has the highest computation speed among the three,
unsurprisingly: the required operations are relatively simple with respect to the other two
methods. Capon requires the inversion of a matrix with a large rank, and MUSIC employs
an eigenvalue decomposition of the same matrix followed by a sorting of its eigenvalues
and corresponding eigenvectors.

DOA estimator ‘ Delay and Sum‘ Capon method‘ MUSIC
Computation time  [mg] ‘ 68 ‘ 145 ‘ 162

Table 3.1: Mean execution times for the DOA estimation algorithms implemented

Spatial Resolution

The spatial resolution refers to the minimum angular separation that two sources must
have to be identi able as separate by the DOA estimator. The metric that | chose to
give an estimate of the spatial resolution of the algorithms is the Half-Power Beam Width
(HPBW), a concept taken from the theory of phased array antennas. The HPBW is
de ned as the angle between the two points of the main lobe of the pseudospectrum that
have a magnitude inferior by3 dB with respect to its maximum. Empty beer bottles of
the NRW (Nordrhein-Westfalen) model (height: 260 mm base diameter: 64 mm) were
used as re ectors, due to their availability and ideal geometrical and material properties
in relation to the robot's emission. One bottle was placed &0 cm of distance from the
robot, aligned with its longitudinal axis. The robot emitted its call, and the echo caused
by the object was recorded by the microphone array and Itered with a matched Iter. The
output of the matched Iter was windowed with the usual rectangular window of length

1 mscentred on the autocorrelation function representing the echo, and this array signal
was then fed to the three DOA estimators. The resulting pseudospectra were interpolated
with a cubic spline by a factor of 25, to have a more accurate estimate of the main lobe
width, and then normalised with respect to their maximum. The two 3dB points were
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then seeked in the magnitude of the pseudospectra. The interpolated pseudospectra are
reported in Fig. 3.4.

DOA estimator ‘ Delay and Sum‘ Capon method‘ MUSIC
Half-Power Beam Width ~ [] | 19 | 4 46

Table 3.2: Half-Power Beam Width of the DOA estimators implemented. The cylindrical
obstacle was placed ad and at 50 cmof distance from the robot

The obtained HPBW values are reported in Tab. 3.2, and they were obtained by averag-
ing ve distinct detections. Once again the results are not surprising: DAS has the widest
main lobe among the three algorithms, while Capon and MUSIC have comparable perfor-
mances that exceed by a fair margin the one o ered by DAS. This very simple experiment
Is not intended to be an exhaustive analysis of the resolution capabilities of the three
algorithms, since the e ect of only one parameter was investigated and just for one single
value of it. Instead, it is meant to be an indication of the general trend in the capabilities
of the algorithms once they would be deployed on a moving robotic platform: if multiple
sources need to be located with a good degree of separation, then more re ned algorithms
can provide the desired performance. If instead the interest is focused on the presence
of obstacles of whatever nature in a general direction, then also a simpler algorithm like
DAS could be applied.

(@)

Figure 3.4: Pseudospectra obtained by applying the DOA estimation algorithms to the
echo generated by a cylindrical obstacle placed at a distance&tfcm (part 1).
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(b)

(€)

Figure 3.4: (continued) Pseudospectra obtained by applying the DOA estimation algo-
rithms to the echo generated by a cylindrical obstacle placed at a distancexficm The
call employed is a linear descending sine sweep fr@@kHzto 20 kHz windowed with a
Tukey window with roll-o factor  of 0.3.

Obstacle positions

This last veri cation step takes into account how the position of the obstacles with respect
to the robot's axis plays a role in the accuracy of their localisation. To perform this test,
two bottles were placed at a distance 050 cmwith an angle separation of30 , starting
from 90 and spanning the entire frontal half-plane. The two tallest peaks were then
selected in the obtained pseudospectra as an indication of the position of the two objects.

