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Zusammenfassung

In dieser Arbeit befassen wir uns mit einer kollektiven Überwachungsauf-
gabe, bei der ein Roboterschwarm eine gemeinsame Entscheidung über das
vorherrschende Merkmal in der Umgebung treffen muss. Während sich frü-
here Arbeiten auf Szenarien konzentrierten, in denen der Schwarm in einer
statischen Umgebung agieren musste, in der ein Merkmal dem anderen ein-
deutig überlegen war, betrachten wir hier anspruchsvollere und realistischere
Szenarien. Das erste Szenario ist dynamisch, d.h. Merkmale der Umgebung
verändern sich im Laufe der Zeit, was den Roboterschwarm dazu zwingt, sei-
neMeinung zu überdenken und seine Entscheidungen zu ändern. Im zweiten
Szenario, in welchemdieMerkamle nicht von einander zu unterscheiden sind
(gleich stark), muss der Schwarm in der Lage sein die Symmetrie zu brechen
und eine Alternative zu wählen. Zuletzt betrachten wir ein drittes Szenario,
in dem beide Aspekte kombiniert werden und der Schwarm sich sowohl an
Umweltveränderungen anpassen als auch die Symmetrie brechen muss. Wir
implementieren ein minimalistisches Roboterverhalten, das aus reaktiven
Regeln besteht, um Umweltinformationen zu verarbeiten und einfache
Abstimmungsnachrichten zwischen Robotern in Kommunikationsreichweite
auszutauschen.Umdas Verhalten zu testen, erweiternwir einen bestehenden
populären Schwarmrobotik-Simulator. Dabei haben wir ein Plugin ent-
wickelt, welches die erweiterte Realitäts Umgebung Kilogrid simuliert. Wir
führen eine große Anzahl von physikbasierten Simulationen durch. Im ersten
Szenario stellen wir fest, dass der Roboterschwarm nur in der Lage ist, sich
mit lokalen Kommunikationsreichweiten anzupassen,was in der Literatur als
weniger istmehr-Effekt bezeichnet wird.Darüber hinaus beobachten wir einen
neuen, kontraintuitiven Effekt, den langsamer ist schneller-Effekt, durch den
sich der Roboterschwarm schneller an eine Umweltveränderung anpassen
kann, wenn die Roboter die Umwelt langsamer messen. Im zweiten Szenario
stellen wir fest, dass der Schwarm nur bei großen Kommunikationsreich-
weiten in der Lage ist, die Symmetrie zu brechen. Diese Ergebnisse führen
zu dem Problem, dass es keine statische Kommunikationsreichweite gibt,
die es dem Schwarm ermöglicht, sich sowohl an Veränderungen anzupassen
als auch die Symmetrie zu brechen. Daher entwerfen wir ein neues Roboter-
verhalten, welches den Robotern erlaubt, ihre Kommunikationsreichweite
individuell zu wählen, basierend auf ihren lokalen Informationen. Wir
zeigen, dass unser neues minimalistisches Verhalten die Beschränkungen
von statischen Kommunikationsreichweiten überwindet und den Schwarm in
die Lage versetzt, in komplexen und realistischeren Szenarien zu operieren.
Die Anpassungsfähigkeit an Veränderungen und die Vermeidung von Ent-
scheidungsblockaden durch Symmetriebrechung sind Schlüsselfähigkeiten
für den Einsatz vonminimalistischen Roboterschwärmen in der realenWelt.

Ein Teil der Ergebnisse dieser Arbeit wird auf der internationalen Kon-
ferenz über Schwarmintelligenz ANTS 2022 veröffentlicht, die vom 2. bis 4.
November 2022 in Malaga stattfinden wird.
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Abstract

In this thesis,we consider a collectivemonitoring task inwhich a robot swarm
needs to collectively reach a consensus on the predominant feature in the en-
vironment. While previous work focused on scenarios where the robot swarm
needed to operate in a static environment with one feature clearly superior
to the other, here we consider more challenging and realistic scenarios. We
consider a first scenario where the environment is dynamic—i.e., the features
of the environment can change over time—requiring the robot swarm to
reconsider its opinion and change its consensus. We also consider a second
scenariowhere the features are indistinguishable fromone another—i.e., they
are equally predominant, and the swarmmust be able to break the symmetry
and select any of the alternatives. Finally, we consider a third scenario that
combines both two aspects and the swarm needs to both adapt to environ-
mental changes and break the symmetry. We propose a minimalistic robot
behaviour composed of reactive rules to process environmental information
and exchange simple votingmessages between robots within communication
range.
In order to test the proposed behaviour, we extend an existing popular swarm
robotics simulator to support the selected experimental platform—i.e., we
release a new plugin to simulate a Kilobot swarm operating in the augmented
environment Kilogrid—and we run an extensive number of physics-based
simulations. In the first scenario, we find that the robot swarm is only able to
adapt for local communication ranges reproducing what in the literature is
called the less ismore effect. Further,we observe a new counter-intuitive effect,
the slower is faster effect, by which the robot swarm is able to adapt quicker to
an environmental change when its constituent units—the robots—are slower
in sampling the environment. In the second scenario, we find that the swarm
is only able to break the symmetry for large communication ranges. These
findings lead to the problem that there is no single communication range that
allows the robot swarm both to adapt to changes and break the symmetry.
Therefore, we propose a new robot behaviour that allows the robots to choose
their communication ranges individually, based on their local information.
We show that our new minimalistic behaviour overcomes the limitations of
static small or static large communication ranges, and makes the swarms
capable of operating in complex andmore realistic scenarios.
Adaptability to changes and avoiding decision deadlocks through symmetry
breaking are key capabilities to the deployment of minimalistic robot swarms
in the real-world. This thesis moves the swarm robotics literature one step
closer to that day.

Part of the results of this thesis will be published in the international
conference on swarm intelligence ANTS 2022 which will take place in Malaga
from the 2rd to the 4th of November 2022.
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1
Introduction

Using a swarm of minimalistic robots for solving a monitoring task can be beneficial in
certain scenarios, where the environment constraints the individual robot’s capabilities
(Hamann, 2018; Yang et al., 2018; Torney, Neufeld, and Couzin, 2009). In environments
such as the ocean floor or in-body blood vessels (Yasa et al., 2020), it is desirable to have
biodegradable devices as we do not want to pollute the ocean nor the human body. In
search and rescue missions monitoring the environment plays an important role. These
missions are mostly in hazardous environments with high risk of damaging the robots.
Therefore making the robots disposable saves budget (Jafferis et al., 2019).
Often the robot swarm cannot be controlled or supervised in the given application sce-
narios. Further, especially in hazardous environments, single point of failures, e.g., cen-
tral control, significantly jeopardises themission. For this reasons controlling the robots
via minimalistic decentralised behaviours can be a viable option. The minimalistic re-
quirements allow implementation on simpler platforms, such as nano- andmicrorobots
(Gauci et al., 2014; Özdemir et al., 2018).
We study the task of collective monitoring of a dynamic environment. This task requires
the swarm to reach a consensus on the current state of the environment, therefore re-
quires the swarm tomake a collective decision. In particular,we investigate the best-of-n
problemwhere the swarmhas to select the best option among n alternatives. In our study
the options are represented bydifferent colours and the options’ qualities are determined
by the colour concentrations in the environment. The task of the robot swarm is to reach
a consensus in favour of the colour with the highest concentration, i.e., the option with
the highest quality. We consider two different scenarios.
While monitoring an environment, it can happen that the qualities of the available op-
tions change, e.g., the gas concentrations change due to a broken pipe. Therefore, the
first scenario is adaptive best-of-n in whichwe assume a dynamic environment with two
different colours, which change in concentration over time. This scenario allows us to
study the robot swarm’s ability of adaptation. We conduct the experiments of the adap-
tivebest-of-n scenario to reproduce the less ismore effect observedbyTalamali et al. (2021),
by which less intra-robot communication lead to a more adaptive swarm. Thereby, we
also observed the slower is faster effect which has not been documented before in robot
swarmsmaking collective decisions, and indicated that slower updates by the individual
robots lead to faster collective adaptation to environmental changes (Aust et al., 2022).
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1 Introduction

Duringmonitoring an environment it can happen that one or more options have similar
qualities. That is why we study the robot swarm’s ability of symmetry breaking in a sec-
ond scenario. The task of the robot swarm in this scenario is to collectively decide on one
of the n options, which have equal quality. We find that the current robot behaviour is
able to break the symmetry for large communication ranges,where it is not able to adapt
due to the less is more effect.
Therefore,we propose a new extension to the robot controller inwhich the robots can au-
tonomously change their communication range, based on their current (local) situation.
We test the new extension on the two considered scenarios, adaptive best-of-n and sym-
metry breaking. Further, we introduce a third scenario: adaptive symmetry breaking,
where we combine the two scenarios. We show that the extension of dynamically choos-
ing the communication range works in all three scenarios and is a promising solution to
overcome the limitations of static local or static global communication ranges.
We implement the environment using the Kilogrid, a unique augmented reality for the
Kilobot platform, later shown in Fig. 4.2. Besides allowing to implement arbitrary best-
of-n-problems, we use the communication infrastructure of the Kilogrid to enhance the
robot’s communication capabilities. For the minimalistic robot behaviour, executed on
the Kilobot platform, we extend the controller of Talamali et al. (2021) by adapting it to
the new environment and improving the robot’s behaviour, as further described in Sec-
tion 4.3.
Theexperiments areperformedusing the simulatorARGoS3 (Pinciroli et al., 2012),which
we extended by implementing and releasing the source code of a plug-in to simulate the
Kilogrid platform1.

Structure of the Thesis

In this section, we give an outline of the thesis structure. In Chapter 2, we present the
fundamentals for this thesis. Thereby, we first give an introduction to swarm robotics
and collective decision-making, followed by presenting the best-of-n problem, the task
of collective perception, the slower is faster effect and the less is more effect, in Section 2.1.
Second, we present the related work in Section 2.2.
In Chapter 3, we present the used robotic platform, the Kilobot robot (Section 3.1) and its
augmented reality arena, the Kilogrid (Section 3.2). In Section 3.3, we explain the simu-
lation environment ARGoS 3 and the newly developed extension to simulate the Kilogrid.
In Chapter 4, we present the two scenarios, adaptive best-of-n and symmetry breaking,
in Section 4.1, and the robot behaviour in Section 4.2.
InChapter 5,wepresent the conducted experiments. Thereby,wedefine theusedmetrics
in Section 5.1. The experimental set-up, results and discussion for the adaptive best-of-n
scenario and the symmetry breaking scenario are presented inSection 5.2 andSection 5.3
respectively.
InChapter 6,wepresent anextensionofdynamically adjusting the communication range
to solve the new problem scenario of adaptive symmetry breaking, which combines the
previous scenarios. Therefore, we describe the implementation of the new extension in
Section 6.1 and the conducted experiments and results in Section 6.2.
1https://github.com/tilly111/adaptive_symmetry_breaking
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In Chapter 7, we summarise our study and give an outlook on future work.
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2
State of the Art

In this chapter, we present an overview of the literature and explain fundamental con-
cepts used in later work.
We start by giving a short introduction into swarm robotics. Next, we present the fun-
damentals of collective decision-making, followed by a later classification. Thereafter,
we introduce the best-of-n problem and the task of collective perception. Afterwards,we
describe the slower is faster effect and less ismore effect, which we find in our experiments.
With the described fundamentals we can then classify and distinguish our work from
other approaches found in literature.

2.1 Terms and Definitions

Swarm Robotics

Dorigo and Şahin (2004) defined, “Swarm robotics is the study of how a large number of
relatively simple physically embodied agents can be designed such that a desired collec-
tive behaviour emerges from the local interactions among agents and between the agents
and the environment.”
The aforementioned definition imposes certain requirements for the robots. First, the
robots need to have somekind of local sensing for interactingwith the environment. Sec-
ond, the robots need to have some kind of communication capabilities, for collaboration
and cooperation between the swarmmembers. Local communication is a key feature of
the swarm, as communication is fundamental for local interactions and thus collabora-
tion or cooperation. Thereby, wewant to point out that collaboration of swarmmembers
means exceeding mere parallelisation (Hamann, 2018).
From a second definition by Beni (2005), “a group of non-intelligent robots forming, as
a group, an intelligent robot. In other words, a group of ‘machines’ capable of forming
‘ordered’ material patterns ‘unpredictably’.”, we can extract further properties, that are,
decentralised control, lack of synchronicity, simple (quasi) identical members or quasi-
homogeneous members which are mass produced (Hamann, 2018).
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Collective Decision-making

An important objective in swarm robotics is the ability for the swarm to make indepen-
dent decisions. This enables the swarm to behave in an autonomous way, creating the
possibility of behaving intelligently. Therefore, collective decision-making is a funda-
mental capability of the swarm (Hamann, 2018). For autonomous behaviour of the robot
swarm, each swarm member should behave autonomously, i.e., each individual robot
should do independent decisions. These independent decisions should contribute to the
collective decisions of the robot swarm.
Decision-making describes the process of choosing one action from different alterna-
tives, i.e., the robot decides which action to take. Individual decisions are often made
under uncertainty, because the robots are only capable of local sensing and local interac-
tion. In swarm robotics, it becomes more difficult, as a group of robots needs to make a
decision, that iswhy, collective decision-making ismore complex andmight show effects
of social influence and, for example, group polarization (Hamann, 2018).
In collective consensus decision-making it is tried to avoid “winners” and “losers” of the
decision. While themajority approves a decision, theminority goes along,with the right
to veto at any time. The procedure of collective consensus decision-making is compli-
cated to implement. A more common approach are voting-based methods. Most of the
voting-based methods are extending the classical voter model, first presented by Holley
and Liggett (1975). The classical votermodel can be seen as a connected graph. Each node
is a voter, which can interact with other voters it is connected to, i.e., its neighbours. At
any given time the voter’s opinion can be either 0 or 1. The update of opinion happens, at
random times, to one randomly selected voter. Then the chosen voter (randomly) selects
one neighbouring voter and adopts its opinion. Formaking the correct decision, i.e., de-
ciding towards the best option for the swarm, the classical voter model can be extended
to the weighted voter model, which means that the quality of the option influences the
dissemination of that option (Valentini, Hamann, and Dorigo, 2014).
In this study,we implement an extensionof theweighted votermodel following the social
interaction pattern cross-inhibition, which is motivated by honeybee nest-site selection
(Seeley et al., 2012). Thismodel is formalised (Reina et al., 2015; Reina et al., 2017b) and a
minimalistic approach further described in Section 4.2. We chose cross-inhibition as it
leads tomore stability in the process of finding consensus and enables the voters to break
decision deadlocks in case of equal-best options (Seeley et al., 2012).

For swarmroboticsBrambilla et al. (2013) formalised twocategoriesof collectivedecision-
making problems:

1. the problem of consensus achievement and
2. the problem of task allocation.

In the first category, a swarm of robots tries to make a common decision on a certain
matter. The second category describes how agents allocate themselves to tasks, in order
to maximize the performance of the swarm.
In this work, we study the first category, which is further classified by Valentini, Fer-
rante, and Dorigo (2017). They subdivide the category of consensus achievement into the
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discrete and continuous case. While the continuous case encompasses problems with
infinite and measurable choices, e.g., selection of a common direction of motion by a
swarm implementing a flocking behaviour, the choices of the discrete problem are finite
and countable. We study the category of discrete consensus achievement problems of
decision-making.

Best-of-n Problem

The best-of-n problem is an instance of the discrete consensus achievement category.
A swarm of N robots found a solution for a specific best-of-n problem, if it makes a col-
lective consensus decision on one out of n available options. The robot swarm made a
collective consensus decision if a large majority M ≥ (1 − 𝛿)N is in favour of the same
option, e.g., 0 ≤ 𝛿 ≪ 0.5 (Valentini, Ferrante, and Dorigo, 2017). Each option i has a
quality 𝜌i. The robots can make noisy estimates of the qualities. The estimates influence
the decision process in theweighted votermodel, allowing us to say that the robot swarm
found the right solution to a specific best-of-n problem, if the swarm makes a collective
consensus decision on one option with the highest quality.
We can further categorise the best-of-n problem by differentiating on the options qual-
ities, they can be either symmetric (all options have the same quality, 𝜌i = 𝜌j∀i, j ∈
{1, ..., n}) or asymmetric (the options have different qualities, 𝜌i < 𝜌j∀i, j ∈ {1, ..., n}).

Collective Perception

Collective perception is a special case of the consensus achievement task in collective de-
cision making (Valentini et al., 2016b).
The robot swarm’s task is to solve a best-of-n problem, that is to identify a predominant
feature, e.g., concentration of a colour, scattered in an unknown environment. The en-
vironment is considered to be much larger than the individual robot, thus a single robot
can only make local assumptions by estimations based on its current location (local per-
ception). However, this local information is generally not enough to draw reliable conclu-
sions for thewhole environment. Therefore, it is beneficial to havemultiple agents work-
ing together to cover larger areas and collectmore spatially distributed information. The
individually gathered information is then combined through local robot interaction for
making collective decisions.

Slower is Faster Effect

The slower is faster effect is a phenomenon which can be observed in many real life situa-
tions.
In ecology, we can observe the slower is faster effect, e.g., in the predator prey relation-
ship (Slobodkin, 1961). If predators consume their prey too fast the prey population will
decline, meaning no prey to consume, leading to a declining predator population. Thus,
“prudent” predators will spread faster than greedy predators because they let the prey
population recuperate.
The slower is faster effect can also be observed in social dynamics. In the voter model
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the agents may change opinion depending on the option of their neighbours to even-
tually converge to a state where each agent has the same opinion. If the agents change
their opinion too fast, itmight delay convergence (Stark, Tessone, andSchweitzer, 2008a;
Stark, Tessone, and Schweitzer, 2008b). Thus, faster (individual) opinion switches will
not lead to faster convergence of the agent swarm.
A third example of the slower is faster effect can be found in harbour logistics using auto-
mated vehicles for container transport. By reducing the speed of the individual vehicles,
the required safetydistances betweenvehicles canbe lowered, so that therewere less con-
flicts ofmovement, resulting in that the automatic guided vehicles had towait less. Thus,
the overall transportation time could be reduced by increasing the individual movement
time (Gershenson and Helbing, 2015).
All these scenarios have in common that they can bemodelled as complex dynamical sys-
tems composedofmanynon-linearly interacting agents (GershensonandHelbing, 2015).
To summarize, the slower is faster effect describes that some system is able to accomplish
its task faster if the individual components, i.e., agents or robots, perform their task
slower.

Less is More Effect

The less is more effect was first observed in robot swarms by Talamali et al. (2021). They
found that by limiting the communication capabilities of the individual robots, i.e., re-
duce the robot’s individual communication range, the swarm performs better inmaking
a consensus decision in favour of the better option. While by increasing the communi-
cation capabilities, i.e., all to all communication between swarmmembers, the swarm is
not longer able to make a consensus decision in favour of the better option. A require-
ment for the less is more effect is that recruitment takes time, i.e., there need to be a delay
between themoment a robot is recruited and themoment the robot recruits other robots.
In the study of Talamali et al. (2021) the delay was implemented in the following way: af-
ter recruitment the robots first needed tomake an estimate of the option they have been
recruited to, before recruiting other robots to their option.
The counter-intuitive less is more effect can be explained via the social impact of commit-
ted subpopulations of unbalanced sizes. A large majority is able to repeatedly mute mi-
norities that make temporary discoveries of alternative options. The minority’s opinion
is slow to gain traction in the population as new recruits are slow in becoming vocal and
are quickly reverted to the majority’s opinion. When the communication range is large,
or equivalently when the robot density is high, any minority is in contact with the large
majority at all time. Instead, sparse connectivity, due to small communication range or a
low robot density, reduces the importance of subpopulation sizes. Interactions are spo-
radic (often limited to pairs) and the collective dynamics is governed by opinion quality
(in our case encoded via messaging frequency).
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2.2 Related Work

Herewe give an overview of the relatedwork that investigated collective perception of an
environmental feature in swarm robotics and how it differs from our approach.
Similar to the work of Talamali et al. (2021), we opt for a minimalistic approach, to run
our algorithms on robots, which have minimal requirements in terms of memory, com-
putation, sensing and communication capabilities.
ShanandMostaghim(2020)proposed thecollectivedecision-makingstrategyDistributed
Bayesian Hypothesis Testing (DBHT) to solve the collective perception problem. In their
method, the robots first individually form their estimation of likelihood of various hy-
pothesis by observing their immediate surrounding environment. Then a leader peri-
odically collects opinions from other robots, and forms the final estimate of the whole
swarm. The DBHT approach is extended by Shan and Mostaghim (2021)’s work. They
introduce the Distributed Bayesian Belief Sharing (DBBS), which removes the central
leader, needed in DBHT, for forming the swarm’s final estimate. However, in both ap-
proaches, DBHT and DBBS, the robots are required to store all available alternatives and
all receivedmessages,whereas in ourwork the robot only stores a single opinion, i.e., the
colour it considers predominant and the estimated colour concentration, the last mes-
sage received from a neighbour, and a temporary variable to estimate possible environ-
mental changes.
Ebert,Gauci, andNagpal (2018) studied themulti-feature collectivedecisionmakingprob-
lem. The robots needed to decide onmultiple features simultaneously. Similar to Valen-
tini et al. (2016b), the robot controller is separated into ameasuring phase and a dissem-
ination phase. Thereby, the robot keeps a belief, concentration and decision for every
feature in the environment. In Ebert et al. (2020) each robot employs a Bayesian model
of thefill ratio andmakes a decisionusing credible intervals of the posterior distribution.
All of these approaches use computation based on Bayesian inference. Bartashevich and
Mostaghim (2021) studied the collective perception problem using operators from epis-
temic logic. Implementing the robot behaviour based onBayesian inference or epistemic
logic makes the robot controller more complex and thus more computational demand-
ing compared to our robot behaviour, that is defined by a small finite state machine with
standard reactive transitions.
Another limitation of our robots is the sensing capability. The implementations of Shan
and Mostaghim (2020), Shan and Mostaghim (2021), and Ebert et al. (2020) require the
robots to be able to determine the predominant element at every measurement. In our
approach the robot is only able to measure the presence of absence of a certain element,
i.e., the element the robot is currently measuring.
Previous work needed rich inter-robot communication to maintain required shared col-
lective knowledge. In the case of DBHT, a centralised entity is required. In our approach
the robots only send simple messages containing few bits, indicating their preferred el-
ement. In the case of n = 2 this can be reduced to one bit of information.
Related work in the field of collective perception, that is comparable in its simplicity of
individual robot requirements is that ofValentini et al. (2016b). So far all studies assumed
a static environment for the collective perception problem. Only few studies considered
dynamic environments. Thework of Prasetyo et al. (2018) andPrasetyo,DeMasi, andFer-
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rante (2019) considered a dynamic environment for the site selection scenario with n = 2
options. Similarwork,which also considers a site section scenariowas done by Soorati et
al. (2019) and Talamali et al. (2021). We consider a dynamic environment for the collective
perception scenario.
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3
Material and Methods

This chapter is split in twomain parts. The first part presents the needed hardware. This
includes the robotic platformKilobot, described in Section 3.1 and its unique augmented
reality arena Kilogrid, described in Section 3.2. The other part covers the used and de-
veloped software of this work. Thereby, we begin by introducing the simulation environ-
mentARGoS3 inSection 3.3. Finally, in Section 3.3, basedon the simulation environment
and the real hardware, we developed a plug-in for ARGoS 3 to simulate Kilogrid.

3.1 Kilobot

For the conducted experimentswe chose theKilobot robotwhich iswidely used in swarm
robotics research (Rubenstein, Cornejo, and Nagpal, 2014), see Fig. 3.1. The low cost and
mass programmability of this platform allows for large scale experiments. Even though
the cost per robot is low, it comeswith all the capabilities needed for running robot swarm
experiments, such as locomotion (moving forward and rotating), communication with
neighbouring peers (alsomeasure distance), sufficientmemory and computing power to
run the behaviour controller.
The robot is equipped with two vibrating motors. The slip-stick principle is used to gen-
erate a forwardmotion out of rotation. The twomotors allow a differential like behaviour
(activate one for rotation; both for driving straight). This allows the Kilobot to move
approximately 1 cm/s and rotate approximately 45 degrees/s. The slip-stick motion ap-
proachwas chosen because of its low cost, but it comeswith the problemof precisemove-
ment. Due to the slip-stick basedmotion, there is no real formof odometry,whichmakes
it impossible to be accurate over a longer distances.
The robots do not have capabilities of directly sensing (no sensors are included) besides a
visible light sensor, which we do not use for our experiments.
The Kilobot has an infrared transmitter and receiver on the bottom side. It is a wide-
angle transmitter with a half power of 60∘ from the robot’s downward pointing vertical
axis. This allows for local communication of up to 10 cm (Rubenstein, Ahler, and Nagpal,
2012). Normally, the communicationmodule is used as in Fig. 3.2. The transmitter emits
infrared light, which is reflected by the floor of the arena and then can be received by
neighbouring robots. Messages are transmitted by pulsing the transmitter according to
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Figure 3.1: This is a Kilobot.

standard line coding technique. This allows a theoretical maximum communication rate
of 30 kb/s. However, empirical results show messaging with this high frequency causes
a lot of interference (Pinciroli et al., 2018). To avoid these interference, the maximum
communication frequency is set to sending infrared messages with 2 Hz. One infrared
message consists of 8 byte payload and 1 byte header. There can be still the interference,
because all robots use the same infrared channel for communication. To mitigate this
problema standard carrier sensemultiple accesswith collision avoidance (CSMA/CA) has
been implemented. However, crowdedareaswill have a significantdropof channel band-
width.
The receiver can alsomeasure the intensity of the incomingmessage and thus determine
how far the message travelled. This is not used, because in our approach the robots do
not speak directly with each other, as described in detail in Section 3.2.
Another problem in large robot swarm experiments is the limited scalability due to robot
programming. The Kilobot platform overcomes this issue by offering to be programmed
over air with the overhead controller. The overhead controller is an infrared transmit-
ter, which can be connected to the computer via a serial connection. It then can be used
with the open source softwareKiloGUI2 for controlling the robots. Besides programming
large quantities of robots at the same time (broadcasting), other commands such as run-
ning and stopping the robot, checking its battery status, calibrating the Kilobot’s motors
and ID assignments are possible.
The on-board capabilities are very limited on this robotic platform. In our experiments,
as described in Section 3.2,we employed theKilogridwhich allows us to amplify theKilo-
bot’s communication range, aswell as to equip theKilobotwith a range of virtual sensors,

2https://github.com/acornejo/kilogui
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10 cm

Figure 3.2: Communication between twoKilobots. One robot emits an infraredmessage,
which is reflected by the ground and then received by a neighbouring robot.

such as a virtual GPS or a virtual sensor for reading the ground’s colour. This can be gen-
eralised to arbitrary sensing and thus allows for a dynamic and fast experiment develop-
ment.