What was observed for all the algorithms is a progressive decrease in the localisation
accuracy of both objects the farther they are positioned with respect to the robot's axis:
this is caused by how the acoustic power emitted by the robot is distributed in the
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frontal hemisphere. As it will be shown in Chapter 4, the radiation pattern of the source
employed is concentrated along its axis, so echoes are stronger if they are generated by
obstacles close to the robot's longitudinal axis. The performance of the DOA estimators
depends strongly on the SNR of the array signal: to a low signal power corresponds a
worse localisation performance in terms of accuracy. A comparison of the pseudospectra
obtained for various objects con gurations is shown in Fig. 3.5.

(a) Objects positions: 0 , 30

(b) Objects positions: 30, 60

Figure 3.5: Pseudospectra obtained by echoes coming from pairs of objects placed in
asymmetrical con gurations around the robot (part 1).
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(c) Objects positions: 60 , 90

Figure 3.5: (continued) Pseudospectra obtained by echoes coming from pairs of objects
placed in asymmetrical con gurations around the robot.

The pair of objects placed in con guration 1 0, 30 ) are located with good accuracy by

all three algorithms, despite the echo aD producing a much more prominent peak in
the pseudospectra than the one coming from the side. In con guration 2 80, 60)

the object closest to the front of the robot can still be recognised, but the obstacle placed
at 60 is completely invisible to the robot. In the third and nal con guration (60,

90) the localisation performance is poor for both obstacles. The overall level of the
pseudospectra obtained can also give an indication about the received echoes strength:
comparing the pseudospectra in 3.5a with the ones in 3.5c, there is an excursion of about
20 dB between their maxima.

3.2. Final Remarks on the Processing Pipeline

In the previous Section the full signal processing chain that gives the robot the ability
to echolocate objects around itself has been detailed, and in particular great attention
was dedicated to the Direction of Arrival estimation algorithms that have been tested as
the mechanisms with which the robot would identify the directions from which echoes
arrive to the microphone array. Since the application for such a pipeline is on a mobile
platform whose focus is a real time reactive behaviour, in the end the decision to favour
reaction speed over detection accuracy was taken: DAS was the only algorithm which was
implemented and tested while the robot was performing an autonomous navigation of a
controlled environment. The other two algorithms, i.e. Capon and MUSIC, are still valid
as a more accurate alternative, when the computational power of the platform they are
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run on is enough to reduce their execution time to an acceptable level.
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4 ‘ Robot Design and
Implementation

This Chapter is dedicated to explaining the architecture of the robot that | built and
programmed, the active sensing Ro-BAT. | both present the details of every single com-
ponent and give an overview on how the system is intended to work as a whole. In Section
4.1, |1 go over the hardware components that constitute the robot, starting from its base
con guration and detailing the added components for the intended functionalities. In
Section 4.2, | detail the acoustic measurements carried out to evaluate key aspects of the
transducer and microphones employed, such as their frequency response and directivity,
and how these quantities can in uence the robot's capability to sense the world. In Sec-
tion 4.3, nally, |1 explain how the signal processing pipeline described in Chapter 3 is
integrated into the robot's behaviour.

4.1. Hardware

The robot design process was strongly in uenced by the decision to use consumer-grade
hardware wherever possible. This approach has a number of advantages: rst, costs
and development time for the realisation of a single robot are decreased. Secondarily,
scalability is also improved, since once a satisfying prototype is established it can be
steadily replicated. These two features are well suited for a swarm robotics scenario. The
selection process for the single components and the design stage to reach a nal working
prototype are explained. A picture of the nal robot and a block diagram highlighting
the main components and their connections is shown in Fig. 4.1.

4.1.1. Robot Base Con guration

The starting point for the development of my Ro-BAT consists of a Thymio Il wireless
robot [37] by Mobsya [36] equipped with a Raspberry Pi Model 4B single-board computer
(SBC) [29], powered by an external power bank through the Pi's USB-C socket. It is a
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