3.2 Kilogrid

TheKilogrid is aworldwideunique augmented realityKilobot arenadevelopedbyAntoun
et al. (2016). It is open source3 to enhance the reproducibility for swarm experiments. In
the following we give a short overview of its structure, followed by an exemplification of
how we utilise these structures to conduct our experiments.
The Kilogrid, we are using, is a 1000mm by 2000mm large grid of modules and a dis-
patcher. Each module is 100 mm by 100 mm. The dispatcher allows to interface the
modules with a computer, allowing to program each module individually. On top of the
modules is a single 8mm thick transparent Plexiglas surface on which the Kilobots can
move. One module consists of four cells, which are 50 mm by 50 mm, arranged as in
Fig. 3.3. Further, each cell has one infrared transceiver and two RGB LEDs driven in
parallel, pointing upwards. The infrared transceiver is used to send and receive infrared
messages from the Kilobot through the Plexiglas surface. The RGB LEDs can be used to
indicate the internal state of the cell.
Moreover, thedispatcher incorporates all the functionalities as theoriginal overheadcon-
troller. The dispatcher can be controlled, similar to the overhead controller, via a serial
connection to a computer. Therefore, theKiloGUI has been extended to allow, in addition
to theKilobot commands, the user to program themodules and set-up experiments. This
allows easy programming and calibrating of the Kilobots and Kilogrid modules.
The communication infrastructure between modules and dispatcher uses a Controller
Area Network (CAN).The programming environment of the Kilogrid has been developed
as an extension of the kilolib library4. This extensions allows to program themodules in a
similarmanner as the Kilobot. Themodule implements a setup function which is called
in the beginning of the experiment. In the setup function a user can pass parameters to
the module through a .kconf file. The structure of the .kconf specifies which modules

3kilogrid https://www.giovannireina.com/kilogrid/about.html.
4https://github.com/acornejo/kilolib.
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Cell 00

Cell 02

Cell 01

Cell 03

100mm

50mm

100mm

50mm

Figure 3.3: Layout of the four cells from onemodule.

receive what parameters. It is possible to address the modules individually, by row or by
column. Themodule implements aloop function,which is called every control cycle. The
message reception (infrared and CAN) is implemented as a callback function, similar to
the infrared message reception implementation of the Kilobot.
The electronic architecture of a module features an ATmega328P microcontroller unit
(MCU) for executing user-defined programs. A CAN interface handles the communica-
tion with the dispatcher. The network stack is built up on the standard CAN protocol,
which allowsmodule tomodule communication aswell asmodule to dispatcher commu-
nication. The dispatcher is also equippedwith an ATmega328Pmicrocontroller. Through
fixed positions on the grid (and fixed addresses) the modules are independent commu-
nicating entities. The current CAN bus system can only handle up to 112 nodes, thus the
dispatcher needs to be adapted in the followingway to virtually connect all 200modules.
Its CAN interface is provided with two CAN repeaters that divide the CAN network into
four buses, which are physically separated but virtually connected. This allows a maxi-
mumnumber of 4× 112 = 448 nodes. The current network speed is 250Kbps, for the sake
of increasing the maximum possible number of nodes, this would go down. The four in-
frared transmitters and receivers aremultiplexed and independently driven by theMCU.
The received infrared signals are processed such as in the Kilobot (i.e., amplified and fil-
tered), permitting to measure the distance between a transmitting Kilobot and a receiv-
ing cell. To prevent cross-talk of adjacent cells, IR barriers were introduced.
The high flexibility of the Kilogrid provides many desirable features. First, the Kilogrid
makes it easy to design an environment as described in Section 4.1, by assigning one op-
tion to each cell. Second, collecting data is very convenient. Finally, the most important
argument is that we can overcome the limited communication range of the Kilobot by
virtualising the communication.

In the following we describe howwe implemented the virtual communication transmis-
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sion between Kilobots utilizing the Kilogrid and thus enhancing the communication ca-
pabilities of theKilobot. In Fig. 3.4,wepresent thenovel approachof virtually forwarding

Kilogrid

Cell Cell Cell Cell Cell Cell Cell Cell Cell Cell Cell Cell
Module Module Module

Figure 3.4: Forwarding the Kilobot message with the Kilogrid.

Kilobot messages. First, the sending Kilobot transmits a message containing the range
it wants the message to be distributed. This happens with the normal Kilobot message
sending protocol, described in Section 3.1, which is supported by the Kilogrid. Next,
the message gets processed in the receiving Kilogrid module (the information which cell
received the message from the Kilobot remains). The processed message is then trans-
formed to a CAN message. The corresponding CAN message is then send to all other
modules via a CAN wide broadcast. At first, this seems counter intuitive, as we would
expect that sending the message only to adjacent cells would be a more scalable solution
and not all modules have to process, whether they are meant to receive the message.
Tounderstand this design choicewebriefly explain how themessaging in this bus system
works. One can imagine the bus system as a single channel, where all the nodes listen all
the time. For receivingmessages,filters need to be set in the correspondingnodes,which
only allow certain messages to be passed through to the user level. Because there is only
one channel, it is only possible that one node speaks at a time. The given hardware limits
the number of filters, such that we can only implement individualmessaging and broad-
casting.
The drawbacks of individually messaging all the neighbouring cells are that we would
need to sendmultiple CANmessages (up to 200 in the case of global communication) per
received infrared message of one robot. This would lead to a huge delay, as there can be
only one sending node at a time, hence we would have to sequentially send all the mes-
sages. Another point is, that by default all nodes receive all messages, this implies that
for better scalability we should try to minimize the number of sent messages.
Next, we explain how the message processing in the receiving module is done. The re-
ceivedmessage is first processed by a callback function. In this callback function,wefirst
check if there is a cell, which is intended to receive the message by using the euclidean
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distance measure,

√(xs − xmy)2 + (ys − ymy)2 < r, (3.1)

with (xs, ys) being the position of the sending cell, which initially received the message
from the Kilobot, (xmy, ymy) being the position of the receiving cell and rc the range the
robot wants the message to be send. We decided to use the euclidean distance measure,
because it approximates a circle which is the usual form of communication range, but it
can be replaced by any user defined distance measure. If the receiving cell is in range,
the Eq. (3.1) holds, the information of the message are stored in a temporary storage,
which gets read out in the next cycle of themodule. This also handles the case if multiple
messages arrive at similar time, e.g., in the same control cycle. In this case, only the last
message is forwarded, as the temporary storagegets overwrittenby the last receivedCAN
message. In themain loop of themodule, the received CANmessage is then converted to
an infrared message and send. If there is a Kilobot on top of the sending cell, it receives
the message and can process its information.

Augmented Reality for Kilobots (ARK)

Because of the simplicity of the Kilobot, there is a desire for augmented realities to en-
hance its capabilities. Besides the Kilogrid, there are other augmented realities, such as
the augmented reality for Kilobots (ARK), which is widely adopted (Reina et al., 2017a;
Font Llenas et al., 2018; Talamali et al., 2021; Talamali et al., 2020; Minimalist Robot
Swarms, 2022; Pratissoli et al., 2019). It has many advantages, such as easy calibration,
its low cost and relatively large research community. The disadvantage however, is the
very limited communication capability, which is fundamental for our approach of virtu-
alising the communication. As aforementioned, the Kilogrid is able to overcome these
limitations, due to its decentralised nature.

3.3 Kilogrid in ARGoS 3

For fast prototypingand testing algorithmsweneeda simulation environment,which re-
sembles the reality as close as possible. Therefore, we chose to implement the Kilogrid in
the physics-based simulator ARGoS 3 by Pinciroli et al. (2012). We chose this simulation
environment because of the performance and the customizability. Further, this simula-
tion environment already supports the robotic platform Kilobot as a plug-in (Pinciroli et
al., 2018).
ThefundamentaldesignconceptofARGoS3 includes, that theprogrammingof the robots,
in our case the Kilobot, should be as close to reality, as possible. Thus, it offers the same
interfaces as the real robot does. Inspired from this approach, we also opted to design
the Kilogrid plug-in, such that it offers the same interfaces as the real Kilogrid.

– 15 –



3 Material and Methods

ARGoS 3

In this section we give a short overview of the structure of ARGoS 3 for a better under-
standing of the design and integration of the Kilogrid plug-in.
From a user perspective there are three important files, as depicted in Fig. 3.5. The first
file is the experiment configuration file. It is a XML file with the extension .argos. This
file defines how the experiment is conducted, e.g., it defines the robot controller, the en-
vironment properties and the random seed used. The second file is the robot controller.

ARGoS 3 DataRobot Controllers

.argos file

Loop Function

Figure 3.5: Fundamental usage of ARGoS 3. On the left side are the required files the user
has to provide to run an ARGoS 3 experiment, which then generates the desired data.
Adopted from https://www.argos-sim.info/user_manual.php.

It defines the code, which is executed on each robot taking part in the experiment. The
code for our experiments is described in Section 4.3. The last file, which is important,
is the loop function file. It handles the behaviour of the environment for each time step
and thus is the starting point of integrating the Kilogrid into ARGoS 3. In Fig. 3.6 one
can see the the fundamental cycle which is executed for any simulation run by the loop
function. In the beginning of a simulation run, the init function is executed. After-

Loop Function

Init

Pre Step

Robot Controller

Post Step

Figure 3.6: Fundamental cycle of the loop function of the ARGoS 3 simulator.

wards, for the specified number of simulation steps, the following loop is executed every
simulation step. First, the Pre Step function is executed, second, in random order, the
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robot controllers are executed for one simulation step and third, thePost Step function
is executed. In the end the of a simulation run, the Destroy function is called.

Kilogrid plug-in

Based on the aforementioned loop, we developed the Kilogrid plug-in, which we describe
in the following. Thereby, we structure the explanation after the steps taken in the loop.
Init: this function is used to initialise the shared memory of the virtualised modules,
which is later used for the communication. It also initialises necessarily needed mod-
ules from the simulation environment and the robot tracking. Next, it calls the .kconf-
parser,which takesa.kconf-file andsends its information to the specified (virtual)mod-
ule. The .kconf-file has the same structure as for the real Kilogrid and thus can be de-
ployedone-to-oneon the realKilogrid. Finally, it calls thesetup functionof each (virtual)
module, which processes the data, specified by the .kconf-file.
Pre Step: in this step, first, the message reception is processed. This can be subdivided
into infrared message reception (robot to module) and CANmessage reception (module
to module).
Beginning with the infraredmessage reception, we need to utilize theDebug struct of the
Kilobot plug-in, which is the only shared memory where both the robot controller and
the loop function have access, thus the only way to communicate from the robot to the
loop function in ARGoS 3. Normally, the Debug struct is only used for tracking and other
debugging purposes. We extend the current functionality by adding 8 bytes of memory
(later used for storing the payload of themessage) and a flag, if the robot currently wants
to send a message. Next, the loop function cycles through the Kilobots and if the flag is
set it copies the message payload to the corresponding module infrared message recep-
tionbuffer. Thecorresponding (virtual)module is the (virtual)modulewhich contains the
cell beneath the robot and can be determined by the robots position (which is accessible
by the loop function). After all the robot messages have been collected and added to the
reception buffers, in a next step, the IR_rx function of the corresponding (virtual) mod-
ules are called. If there aremultiplemessages in the reception buffer, a randommessage
is chosen following a uniform distribution and all other messages are discarded.
Next, the CAN messages, send by other (virtual) modules, are forwarded. We check for
each (virtual) module, if it received a CAN message. This is done by checking the CAN
message reception buffer of the (virtual) module. If the buffer is not empty, onemessage
is randomly selected following a uniform distribution, and all other messages received
at this time step are discarded. This message is then forwarded to the corresponding
CAN_rx function of the (virtual) module.
Afterwards, the loop function of each (virtual) module is executed. This function imple-
ments the logic of the (virtual) module, e.g., further message processing and sending,
and is further described in Section 3.3.
RobotController: all robot controller get executed for one simulation step in randomor-
der.
PostStep: weuse thePost Step for tracking the robots commitment. Further,we check
here if in the beginning of the experiment all robots were initialised correctly and restart
the simulation if this was not the case.
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Concluding, in thesemethodswe implement the functions of themodules. This includes
the message reception of infrared and CAN messages and sending messages according
to the module logic.
The (virtual) modules are separated by individual storage. Sending inter-module mes-
sages, e.g.,CANmessages, is implemented as appending themessage to the correspond-
ing message reception buffer.

Kilogrid Module Controller

This section describes the implementation of the Kilogrid module controller, which im-
plements the virtual message transmission described in Section 3.2. We structure this
according to the different functions themodule needs to implement, namely the setup,
loop, IR_rx and CAN_rx function.
setup: this function implements the initial set-up of the module before the experiment
starts. We specify the x and y coordinates, the role and the option of each cell of themod-
ule during this set-up process using the .kconf file. The x values range from 0 to 20 and
the y values from 0 to 40. There are three different roles a cell can have. The roles help
the robot to navigate. The first role is wall, which indicates the robot to do a avoidance
behaviour and stop sampling, because the robot leaves the environment. Themost outer
line of cells of theKilogrid are assinged this role. The second role, assigned to all cells next
to thewall cells, are the close to wall cells. They indicate to the robots that they should trig-
ger thewall avoidance behaviour, but the robots are still allowed to sample. The last role is
normal ground, where the robots are allowed to sample and follow their randomwalk. An
illustration can be found in Fig. 3.7. Empirical test runs showed, that one line ofwall cells

W W W W W
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W

W

W

CW CW CW CW

CW

CW

CW

N

N

N

N

N

N

N

N

N

Figure 3.7: Illustration of the role distribution of the cells of the Kilogrid at a corner. The
thicker lines indicate themodules,while the thinner lines separate the cells. (W) rolewall,
(CW) role close to wall and (N) role normal.

leads to many robots getting stuck at the rand. Introducing a second line of wall would
take away 38+ 38+ 16+ 16 = 108 cells. Thus, we introduced the role of close to the wall
to maximize the area for the experiment, which allows for more precise differentiation
of the element concentration while keeping most of the robots inside the environment.
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This leaves us with the following distribution: there are in total 800 cells, fromwhich 116
cells are wall cells. The other 684 cells are assigned an option, according to Section 5.1 or
Section 6.2 respectively.
loop: this function is called every cycle and contains the logic of amodule. The loop func-
tion iterates through all the cells sequentially. In the first iteration the module sends, on
all its cells, the initial message. It contains initial parameters and the current position,
so that the robots can initialise themselves. The contents of the message can be found in
Tab. 3.8 (agent message).
The real Kilogrid implements the receiving functions as callback functions,meaning they
can be called at any time. To be consistent with the processing andmessage forwarding,
the receivedmessages are first stored temporarily. At the beginning of each control cycle,
the latest temporary stored message overwrites the variables used for calculation.
In the following control cycles, themodule first checks if it received any infraredmessage
from a robot. If there is a infraredmessage, themodule forwards this message as a CAN
message to other modules. Therefore, the contents of the infrared message are copied
to CAN message, see Tab. 3.8 (CAN message), then the message is send. Because of the
underlying network infrastructure, as described in Section 3.2, we broadcast CANmes-
sages, i.e., send the message once to all modules.
Next, the module processes any received CAN message. This is done by checking if for
any cell of the module Eq. (3.1) holds. For the cells that should receive the message, the
received CAN message is transformed into a infrared message, by copying the content,
see Tab. 3.8 (infrared message).
In the final step, the module sets the infraredmessage for all cells. The infraredmessage
can either be a statusmessage, or if a CANmessagewas received, the forwardedmessage
from another robot. The status message is for navigation and sampling of the robot, it
contains the coordinates and the option of the ground, see Tab. 3.8 (statusmessage). The
forwarded CAN message contains besides the payload, the commitment of the sending
robot, the coordinates of the sending cell and the unique ID of the sending robot, see
Tab. 3.8 (virtual agentmessage). These information are used to ensure, that themessage
is perceived by the right robot and that if the robot is in the middle between two cells, it
receives the message only once. How the filtering is done on the robot side can be found
in Section 4.3.
IR_rx: this function implements the callback for infrared message reception. These in-
fraredmessages are sendby robots above the given cell and are the onlyway for the robots
to send messages to the Kilogrid. Thus, this method was previously only used to obtain
tracking data from the robots and forward it to the dispatcher, which relays them to the
user computer.
We extended this behaviour, by introducing a newmessage type, the virtual robotmessage.
This allows for receiving messages by the robots to virtualise the communication while
being able to collect trackingdata. The receivedmessage is stored in a temporary storage,
as mentioned above. Only the last received infrared message is stored in the temporary
storage. Each cell has its own temporary storage.
CAN_rx: this function implements the callback for CAN message reception. Previously
the CAN bus was used to connect the Dispatcher with the individual modules, to send
control commands and collect tracking data. The processing of the control commands is
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done in a deeper layer of themodule control software. It filters out all control commands
andonly forwardsmessageswith anunknownmessage type. Thismakes it easy to extend
the control software of themodule for our purposes by introducing the newmessage type
CAN user message. For any received CAN user messagewe check, based on the information
given by the CANmessage, if the module is in range of receiving. For this Eq. (3.1) needs
to hold. In case the equation holds, the message is stored in temporary storage. Each
module can store only one CAN message temporarily. This is sufficient because in con-
trast to the infrared messaging, where we can address individual cells, CAN allows only
for addressing individual modules.
In essence, we use the module controller and network infrastructure to forward robot
messages (extending their communication range capability) and tracking.
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Table 3.8: Overview of all message types and their content.
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4
Problem Description and Robot Behaviour

In this chapter, we formally define our problem in Section 4.1, followed by a description
of the implemented environment. In Section 4.2, we present our developed robot be-
haviour, which aims to solve the aforementioned problem in the given environment.

4.1 Problem Description

In this section, we begin by defining the problems the robot swarm needs to solve. We
do so by defining the task of the robot swarm, followed by the definition of the environ-
ment. Finally, we explain why the Kilogrid is a sufficient platform for implementing our
environment and our problem.

Problem

Weconsider a collective perceptionproblem, that is, a swarmof robots should collectively
decide on the best element they find in their environment. Such elements could be, e.g.,
differentgasesorminerals ina remote locationand the robot swarmhas toautonomously
agree onwhich gas ormineral has the highest concentration. In this study, each element
is a colour and the robot swarm has to collectively decide on the most frequent colour
present in the environment, see Fig. 4.2.
As indicated in Section 2.2, several studies assumed a static environment, however, this
assumption does not meet the characteristics of most real-world scenarios, thus in our
study we focus on dynamic environments.
Our study investigates twodifferent scenariosof the collectiveperceptionproblem: adap-
tive best-of-n and symmetry breaking.

Adaptive Best-of-n Scenario

In the first scenario, adaptive best-of-n, there is one predominant (best) colour at any
point in time. The predominant colour can change over time, because we are investi-
gating dynamic environments. For our robot swarm that translates into the necessity of
being adaptive in its process of finding the most frequent colour.
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t [min]

𝜌

t = 0 t = 40

Figure 4.1: Colour concentration during the adaptation experiments. To study the ability
of adaptation of the robot swarm, we assume that in the beginning of the experiments
(t = 0minutes) the colour concentration instantaneously changes from higher concen-
tration of blue to higher concentration of yellow. One experiment takes 40minutes.

Adaptation to time-varying environmentswas studied in previouswork by Talamali et al.
(2021), who found the less is more effect, that is, the robot swarm is more able to adapt to
an environmental change when the robots’ communication capabilities are limited, e.g.,
the robots have a small communication range. Similar to Talamali et al. (2021), our ex-
perimental scenario is an instance of the best-of-n-problem. We choose n = 2 colours,
with colour yellow having a higher concentration than colour blue. The task of the robot
swarm is to make a consensus decision in favour of the most frequent colour, that is, the
swarmmakes the correct decision when a large majority of the robot swarm is commit-
ted to the colour yellow.
Without loss of generality (w.l.o.g.), we assign blue to option o1 and yellow to option o2.
The concentration defines the option’s quality 𝜌i. Without loss of generality in the case of
adaptationwehave𝜌b < 𝜌y,where𝜌b and𝜌y are the concentrations of the blue and yellow
colour respectively. Away ofmodelling the problemdifficulty is to vary the concentration
of the two colours.
We want to test the the ability of the robot swarm to adapt to sudden environmental
changes. Therefore, we assume a change of colour concentration in the environment
right in the beginning of the experiment, that is we initialise the environment with a
higher concentration of yellow than blue, see Fig. 4.1. As blue was the colour with the
highest concentration until t = 0, the robot swarm starts fully committed to blue. This
situation allows us to study, if the robot swarm is able to adapt to the colour with the
highest concentration.

Symmetry Breaking Scenario

Another condition, that can be found in real-world scenarios, is that there are equally
good or close to equally good elements to choose from, i.e., a single robot cannot dif-
ferentiate between the elements’ qualities based on its local perception. This introduces
the second scenario of the collective perception problemwe investigate, called symmetry
breaking. In this instance, there are multiple colours n ≥ 2 with equal concentrations.
Here the robot swarm has to break the symmetry, that is, it makes a consensus decision
in favour of any present colour.
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For the problem of symmetry breaking we study a symmetric best-of-n-problem,mean-
ing all options have equal qualities. Similar to the adaptation problem,we assign a colour
to each option and the colour’s concentration represents the quality. Here we choose
n ∈ {2, 3, 4, 5} different colours with concentration 𝜌i = 1

n respectively. In contrast to
the problem of adaptation, we do not need to consider a dynamic environment for test-
ing the swarm’s ability of symmetry breaking. However we consider the swarm in an
undecided state, which could be due to environmental change, e.g., colours with equal
concentrations appear. Therefore, we initialise the swarm uniformly distributed over all
present colours. With this situation we can study, if the robot swarm is able to break the
symmetry towards any present colour.

(a) Top down view of the environment in
simulation with 50 Kilobots.

(b) Top down view of the environment in re-
ality with 1 Kilobot.

Figure 4.2: Adaptation environment implemented on the Kilogrid. There are n = 2
colours, with yellow having a higher concentration than blue (𝜌b = 0.41 < 0.59 = 𝜌y).
The size of the environment is 1m × 2m in reality and simulation.
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Implementation of the Environment

The implementation of arbitrary best-of-n-problems need to allow the user to choose any
number of options, i.e., colours, and their qualities, i.e., colour concentrations. For the
implementationof the aforementioned symmetric andasymmetric instances of thebest-
of-n problemwe use the augmented reality arena Kilogrid, described in Section 3.2.
Thereby, we utilize the chessboard-like environment of the Kilogrid exploiting its struc-
ture comprised of cells and modules. We can assign any colour to any cell, thus we can
have any number of options. The concentration of colour i and thus its quality is given by

𝜌i =
#cellsi
684

, (4.1)

with #cellsi being the number of cells which get colour i assigned. The concentration rep-
resents the relative quantity of colour i in the environment, thus we divide the #cellsi by
the total number of coloured cells.
Following theconcentrations,werandomlyassigneachcell (besides thewall cells) a colour,
e.g., see Fig. 4.2. We use a uniform distribution for the random assignment.
In Section 4.3, we describe how the robots estimate the colour concentrations. This im-
plementation fulfils all requirements to create arbitrary best-of-n-problems. The specific
parameters used in the experiments are described in the experimental set-up sections of
Chapter 5 and Chapter 6.

4.2 Robot Behaviour

For solving the above stated problem of collectively selecting the colour with the highest
concentration out of n colours, we designed the individual robot behaviour. This robot
behaviour is adapted from Talamali et al. (2021) to our specific environment. A detailed
description of the algorithm can be found in Section 4.3. The main focus of design is to
make the behaviour as minimalistic as possible, so that it can be run on minimal ma-
chines with limited capabilities.
Because the coloured cells are distributed over the entire environment, for monitoring
and estimating the concentrations, it is sufficient that the robots do a randomwalk,with
an integratedwall avoidance behaviour. During this randomwalk, the robot samples the
ground periodically and integrates these samples over time to make an estimate of the
concentration of the colour it wants to measure. After a fixed time interval of sampling,
the robot updates its colour concentration estimate. This allows the robot to react to pos-
sible environmental changes, which is necessary assuming a dynamic environment. The
concentration estimate update is either used to overwrite the current estimate, if the
sampled colour is equivalent to the current commitment, or used for the colour’s quality
comparison, which will be explained below. Once the sampling of one colour is com-
pleted, the robot randomly selects a new colour to sample, in our case it selects the colour
that it finds beneath itself. Sampling a random colour, allows the robot to explore new
colours, which can be better than the colour the robot is currently committed to.
A robot updates its commitment either individually or socially. The individual update
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Committed to
optionOx

Committed to
optionOy

Uncommitted

Inhibition
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Figure 4.3: Commitment update state machine for n = 2 options. The dotted lines mark
commitment updates based on self-sourced evidence and the solid lines mark commit-
ment update based on social evidence. The uncommitted robot can commit through
either discovery (A) or recruitment (B); committed robots change state through cross-
inihibition (C) or direct switching upon comparison (D), and do not change their own
state when re-estimating their own opinion (E).

is implemented as a comparison between the current ( ̂𝜌m) and the newly estimated ( ̂𝜌e)
colour concentration, see Fig. 4.3 dotted arrows. If ̂𝜌e > ̂𝜌m the robot adopts the new
colour and changes its opinion.
For the social update, we extended the classical voter model by Holley and Liggett (1975).
Similar to the classical voter model, the robot randomly selects one received message
of its neighbours to update its commitment. The exchanged messages only contain the
sender’s (colour) commitment, bringing the advantages of limiting communication re-
quirements among robots and preventing the spread of misinformation about option
qualities, as the individual robot’s estimates can be subject to high noise (Talamali et al.,
2019; Parker and Zhang, 2004). If the received colour differs from the robot’s own opin-
ion, the robot starts to change its opinion based on the social interaction pattern, see
solid arrows Fig. 4.3. We chose the cross-inhibition social interaction pattern (Pais et al.,
2013; Reina et al., 2015; Talamali et al., 2019). In this pattern the robot switches into an
uncommitted state, if it receives a colour different to its opinion. When switching into
the uncommitted state, the robot forgets its previous commitment, thus stops dissemi-
nating it and starts sampling a random colour (the colour beneath itself). After finishing
the sampling process the obtained information ( ̂𝜌e) can be used for a self-sourced com-
mitment switch. In this special case, ̂𝜌m = 0, thus the robot would always switch to the
self-sourced information. Robots in the uncommitted state continue to listen to incom-
ingmessages,which allows the robot to be recruited. Recruited robots adopt the received
colour and start sampling it for making an estimate of its concentration.
Once the robot is committed and has an estimate of the colour’s concentration it is com-
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mitted to, the robot broadcasts its opinion with a frequency linearly proportional to the
estimated quality (Talamali et al., 2021; Parker and Zhang, 2009). The quality depen-
dent communication was inspired by house-hunting behaviour of social insects (Franks
et al., 2002; Jeanson,Dussutour, andFourcassié, 2012) andwas successfully implemented
in several swarm robotics systems (Reina et al., 2015; Valentini et al., 2016a; Parker and
Zhang, 2004; Parker and Zhang, 2009; Valentini, Hamann, and Dorigo, 2014).
Besides the changes in how the robot samples, due to the new environment, we included
a mechanism to gradually increase speaking, further explained in Section 4.3. We in-
cluded this mechanism, because we faced the problem of many robots being inactive,
either uncommitted or recently recruited but without a complete sampling of the alter-
native. During this period a very small minority of robots, especially in case of global
communication, can vote for their colour, which can create the dangerous situation in
which a single robot can recruit the whole swarm and thus reduce the benefits of the col-
lective intelligence.

4.3 Kilobot Controller

This section presents a detailed description of the implementation of the robot behaviour
from Section 4.2. Thereby, we emphasise the adjustments we had to do for the new envi-
ronment and the newmechanism of gradually increase speaking.
We begin with an overview of the main loop of the Kilobot controller. Afterwards, we
explain the routines of motion, sampling, updating commitment and communication
which are executed in parallel.

Main Loop

As mentioned in Section 4.2, the controller for the Kilobot extends the controller pre-
sented in Talamali et al. (2021).
Themain loop of the robot controller is executed approximately every 32ms. Tab. 4.4 lists
the most important parameters of the controller.
The robot stores two pieces of information, the colour the robot is committed to, i.e., an
option oi, and the estimated colour’s concentration, i.e., the estimate of the option’s qual-
ity ̂𝜌m. To savememory, we represent a colour as an integer, which represents the robot’s
opinion. The value 0, thereby means the robot is uncommitted and the colours are con-
secutively numbered, e.g., o1 = 1 for yellow, o2 = 2 for blue etc. Further, we introduce
an uninitialised opinion i = 20, which is the default value when starting the robot con-
troller. This value indicates to the robot that it needs to wait for the initial message, which
overwrites the current commitment to the for the experiment appropriate value. Also, it
is used to check if all robots are initialised correctly, i.e., each robot received the initial
message.
The estimated concentration is encoded as a value in [0, 1] ∈ ℝ. Thereby, 0 is the lowest
possible and 1 is the highest possible, for the robot measurable, concentration.

Before the main loop is executed the setup function is called, similar to the Kilogrid
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Table 4.4: Overview of themost important controller parameters. If it is a fixed parame-
ter, which does not change during any experiments the value of it is assigned next to the
unit.

Name Explanation Unit

oi
Colour the robot is committed to. ℕ

̂𝜌m
Estimated concentration of the colour the
robot is committed to.

ℝ

uID Unique identifier. ℕ

𝜏s
Sampling time, 𝜏s = s𝛿s. seconds

𝜏u
Update time. 2 seconds

𝜏b
Broadcast time. 0.5 seconds

s Number of samples. ℕ

𝛿s
Time between samples s. seconds

rc
Communication range. cells

module. We use this setup function to initialise the random seed and the counters of
the Kilobot controller, which we will mention in more detail at the appropriate parts of
this sections. After initialising the robot, it waits for the initial message, which contains
experiment dependent parameters, see Tab. 3.8. After receiving thismessage and setting
the experiment dependent parameters, the robot selects its firstway point for its random
walk, explained later inmore detail. Finally the initialmessage allows the robot to start the
main loop.

In Fig. 4.5, we present the procedure of the main loop. As in the Kilogrid modules, the
message reception is implemented as a callback function. Hence, newmessages can ar-
rive at any point in time during the loop execution. To ensure that the calculations of the
Kilobot are consistent, the received message is stored temporary to not overwrite cur-
rently used values. To access the latest data, the first step of the main loop is to update
the received message data, by overwriting the variables used for calculation. The robot
sequentially checks for a new grid message followed by checking for a new agent mes-
sage.
During the gridmessage update, the robot refreshes its information about the role of the
underlying cell, its x and y coordinates and the cell’s option. Further, if the robot moved
to another cell it calculates its current orientation by

𝜙 =
180
𝜋 atan2 (Δy, Δx) , (4.2)

with𝜙 the robot’s orientation in degrees andΔx andΔy the current robot positionminus
its previous position in cells. With the estimationwe can calculate the robot’s orientation
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Set-up

Grid Message

Agent Message

Move Robot

Sample Ground

Update Commitment

Update Communication Range

Broadcast

Figure 4.5: This Flow chart shows the main loop of the robot controller. The orange steps
are always executed. The extension of updating the communication range, in blue, is
discussed in Chapter 6.

with a precision of 45∘, which is sufficient for the Kilobot’s random walk and wall avoid-
ance.
Next, the robot checks for new received messages from neighbours. While checking for
a newmessage,we ensure that the robot does not receive its ownmessage, by comparing
with the sending robot’s unique identifier. When receiving a message from a neighbour
a notification flag is set for the update commitment routine, marking the presence of a
new social information. If the robot received multiple messages from different neigh-
bours during one main loop cycle, the last message is chosen for the social information,
as the robot only has a buffer size for storing one infrared message.

Motion

Themotion routine is independent form the other routines, that is, themovement of the
robot is not influenced by its opinion, social clues nor sensory information (reading the
floor colour). Themotion routine consists in a randomwalk in the environment andawall
avoidance behaviour. For practical reasons, because the Kilobot’s motion is not reliable
(prone to drive circles anddoes not properly explore the environment), see Section 3.1,we
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implemented the randomwalk and the wall avoidance with additional information, e.g.,
access to positional information in a global frame. However, the current random walk
and wall avoidance can be replaced by any other (less demanding) algorithm of random
diffusion.
For the random walk, we implement a random waypoint mobility model (Bettstetter,
Hartenstein, and Pérez-Costa, 2004). Through the randomwaypointmobilitymodel, the
robot selects a random position in the environment, which it sets as its target destina-
tion. Once the destination is reached, the robot selects a new random target destination,
which needs to be at least 20 cm away from its predecessor. We also implemented a time
out interval of 2 min, after which a new random target destination is selected to avoid
robots getting stuck at traffic jams caused by groups of robots moving in opposite direc-
tions, or robots not moving due to malfunctioning motors. The robot avoids collisions
with the walls surrounding the environment by selecting random destinations that are
at least three robot-body lengths (approximately 10 cm) far from the walls. As the move-
ment can be subject to high levels of noise, it still can happen that the robots arrive near
the walls. Once it gets at a distance smaller than three robot-body lengths from any wall,
the robot starts thewall avoidancemanoeuvre by rotating away from thewall towards the
center of the environment, followedbymoving straight for a few seconds. Due tomissing
proximity sensors, we cannot implement any obstacle avoidance manoeuvre to prevent
colliding robots.

Sampling

The next routine executed in parallel is the sampling routine. It consists in acquiring in-
formation from the environment about the concentration of one option, i.e., a colour.
One cycle of the sampling routine takes 𝜏s = s𝛿s seconds, where s is the number of sam-
ples to take required formaking an estimation on the colour’s concentration and 𝛿s is the
time between taking two samples. The process of obtaining one sample (sampling step)
is visualised in Fig. 4.6.
Each sample is a binary value that indicates the presence or absence of the option oi of
interest, in our case, the robot checks if the cell beneath itself is of a given colour. The
robot tries to do a sampling step every 𝛿s seconds. If the robot is on awall tile, it skips the
sample and the sampling counter does not get incremented.
Next, the robot checks if it reached the required number of samples s for making an es-
timate ̂𝜌e. In case of not having enough samples collected the robot samples the current
ground as described above. When the robot reached the required number of samples, it
estimates the quality of the sampled option as

̂𝜌e =
#samples of oi

s
.

If the colour the robot was sampling is equivalent to its current commitment, it updates
its concentration estimate, arrow E in Fig. 4.3. In case the sampled colour differs from
the current commitment, the concentration estimate is used in the commitment update
routine, as new self-sourced information, which can be used for a commitment update,
arrow D in Fig. 4.3.
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OnWall

Reached number
of samples s

Sample current ground Update discovered option

sampled option =
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Figure 4.6: This Flow chart shows the process of taking one sample. This process is done
every 𝛿s seconds and repeated s times before the robot canmake an estimate on the con-
centration it currently samples.

A new sampling cycle starts when the previous sampling cycle collected s samples, or
when the robot changesopinion throughsocial evidence. In the formercaseandwhen the
robot becomes uncommitted, the robot determines which colour to sample randomly, in
our case it selects the colour of the groundbeneath itself; insteadwhen the robot becomes
committed, it starts sampling the colour which it has been recruited to.

Update Commitment

The robot commitment update routine is executed approximately every 𝜏u = 2 s. To
avoid cascades caused by synchronous robot updates we add uniform distributed noise
to 𝜏u (±50ms or±5%).
As mentioned in Section 4.2, the robot can update its commitment either through social
or self-sourced information. In the previous section we show how the robot gathers self-
sourced information. This information is taken into account, if thenewly estimatedqual-
ity ̂𝜌e is larger than the current quality estimate ̂𝜌m. Social information, collected from
neighbouring robots, is considered for the updating process if the received colour differs
from the robots current commitment. If both sources are available the robot chooses one
at randomand discards the other, else the robot uses the available source of information.
In the case of commitment update based on self-sourced information, arrows A and D
in Fig. 4.3, the robot adopts the new option and the quality estimation it made earlier
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( ̂𝜌m ← ̂𝜌e). Thus, the robot can directly speak at full frequency.
Updating the commitment based on social information implements the social interac-
tion pattern cross-inhibition presented in Section 4.2. The next steps depend on the
robot’s commitment. For the case the robot is uncommitted, it gets recruited to the
received option, and starts sampling it, arrow B in Fig. 4.3. During this sampling pro-
cess the robot uses gradually increasing speaking for increasing the swarms stability. In
the other case, the robot is committed to any option, it gets cross-inhibited arrow C in
Fig. 4.3, which means the robot becomes uncommitted.

Broadcasting

At the end of the control loop, the broadcasting routine is executed. In this routine the

Figure 4.7: Different communication radii of the Kilobot utilising the Kilogrid for com-
munication. Thereby, purple rc = 1, red rc = 2, blue rc = 3, green rc = 4 and yellow
rc = 5. The euclidean distance measure is used.

robot tries to broadcast its commitment up to every 𝜏b = 0.5 s. This value is a hardware
limitation, as the robot cannot reliable transmit messages in a higher frequency, as de-
scribed in Section 3.1.
Asmentioned in Section 4.2, the communication rate is proportional to the option’s qual-
ity estimate of the robot ̂𝜌m. It is implemented such that the robot tries to send amessage
every 0.5 s, with a probability of

p = { 2 ̂𝜌m , if ̂𝜌m < 0.5
1 , else , (4.3)
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where ̂𝜌m is the robots estimatedquality. We introduce the scaling factor 2, becausewhen
the colour’s concentration ishigher than 50% it presents theabsolutemajority andshould
be treated as the best alternative. For lower concentrations the probability p scales lin-
early between 0 and 1, thus the robot controller performs better in scenarios with multi-
ple options as the concentrations are lower due to normalisation.
Note that, while in the case of n = 2 a concentration lower than 50% implicitly indicates
the predominance of the other colour, this reasoning does not generalise to n > 2 and
therefore we do not consider this deductive mechanism. When the robot has just been
recruited and does not have an concentration estimate yet, it gradually increments its
communication frequency, described in more detail in the next section.
The broadcast message is then distributed with a communication range rc, see Fig. 4.7.
We apply the same distance measure as in Eq. (3.1) and the transmission is done via the
Kilogrid as described in Section 3.2. This allows the robot to choose its communication
range in approximately 5 cm steps. The communication range in cm is given by

rcm(c) ≈ 2.5+ 5(c − 1), (4.4)

where c is the number of cells the robot wants to forward its message.

Increasing Speaking

The mechanism of gradually increasing speaking allows committed robots, which have
not finished sampling and thus not have an estimate of their commitment yet, to partic-
ipate in the voting process.
We included this mechanism because we noticed that during the experiments several
robots where recruited to either colour, but have not finished sampling. This opens up
the possibility for a small minority of robots, in the most extreme case one robot with
global communication range, to influence all the other robots towards its commitment.
This makes the swarm prone to errors and in general more unstable.
We illustrate the process in Fig. 4.8. Gradually increasing speaking applies during the

t𝜏0

̂𝜌m
1
̂𝜌f

0

𝜏s𝛿s − 𝜏0

Figure 4.8: When the robot does not have a concentration estimate ̂𝜌m of its colour, it uses
a provisional estimation. 𝜏0 is themoment the robot got recruited to either option. Here
the robot samples s = 6 times every 𝛿s seconds. Besides the first sample the robot always
samples the colour it is currently sampling, arriving at a final estimate of ̂𝜌f .

process of sampling after recruitment, arrow B in Fig. 4.3. We utilise that the robot al-
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ready obtained some information about the environment, i.e., the samples of the cur-
rently running sampling cycle. This information can be used to do a provisionally esti-
mate of

̂𝜌m =
#currently collected samples of the option to sample

#s ,

which otherwisewould be 0. Thus the robot is able to speak during the sampling process,
see Eq. (4.3).
Thismechanismmakes a conservative estimation of the current colour concentration es-
timation, meaning it never overestimates the final concentration estimation and is very
low at start and gradually increases; through this mechanism recruitment takes time.
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5
Experiments

This chapter covers the conducted experiments for the adaptive best-of-n scenario and
the symmetry breaking scenario. We start by describing themetrics used for evaluation,
followed by describing the experimental set-up. Finally, we present and discuss the re-
sults.

5.1 Metrics

In all experiments we track the commitment state of each Kilobot of the robot swarm at
each simulation step. These tracking data are subject to high fluctuations, as you can see
in Fig. 5.15 lighter lines. Therefore, we apply a moving average filter on the collected data
to improve data visualisation. We choose a window size of 30 s, see Fig. 5.1 thicker lines.
At the border thewindow is truncated,means the average is taken over only the elements
that fill thewindow. This ensures that we can apply the followingmetrics without risking
that noise impairs our results.

Adaptation

In Section 4.1, we describe the adaptive best-of-n scenario,which tests the robot swarm’s
ability of adapting to environmental changes. Thereby, we assume n = 2 options, with
𝜌1 < 𝜌2. We say the swarm adapted successfully if the large majority of robots (70% of
the robot swarm) is committed to the superior option (w.l.o.g. colour yellow) for at least
5minutes. This thresholdhelps to avoid counting short-lived randomfluctuations as suc-
cessful adaptations as wewant a stablemajority. The adaptation probability calculates as
the number of successful runs (the swarm adapted) divided by all runs for the given pa-
rameter set.
The adaptation time is measured as the moment when the subpopulation, committed to
the superior option, reaches 70% at the beginning of the 5minute time interval. For the
adaptation time we only consider successful runs.

5We generated the data plots using the matlab2tikz, Nico Schlömer (2022). matlab2tikz/matlab2tikz
(https://github.com/matlab2tikz/matlab2tikz), GitHub. Retrieved February 15, 2022.
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Figure 5.1: Example of collected data of one adaptation experiment. The raw data are
depicted as the thin lines. For the thick lineswe applied amoving averagefilter to denoise
the data. We chose this specific run to show our intention: through minute 30 to 40 the
raw data momentarily drop below 70% even though the consensus is stable.

Symmetry Breaking

For testing the robot swarm’s ability to break the symmetry, we use the symmetry break-
ing scenario presented in Section 4.1. In the symmetry breaking scenario, we assume
multiple options n ∈ {2, 3, 4, 5}, with equal quality. We say a swarm successfully breaks
symmetry if the largemajority of robots (70%of the robot swarm)are committed to anyof
the present options. Similar to the adaptationmetric, we require themajority to hold for
at least 5 minutes to avoid counting short-lived fluctuations as symmetry broken. The
symmetry breaking probability calculates as the number of successful runs (the swarm
broke the symmetry) divided by all runs for the given parameter set.
The symmetry breaking time is measured as the time the fraction of the robot swarm
committed to any option reaches 70% in the beginning of the 5minute time interval. For
the symmetry breaking time we only consider successful runs.

Problem Difficulty 𝜅

Wemodel the problemdifficulty for the adaptive best-of-n scenario by varying the colour
concentrations, as mentioned in Section 4.1. Therefore, we use the definition as in Tala-
mali et al. (2019),

𝜅 =
𝜌l
𝜌h

, (5.1)

with 𝜌l the lowest concentration and 𝜌h the highest concentration present in a given en-
vironment. This leaves us with an interval 𝜅 ∈ [0, 1], where 𝜅 = 1 presents the case of
symmetry breaking, because all colours have equal concentration and for smaller 𝜅 the
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problem becomes easier, e.g., for 𝜅 = 0 there is only one colour in the environment. Op-
tions with quality in between are ignored. An overview of the colour concentration for
different 𝜅 is given in Tab. 5.2.

Table 5.2: Overview of the cell concentration for different 𝜅, assuming n = 2 colours. The
total number of cells is 684.

𝜅 #cellsl / 𝜌l #cellsh / 𝜌h
0.7 282 / 0.41 402 / 0.59
0.8 304 / 0.44 380 / 0.56
0.9 324 / 0.47 360 / 0.53
0.95 333 / 0.49 351 / 0.51

Switches

Wedefinea switch as themajority of the swarmchanges opinion, that is,whenmore than
50% of the swarm is committed to a different colour than the simulation step before.
Thereby, during the adaptation experiments, we only count switches towards the infe-
rior option (w.l.o.g., option o1 or color blue). Counting only switches towards option o1
provides a clearer analysis, as the initial switch from option o1 to option o2 is desired,
because it is necessary for the process of adaptation, while switches in general are not
desired as they indicate highly unstable system dynamics. Further, by counting only half
of the switches we do not lose information because in environments with n = 2 options,
we can compute fromthenumberof switches from o2 to option o1, thenumberof switches
in the other direction, from option o1 to option o2.
For the case of symmetry breaking, we generalise the aforementioned concept to not
counting the first switch, i.e., when the swarm commits the first time to any option with
more than 50% of the swarm members, as it is necessary for the process of symmetry
breaking, but we count all the subsequent switches.

5.2 Adaptation

In this section, we test the ability of adaptation of the robot swarm. We begin so by de-
scribing the experimental set-up, followed by the results. At the end of this section, we
discuss the results.

Experimental Set-Up

We propose an asymmetric best-of-n problem with n = 2 options, as described in Sec-
tion 4.1, for testing the robot swarm’s ability to adapt to environmental changes. We test
the robot behaviour for different problem difficulties 𝜅 = {0.7, 0.8, 0.9, 0.95}. This set of
problem difficulties was chosen because for 𝜅 < 0.7 we found that the robot swarm is
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able to adapt for all tested parameter sets and 𝜅 = 1 is studied in the other scenario.
We model the dynamics of the environment as an instantaneous change of colour con-
centration for testing the ability of adaptation, further described in Section 4.1. There,
we also described the initial condition of the robot swarm, that is w.l.o.g. fully commit-
ted to option o1 (blue) with a high quality estimate of ̂𝜌m = 0.8. For a realistic state of the
swarm,we initialise all timers and the colour the robots currently sample randomly. Each
simulation run simulates 40minutes (76800 simulation steps,with 32ms per simulation
step).
Our study focuses on two key parameters, which are essential for the robot swarm’s dy-
namic, that are the sampling time and the connectivity of the robot swarm. Both param-
eters can be precisely chosen thanks to the environment and the experimental set-up,
which was not possible before.
The first key parameter, the sampling time 𝜏s, varies the time the robots need to form a
concentration estimate. Hence, 𝜏s varies the delay for recruited robots to recruit robots
themselves, because the robots first need to make a concentration estimate before they
can recruit other robots towards their opinion. This delay is a necessary condition for
triggering the less is more effect, as described in Section 2.1. The parameter 𝜏s is defined
as 𝜏s = s𝛿s seconds. Therefore, we conduct sampling time experiments, where we vary
the number of samples s = {5, 10, 15, 20, 25, 30, 45, 60} while fixing 𝛿s = 1 s and varying
𝛿s = {0.5, 1, 2, 3, 4, 5, 6, 7} s while fixing s = {5, 15}.
The secondkeyparameter is the connectivity of the robot swarm, i.e., the averagenumber
of neighbours that every robot has. This parameter is influenced by the communication
range of the individual robot and by the swarm density. Our experimental set-up allows
us to vary the communication range rc = [1, 45] cells, while having a fixed swarm size of
N = 50 robots. The swarm density is defined as robots per area, thus by increasing the
swarm size N, while keeping the area fixed, we increase the swarm density. We vary the
swarm sizeN = [50, 500], while we fix the communication range to rc = 3 cells.
Finally, for testing the influence of noise in our system, that is due to the spatial correla-
tion of the cells, we also experiment with different noise levels. This is done by letting the
robots sample their sensor readings from a normal distributionN (𝜇, 𝜎)with the mean
𝜇 based on the ground truth of the environment, 𝜇 = 𝜌i for option oi. We test different
noise levels 𝜎 ∈ {0, 0.1, 0.2}.
We conducted four adaptation experiments, which we present in the next section.

Results

Thefirst experiment studies the relationship between the two key parameters of the sys-
tem, the sampling time and the connectivity of the robot swarm. We vary the sampling
time by varying the number of samples s and keeping fixed the time between samples
𝛿s = 1 s. We vary the communication range rc with a fixed swarm size N = 50. The re-
sults for different problem difficulties 𝜅 can be seen in Fig. 5.3. The general trend is that
the swarm is able to adapt, if either the communication range rc is small and the sam-
pling time is long or the communication range is large and the sampling time is short. If
the communication range is chosen between 10 ≤ rc ≤ 25 and long sampling time, the
swarm is really unlikely to adapt. However, the adaptation probability goes up again for
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Figure 5.3: First adaptation experiment with varied static communication ranges rc =
[1, 45] cells over different number of samples s = [5, 60], with fixed 𝛿s = 1 s for different
problem difficulties 𝜅 = [0.7, 0.8, 0.9, 0.95]. The swarm size is N = 50. We conducted
40 independent simulation runs per data point.

larger communication ranges. This trend is visible in all problemdifficulties. For simpler
problems, e.g., 𝜅 = 0.7 in Fig. 5.3, the robot swarm is able to adapt with a wider range
of parameters than for more difficult problems. The average switches of this experiment
can be seen in Fig. 5.4. There are different scales, depending on the problem difficulty.
The general trend is, that if the communication range is small and the sampling time is
short, the robot swarm switches more often. For a more difficult problem, the swarm
switchesmore often. For each data point we conducted 40 independent simulation runs.
For further adaptation experiments, we decided to fix the problem difficulty to 𝜅 = 0.9,
as it shows the trends the clearest.

In the second experiment, we again study the relationship between the two key param-
eters of the system. Different to the first experiment is, that now we vary the sampling
time 𝜏s by increasing the time between samples 𝛿s and keeping the number of samples
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Figure 5.4: Average switches of the first adaptation experiment with varied static com-
munication ranges rc = [1, 45] cells over varied number of samples s. The switches follow
different scales: 𝜅 = 0.7 the maximum number of switches (yellow) are 11, 𝜅 = 0.8 the
maximum number of switches are 30, 𝜅 = 0.9 the maximum number of switches are 40
and 𝜅 = 0.95 the maximum number of switches are 46. We conducted 40 independent
simulation runs per data point.

s = 15 fixed. The results for 𝜅 = 0.9 can be seen in Fig. 5.5. The adaptation dynamics are
similar to the first experiment, that is, the swam is able to adapt with small communi-
cation range and a long sampling time, now enforced by longer time between samples,
or large communication ranges and shorter sampling time. We chose the swarm size
N = 50 robots. For each data point we conducted 30 independent simulation runs.

In the third experiment, we test our system’s ability of adaptation for different noise lev-
els. We fix the number of samples s = 5 and vary the communication range rc over time
between samples 𝛿s. Further, we apply different levels of noise 𝜎 ∈ {0, 0.1, 0.2}. The re-
sults are shown in Fig. 5.6. In the absence of noise the swarm is able to adapt for all cases,
besides large communication ranges and long sampling time. If there is noise, the swarm
loses the ability of adapting for small communication ranges and short sampling time.
For each data point we conducted 30 independent simulation runs withN = 50 robots.

For the fourth and last adaptation experiment,we varied the swarm sizeN over different
number of samples s. We fixed the communication range to rc = 3 cells ≈ 12.5 cm and
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Figure 5.5: Second adaptation experiment varying static communication ranges rc =
[1, 45] cells over time between samples 𝛿s for a fixed number of samples s = 15. The prob-
lem difficulty is 𝜅 = 0.9. We conducted 30 independent simulation runs with N = 50
robots per data point.

the time between samples to 𝛿s = 1 s. The results for different problem difficulties can be
seen in Fig. 5.7. The fourth experiment shows similar dynamics to the first and second
experiment. The robot swarm is able to adapt for low density and longer sampling time
or higher density and shorter sampling time. For simpler problemdifficulties, the swarm
is able to adapt with a larger range of parameters. The computations became very expen-
sive, because the implementation of the Kilobot plug-in in ARGoS 3 creates one process
for each Kilobot controller. This leads to problemswith some script operating the cluster
nodes, because to many processes are spawned, resulting in a high probability of crash-
ing the cluster nodes, that is why we only did 10 independent simulation runs per data
point6.

6Special thanks to Jonas Kuckling (cluster administrator at IRIDIA), for still allowing me to run experi-
ments on the cluster.
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Figure 5.6: Third adaptation experiments with different noise levels. We vary the com-
munication range rc = [1, 45] cells over different time between samples 𝛿s = [0.5, 7] s,
while fixing the number of samples to s = 5. The problem difficulty is 𝜅 = 0.9. We
conducted 30 independent simulation runs withN = 50 robots per data point.

Discussion

In the first adaptation experiment, we varied recruitment time, through the number of
samples s, and the connectivity of the robot swarm, through different static communica-
tion ranges rc. Varying both key parameters is only possible due to the new implementa-
tion of the problem. The newway of sampling allows us to precisely choose the sampling
time and thus the recruitment time. In the previous work of Talamali et al. (2021) the
sampling time (recruitment time) depends on the relative position of the robot to the site
or robot congestions, which may block the way, thus it is impossible to study different
recruitment times. Further, the Kilogrid allows for choosing different communication
ranges, which allow us to study the connectivity of the robot swarm. The first observa-
tion is that, if the problem becomes easier, the robot swarm adapts for a wider range
of parameters. That is the reason why we chose the problem difficulty in the range of
𝜅 = [0.7, 0.95]. For simpler problems, e.g., choosing 𝜅 = 0.6 the robot swarm is able to
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Figure 5.7: Fourthadaptationexperimentwith varied swarmsizeN anddifferentnumber
of samples s, with fixed time between samples 𝛿s = 1 s and fixed communication range
rc = 3 cells ≈ 12.5 cm for different problem difficulties 𝜅. Each data point is averaged
over 10 independent simulation runs.

adapt for every parameter set.
Further, with this experiment we generalise the less is more effect (Talamali et al., 2021) to
the new problem instance of collective perception. The less is more effect can be observed
in the upper parts of Fig 5.3, where s is large and thus 𝜏s is large, because it provides
the necessary condition of recruitment taking time. This effect causes the swarm to not
adapt to the predominant colour for large communication ranges, as the large majority,
committed to blue, is able to repeatedly mute minorities that make temporary discover-
ies of alternative options, i.e., colour yellow, further described in Section 2.1. The less is
more effect holds well for communication ranges up to rc = 25 cells. For larger commu-
nication ranges (rc > 25 cells) the probability for adaptation rises again, see Fig. 5.3, top
middle to top right corner. The observed effect of better adaptation for increasing com-
munication range can be explained by the instability of the swarm’s commitment due to
single robots broadcasting their opinion to all robots, while a large majority is silent due
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to sampling. The gradually increasing speaking extension helps to dampen this effect,
but cannot completely mitigate it.
In the lower right part of the subfigures in Fig. 5.3, the swarm is able to adapt with low
sampling time andhigh connectivity, caused by the large communication range. This can
be explainedby lowsampling times enablingpositive feedback cascades,which allowwell
connected swarms to react fast to environmental changes.
In the bottom left parts of the subfigures in Fig. 5.3, where the communication range
is low and the sampling time is short, the robot swarm is not able to adapt. This is due
to many switches, see Fig. 5.4, which indicates that the swarm detaches from the less
concentrated colour (blue) but is not able to form a stable consensus in favour of the pre-
dominant colour yellow. The robot swarm fails to establish a stable majority, because the
robots switchmore often due to self-sourced information (noisy due to local perception)
than due to social information (small communication range and thus sparse social inter-
actions).
While reproducing the results of Talamali et al. (2021)’s work, we observed the interest-
ing slower is faster effect, described in Section 2.1, which can be seen in the left part of
the subfigures in Fig. 5.3. The robot swarm is able to adapt faster (during the experiment
durationof 40minutes) if the individual robotperforms its taskof estimating the concen-
trationof a given colour at a slowerpace. This effect occurs,when the robot connectivity is
low, i.e., sporadic social interactions, due to a small communication range rc. Thefinding
of the slower is faster effect in our experiment aligns with the findings of Stark, Tessone,
and Schweitzer (2008a) and Stark, Tessone, and Schweitzer (2008b), as they also found
that increasing the switching probability, in our case a shorter sampling time leading to
more self-sourced switches, slows the process of converging to a solution.
In the first experiment,we varied the sampling time𝜏s by increasing the number of sam-
ples. In a second experiment, for confirming this statementwedid an experiment,where
we varied the time between samples 𝛿s over different communication ranges rc, with a
fixed number of samples s = 15. As mentioned in the previous section, we chose to con-
tinue with the problem difficulty of 𝜅 = 0.9, as it shows the dynamics most clearly. The
dynamics of the robot swarm is similar to the first experiment, thus both parameters s
and 𝛿s can be used for increasing the sampling time 𝜏s. However, in both cases, when
slowing down the sampling process (increasing the sampling time), we also reduce the
estimation noise, as we have more readings or the readings are less correlated to each
other.
Therefore,we conducted our third experiment,wherewe test different levels of noise, see
Fig. 5.6. This experiment investigates whether adaptation of sparse swarms is limited by
high noise or quick recruitment. Sampling from the ground truth distribution allows us
to disentangle the noise from sampling time and study their impact separately. In the
case of no noise, see Fig. 5.6 𝜎 = 0, the robot swarm is able to adapt for all cases, but
large communication ranges and long sampling time. This indicates that the sampling
time has no impact on the collective ability to adapt, because the robots have access to
the ground truth, nullifying commitment switches towards the less concentrated colour
based on self-sourced information. This allows the robots to adapt to the predominant
colour, especially in the case of sporadic social interaction, i.e., small communication
ranges. For larger communication ranges, i.e., richer social interaction, we observe the
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less is more effect, where for longer sampling time, the majority of robots committed to
the less concentrated colour overrule the robots discovering other options (yellow). In the
case of noise, see Fig. 5.6 𝜎 = {0.1, 0.2}, the swarm shows similar dynamics for adapta-
tionas in thefirst andsecondexperiment, that is adaptationeitherneedsmore timeanda
small communication rangeor recruitment takes less timeand the communication range
is larger. For less noise the swarm is able to adapt with a wider range of parameters. This
experiment indicates that the requirements for the slower is faster effect are local commu-
nication and a noisy system, which are the typical conditions of swarm robotic systems.
Further, with the third experiment, we can prove that the ability of adaptation is indeed
due to the longer recruitment time and not due to the fact that longer sampling times
also reduce the noise.
In the final experiment, we examine the link between communication range and swarm
density. Therefore, we run experiments where we fix the communication range to rc =
3 cells and vary the swarm sizeN = [50, 500]. Even though we only have few repetitions
perdatapointweobservea clear trend. Also,becausewehaveagridofparameter sets and
the curves are smoothly we can argue that the data are valid from a qualitative point of
view. We test the ability of adaptation for different problem difficulties 𝜅 = [0.7, 0.95].
Similar to the first experiment, for simpler problems the robot swarm is able to adapt
with a wider range of parameters and the robot swarm adapts for either large communi-
cation range and short sampling time or small communication range and large sampling
time. The reasoning is similar to the first experiment. Further, we can confirm that the
key parameter is connectivity of the robot swarm,which can either be increased by larger
communication range, or by increasing the density of the robot swarm. The communi-
cation range is often a parameter defined by the hardware, or trades-off with other un-
desirable costs, such as heavily increased energy consumption (Rausch et al., 2019). On
the other hand increasing the swarmdensity translates to buyingmore robots, assuming
deploying the system in the same environment.

5.3 Symmetry Breaking

In this section we test the ability of symmetry breaking of the described robot behaviour
in Section 4.2. We begin by describing the experimental set-up, followed by showing the
results of the conducted experiments. Finally, we discuss the results.

Experimental Set-up

For testing the ability of symmetry breaking, we propose a symmetric best-of-n problem
as described in Section 4.1. We vary the difficulty of the task by choosing different num-
bers of options n = {2, 3, 4, 5}.
In the beginning the robot swarm is split into n equal sized subpopulations, each com-
mitted to one colour. Thereby, the initial estimated quality of each robot is ̂𝜌m = 1

n for its
committed option. We randomly initialise all the counters and the option the robot starts
sampling to have a realistic state of the robot swarm in the beginning of the experiment.
In the experiments for adaptation we analysed the impact of the key parameters, sam-
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pling time 𝜏s and connectivity of the robot swarm. These are also the key parameters for
the symmetry breaking experiments. We vary the communication range rc = [1, 45] cells
over different number of samples s. Thereby, we fix the time between samples to 𝛿s = 1 s
and the swarm size toN = 50.
For testing the second key parameter, connectivity of the swarm,we vary the swarm size
N = [50, 500] and keep the communication range fixed rc = 3 cells.
Each experimental run is simulated for 40minutes (76800 simulation steps, with 32ms
per simulation step).

Results

In the first experiment, we varied the sampling time by choosing different number of
samples s = [5, 60], and varied the connectivity of the robot swarm by using different
static communication ranges rc = [1, 45] cells. We fixed the time between samples to
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Figure 5.8: First symmetry breaking experiment with different number of equally good
options n, with varied number of samples s over different static communication ranges
rc with fixed time between samples 𝛿s = 1 s. The swarm size is N = 50 robots. For each
data point we did 40 independent simulation runs.
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𝛿s = 1 s and choose the swarm size N = 50 robots. The results for different number
of colours can be seen in Fig. 5.8. We observe that the robot swarm is able to break the
symmetry, if the communication range is large enough. Further, for more options, i.e.,
when the problembecomesmore difficult, the robots need larger communication ranges
or a longer sampling time for keeping the ability of symmetry breaking. In Fig. 5.9, we
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Figure 5.9: Average number of switches in the first symmetry breaking experiment,
with varied number of samples s = [5, 60] over different static communication ranges
rc = [1, 45] cells. The switches follow different scales: n = 2 the maximum number of
switches (yellow) are 50, n = 3 the maximum number of switches are 7, n = 4 the max-
imum number of switches are 5 and n = 5 the maximum number of switches are 5. We
conducted 40 independent simulation runs per data point.

present the average switches of the first symmetry breaking experiment. It shows that
the most switches happen if the sampling time 𝜏s is low, i.e., s = 5 samples.

In the second experimentwe vary the swarm sizeN = [50, 500] over the number of sam-
ples s = [5, 60] for different number of colours n = [2, 5]. The time between samples is
fixed to 𝛿s = 1 s and the communication range is fixed to rc = 3 cells. Similar to the first
symmetry breaking experiment, the robot swarm is able to break the symmetry if there
is enough social interaction, now caused by increased density. Further, increased sample
time is also beneficial for the ability of symmetry breaking. The swarm is able to break
the symmetry for a wider range of parameters, if the problem is easier. This experiment
confronted us with the same issues as the density experiment of the adaptation study.
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Figure 5.10: Second symmetry breaking experiment with different number of equally
good options n, with varied number of samples s needed for making an estimate over
different swarm sizesN with fixed time between samples 𝛿s = 1 s and fixed communica-
tion range rc = 3 cells.

Therefore, again we only can provide 10 independent simulation runs pre data point.

Discussion

In theaforementionedexperiments,westudy the robot swarm’s ability of symmetrybreak-
ing. Therefore, we varied the key parameters of recruitment time, modelled by 𝜏s as the
robots can only recruit robots aftermaking their own estimate, and inter swarm connec-
tivity,modelled by the communication range rc in the first experiment and by increasing
the swarm density in the second experiment.
For good connectivity of the swarm, i.e., Fig. 5.8 the right part in the subfigures, positive
feedback cascades allow the robot swarm to break the symmetry. Further, the ability of
symmetry breaking is influenced by the recruitment time, i.e., the time the robots need
to sample an option and are “theoretically” uncommitted. For larger recruitment time,
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i.e., the individual robotneeds to takemore samples formakinganestimate, the swarmis
more likely to break the symmetry, even for smaller communication ranges. On the other
hand, if the recruitment time is shorter, i.e., fewer samples are required formakinganes-
timate, the robot swarm loses the ability of symmetry breaking. This can be explained by
the trade-off betweenupdating the commitment through social or self-sourced informa-
tion. For sporadic social interactions, when the communication range is low, the robots
more often update their commitment through individual evidence. This effect gets am-
plified when the sampling time is low, due to only requiring few samples. This results in
a state where the subpopulations of the robot swarm fluctuate because no subpopulation
is able to recruit a large majority of robots in favour of their option, due to only sporadic
social interaction. This fluctuating subpopulations also explain the switches presented
in Fig. 5.9, where when the swarm is not able to break the symmetry the average number
of switches goes up. This reasoning can be extended to the case ofmore social interaction
between the robots. By increasing the social interactions it is easier for subpopulations
of the robot swarm to disseminate their opinion, and by chance and through fluctuations
and noise some subpopulation becomes themajority and through positive feedback con-
vinces the whole swarm.
We notice, that the robot swarm is not able to break the symmetry for short sampling
time, i.e., s = 5 and thus for short recruitment time. The number of switches indicate
that the robot swarm is in some unstable state, because the robot swarm switches com-
mitment often. Due to the very short recruitment time, switches happen relatively fast
and instantaneous thus the swarm is not able to form a stable consensus on any option
(stay committed to one option for more than 5minutes).
In the second experiment, we varied the second key parameter by changing the swarm
density instead of the communication range. Although,we did not performmany repeti-
tions per data point, only 10 independent simulation runs, we have a grid of parameters
and smooth dynamics, thus we can argue that the results are sufficient for a qualitatively
analysis. The dynamics of the robot swarm are similar to when varying the communi-
cation range. This is due to the aforementioned trade-off of social and self-sourced evi-
dence used for commitment update.

In both scenarios, adaptive best-of-n and symmetry breaking, we vary the robot swarm’s
connectivity by either increasing the communication range or increasing the swarm’s
density. In the following, we compare the influence of increasing the communication
range and increasing the swarm’s density on the robot swarm’s connectivity.
For the varying communication range experiments, the swarm density is fixed to

d = 25
Robots
m2 =

50 Robots
2m2 . (5.2)

The robots do not know from how far they receive a message, i.e., the communication
range is only important for sendingmessages. Thus,weonlyneed to consider the sending
robots’ communication ranges in the followinganalysis. Wecanapproximate the area the
robot can sendmessages to using its communication range in cells

Ac = 𝜋r2c = 𝜋(2.5+ 5(c − 1))2 cm2. (5.3)
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We can combine Eq. (5.2) and Eq. (5.3) to give a theoretical approximation of the average
neighbourhood size depending on the communication range in cells

neigh(c) = dAc = 25
𝜋(5c − 2.5)2

10000
. (5.4)

We acknowledge that this simplemodel is only a rough theoretical approximation,which
is limited by the fact that the Kilogrid is only 1m × 2m, thus a communication range for
45 cells which we have chosen so that the robots definitely speak over the whole envi-
ronment does not account the limited space. In Fig. 5.11 we plot the theoretical average
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Figure 5.11: Density calculation.

number of neighbours per robot. Next, we can compare the average number of neigh-
bours from thefirst and second symmetry breaking experiment, see Fig. 5.8 and Fig. 5.10
respectively. For the case of rc = 1 the average number of neighbours is neigh(1) ≈ 0, that
is why the robot swarm is never able to break the symmetry. When the recruitment time
is short, i.e., only s = 5 samples are required to make an estimate the swarm is unstable
and cannot establish a stable majority (5minutes).
We compare the frontier at which the robot swarm starts to break the symmetry. We do
so by checking for the problem instance n = 2. The frontier starts at s = 30 and rc = 3 or
N = 50. The behaviour is similar because it is a identical parameter set. Then the fron-
tier goes down approximately linear to the point s = 5 and rc = 7,N = 300 respectively.
These points have a similar average number of neighbours. Comparing the average num-
ber of neighbours based on communication range or density, see Fig. 5.11,we see that the
frontier depends on the average neighbours. Similar dynamics can be found for the other
problem instances n = {3, 4, 5}.
Because of the polynomial increase in the average number of neighbours for increasing
communication range, the swarm can break the symmetry with high reliability.
A communication range between 8 and 9 cells represents the density of 500 robots. Sim-
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ilar to the adaptation study the user has the design choice of increasing density or in-
creasing communication range.
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Dynamic Communication Range

In the previous chapterwe tested our robot behaviour for the dynamic best-of-n scenario
and the symmetry breaking scenario. Thereby, we used static communication ranges for
the individual robots. The experiments revealed that the robot swarm is able to

– adapt for smaller static communication ranges (less is more effect) and,
– break the symmetry for larger static communication ranges.

For real world scenarios, where the robot swarm has to solve both problems simultane-
ously, the problem of choosing the right communication range arises. Our previous ex-
periments indicate that choosing the right communication range can be difficult or even
infeasible. To solve the problem of choosing the right communication range, we propose
to dynamically adjust the communication range of the individual robots. Thereby, the
decisions on the adjustment should be decentralised and autonomous.

We structure this chapter as follows, first, we describe the extension of the robot be-
haviour and how to change the robot controller to integrate the new feature of individ-
ually adjusting the communication range. Afterwards, we present the experimental set-
up, the obtained results and the discussion.

6.1 Behaviour Extension

Weextend the current robotbehaviourbyallowing the robot to choose its communication
range individually. In the following,we present the implementation of this extension. As
foreshadowed inSection 4.3, checking for adjusting the communication range is done ev-
ery control loop cycle, see Fig. 4.5 update communication range.
The robot increases its communication range after self-sourced commitment updates or
quality updates. This is the case after the transitions of arrows A, D and E in Fig. 4.3.
Increasing communication range solely based on self-sourced information helps to not
spread misinformation received from other (malfunction, malicious) robots. Another,
more intuitive explanation is that if a robot discovers a new (better) option it wants to
disseminate this information. The communication range is lowered, if either the thresh-
old 𝜏1 is reached or the robot changes opinion based on social information, arrows B or
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t
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𝜏0 𝜏1

Figure 6.1: Step function for increasing communication range. It shows how the com-
munication range changes over time, assuming that at 𝜏0 the robot switches or updates
commitment based on self-sourced information.

C in Fig. 4.3.

To be in line with our design concept we opted for a minimalistic approach, thus we im-
plement the dynamic communication range update based on a step function, see Fig. 6.1.
We chose the step function, because it requires aminimal set of parameters andminimal
computational effort. These parameters include the choice of the communication range
and the time the robot should use the large communication range.
Weneed to choose theminimal andmaximal communication rangeof the robot such that
using the minimal communication range the robot swarm is able to adapt and using the
maximal communication range the robot swarm is able to break the symmetry. Based on
the previous experiments fromChapter 5, we choose theminimal communication range
rc,min = 3 cells and the maximal communication range rc,max = 45 cells.
The robot selects its communication range between the minimal and maximal commu-
nication range depending on the quality estimation improvement u. We calculate u as

u = 10( ̂𝜌d − ̂𝜌m), (6.1)

with ̂𝜌d the newly discovered concentration estimation and ̂𝜌m the robot’s current con-
centration estimation. We scale the difference by 10, because it can be very small, e.g., in
the case of 𝜅 = 0.9 the ground truth difference is 0.05. Thus, the increased communica-
tion range is given by urc,max.
The last parameter to choose is the threshold 𝜏1 for how long the communication range
should be increased. We set 𝜏1 to 30 s, because it has been empirically shown to work
best.

6.2 Experiments

After introducing the implementationofdynamically choosing thecommunication range,
we present the conducted experiments. Besides testing the new extension on the previ-
ous scenarios: dynamic best-of-n and symmetry breaking, we also introduce a new sce-
nario, that is a combination of both. In the new scenario, we propose an environment
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with three colours, where one colour is less concentrated than the other two colours,
which have equal concentration. Therefore, we first extend ourmetrics of adaptation for
the new environment. Afterwards,we present the experimental set-up and the results of
the conducted experiments, which we discuss thereafter.

Extension of Metrics

For the new environment with three options, we need to adjust the metric of adaptation
by combining our previous definition with the definition of symmetry breaking.
Therefore, we say that if there are multiple colours with the highest concentration the
robot swarm adapts when a large majority commits to either of these colours. The ma-
jority is 70% of the swarm and we require it to stay committed to one colour for at least
5minutes, to not count short lived fluctuations as adapted.
An overview of the cell concentration for different problem difficulties 𝜅 of the new envi-
ronment is given in Tab. 6.2.

Table 6.2: Overview of the cell concentration for different 𝜅 for the adaptive symmetry
breaking scenario. The total number of cells is 684.

𝜅 # Cells / 𝜌l # Cells / 𝜌h
0.7 178 / 0.26 253 / 0.37
0.8 196 / 0.28 244 / 0.36
0.9 212 / 0.30 236 / 0.35
0.95 220 / 0.32 232 / 0.34

Experimental set-up

First, we test the extension of dynamically choosing communication range on the pre-
vious presented scenarios of dynamic best-of-n and symmetry breaking. Therefore, we
varied the keyparameter of sampling timeby choosingdifferent number of samples s and
keeping the time between samples 𝛿s = 1 s fixed. For the dynamic best-of-n scenario we
choose a problem difficulty of 𝜅 = 0.9. For the symmetry breaking scenario we choose
n = 4 options.
Next, we propose a new environment which combines both scenarios. Therefore, we
consider an environment with n = 3 options. Without loss of generality, we assume
𝜌1 < 𝜌2 = 𝜌3. Similar to the dynamic best-of-n scenario, we assume a instantaneous
change of concentration in the beginning of the experiment, which is the reasonwhy the
robot swarm starts fully committed to the less concentrated colour with a high quality
estimate of ̂𝜌m = 0.8. For a realistic state of the robot swarm we initialise all timers and
the colour the robots sample randomly. This set-up allows us to study both scenarios,
adaptation and symmetry breaking, at the same time, because first the swarm needs to
adapt, abandon option o1 (blue), and second break the symmetry, commits to either op-
tion o2 (yellow) or option o3 (red).
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We conduct experiments, where we vary the key parameter sampling time by chang-
ing the number of samples and by changing the time between samples. Similar to the
best-of-n scenario, we perform the experiments for different problem difficulties 𝜅 ∈
{0.7, 0.8, 0.9, 0.95}.
In all experiments we include the results for the static communication ranges rc = 3 cells
and rc = 45 cells for providing a baseline how local and global communication performs
in the scenarios compared to our new extension of the robot controller. All experiments
have a swarm size ofN = 50 robots and are simulated for 40minutes (76800 simulation
steps, with 32ms per simulation step).

Results

In the first experiment, we test the extension of dynamic communication range in the
dynamic best-of-n scenario. The results for problem difficulty 𝜅 = 0.9 can be seen in
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Figure 6.3: Experiment for dynamic communication range in the dynamic best-of-n sce-
nario with problem difficulty 𝜅 = 0.9. We vary the number of samples and keep 𝛿s = 1 s
fixed. For comparison we added the probabilities for the static communication ranges
rc = 3 cells and rc = 45 cells. The swarm size is N = 50 robots and we conducted 30
independent simulation runs per data point.

Fig. 6.3. We added the probabilities of static local and global communication for com-
parison. The dynamic communication range is able to adapt with a high probability for
s ≥ 10.

In a second experiment,we tested the extension of dynamic communication range in the
symmetry breaking scenario. The results for n = 4 options can be seen in Fig. 6.4. For
comparisonwe added the probabilities of static local and global communication. The dy-
namic communication range performs similar to the static global communication range.
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Figure 6.4: Experiment for dynamic communication range in the symmetry breaking
scenario for n = 4 options. We vary the number of samples and keep 𝛿s = 1 s fixed. For
comparison we added the probabilities for the static communication ranges rc = 3 cells
and rc = 45 cells. The swarm size is N = 50 robots and we conducted 30 independent
simulation runs per data point.

In the third experiment, we test the new scenario adaptive symmetry breaking. For pro-
viding a baseline, we test the static local communication range. Results for rc = 3 cells
anddifferent problemdifficulties can be seen in Fig. 6.5. The robot swarm is able to adapt
for certain parameter sets, which are larger if the problem difficulty is simpler.

Next,we test the static global communication range in the new environment by choosing
a communication range of rc = 45 cells. The results for different problem difficulties can
be seen in Fig 6.6. The robot swarm is able to adapt for awide range of parameters,which
decreases when the problem becomes more difficult.

Finally, we test the extension of dynamic communication in the new environment. Re-
sults for different problem difficulties can be seen in Fig. 6.7. The robot swarm is able to
adapt if the sampling time is long enough.

Discussion

In the first experiment,we tested the new extension of dynamic communication range in
the dynamic best-of-n scenario. For comparisonwe included static local and global com-
munication ranges. We observe that the new extension outperforms both static commu-
nication ranges and is able to adapt with a high probability for all sample times greater
than 10 s.
In the second experiment, we tested the new extension in the symmetry breaking sce-
nario. Again, for comparison we included static local and global communication range.
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Weobserve that the dynamic communication range extension has a similar performance
as the static global communication range, that is high symmetry breaking probability for
sampling times greater than 20 s.
These experiments show, that letting the robots individually choose their communica-
tion range increases the performance in case of adaptation, and shows similar (best case)
performance in the case of symmetry breaking. Further, it shows that only minimalistic
rules are required for the performance gains.

In a third set of experiments, we introduce a new environment with three colours, where
one colour is less concentrated than the other two colours, which are equally concen-
trated. The new environment allows us to study the swarm’s ability of simultaneously
adapting and breaking the symmetry.
Therefore, we conducted two experiments to have a baseline on how the static local and
global communication ranges perform in the new environment. The static local com-
munication range was able to adapt for certain parameter sets, i.e., for certain sampling
times. Interestingly, there is a lower and upper limit for the sampling time, see lower left
or upper right corner of Fig. 6.5 respectively. For problem difficulty 𝜅 = 0.95 the robot
swarm almost loses the ability of adaptation.
Similar to the static local communication range, the static global communication range
was able to adapt for certain parameter sets, see Fig. 6.6. Thereby, the static global com-
munication range has a wider parameter set.
However, both approaches are limited to certain parameter sets, i.e., the ability to adapt
dependson the sampling time,whichhas a lower andupper limit. In thefinal experiment
we tested the extension of dynamic communication range in the new environment. We
observe that if the sampling time is long enough the swarm adapts with a high proba-
bility, see Fig. 6.7. The parameter range is not as dependent on the problem difficulty as
on the static communication range experiments. Further, the dynamic communication
range extension has only a lower limit. Having only a lower limit brings the advantage
that if you do not know much about your problem, you can just choose a long sampling
time to ensure that the robot swarm is able to adapt. Instead if the communication range
is chosen statically it could be that you exceed the upper bounds and the swarm looses the
ability of adaptation. Thus choosing a dynamic communication range eases the problem
of finding the correct parameters.
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Figure 6.5: Results of the adaptive symmetry breaking experiment for different problem
difficulties 𝜅. We vary the sampling time by choosing different number of samples and
different time between samples. The range is static and set to rc = 3 cells. The swarm size
isN = 50 robots and we conducted 30 independent simulation runs per data point.
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Figure 6.6: Results of the adaptive symmetry breaking experiment for different prob-
lem difficulties 𝜅. We vary the sampling time by choosing different number of sam-
ples and different time between samples. The communication range is static and set to
rc = 45 cells. The swarm size is N = 50 robots and we conducted 30 independent simu-
lation runs per data point.

– 59 –



6 Dynamic Communication Range

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Adaptation Probability

5 10 15 20 25 30 45 60

7
6
5
4
3
2
1

0.5

Samples s

Ti
m
e
be
tw
ee
n
sa
m
pl
es

𝛿 s

𝜅 = 0.7

5 10 15 20 25 30 45 60

7
6
5
4
3
2
1

0.5

Samples s

Ti
m
e
be
tw
ee
n
sa
m
pl
es

𝛿 s

𝜅 = 0.8

5 10 15 20 25 30 45 60

7
6
5
4
3
2
1

0.5

Samples s

Ti
m
e
be
tw
ee
n
sa
m
pl
es

𝛿 s

𝜅 = 0.9

5 10 15 20 25 30 45 60

7
6
5
4
3
2
1

0.5

Samples s

Ti
m
e
be
tw
ee
n
sa
m
pl
es

𝛿 s

𝜅 = 0.95

Figure 6.7: Results of the adaptive symmetry breaking experiment for different problem
difficulties 𝜅. The communication range is adjusting as presented earlier, with rc,min = 3
and rc,max = 45. We choose the threshold 𝜏1 = 30 s. The swarm size isN = 50 robots and
we conducted 30 independent simulation runs per data point.
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Summary

In this thesis we studied the collective perception problem in three different scenarios:
dynamic best-of-n, symmetry breaking and adaptive symmetry breaking. Therefore, we
designed a minimalistic robot behaviour based on Talamali et al. (2021)’s work, which
implements the social interaction pattern cross-inhibition. We extended the robot be-
haviour by the gradually increasing speaking extension, which yields more stability for
the robot swarm.
For conducting our experiments we used the Kilogrid as augmented reality for the Kilo-
bot. For the simulated experimentswedeveloped anARGoS 3 extension,which simulates
the Kilogrid. Similar to the design concepts of ARGoS 3, we designed the extension such
that it offers the same interfaces as the real Kilogrid control software.
While studying the robot swarm’s ability to adapt in the dynamic best-of-n scenario, we
were able to reproduce the less is more effect for the new problem of collective perception.
The new experimental set-up, featuring the Kilogrid, allows us to precisely choose the
sampling time of individual robots and the swarm’s connectivity, which was not possible
before. By varying the sampling time we observed a new effect: the slower is faster effect,
that is the robot swarm is able to adapt (faster), if the individual robots do their task of
sampling the environment slower. It occurswhen the communication range is small, i.e.,
the robots have only few social interaction.
In the second scenariowe study the robot swarm’s ability of symmetry breaking. Thereby,
we found that the robot swarm is able to break the symmetry if there is rich social inter-
actions, i.e., if the communication range is large or the swarm density is high.
These findings contradict with the swarm’s ability of adaptation, as described by the less
is more effect, the robot swarm adapts only for small communication ranges. Combining
the problems of adaptation and symmetry breaking, it becomes difficult or even infeasi-
ble to choose a communication range that allows the robot swarm to solve both problems
simultaneously. That is why we propose another extension to the robot behaviour that is
letting the robots choose their communication range individually, based on the current
situation. The new extension was tested in all three scenarios: dynamic best-of-n, sym-
metrybreakingandadaptive symmetrybreaking. Wewereable to show, thatdynamically
adjusting the communication range of the robots is a promising solution, which can be
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implemented following the minimalistic design concept. Further, it simplifies finding
parameters for solving both problems in unknown environments.

Future Work

The next step is to deploy the experiments on the real Kilobots. While implementing the
novel way of communication for the Kilobots we faced the issue that module to mod-
ule communication is not properly supported by the Kilogrid control software. We are
able to sendmessages betweenmodules (direct addressing and broadcasting), but these
messages block the control software, which iterates sequentially through all modules for
collecting the tracking data. At some point, the module, which receives our user mes-
sage and the tracking data request from the dispatcher, hangs up. The Kilogrid control
software then waits for the hung upmodule to respond, with the result that the Kilogrid
cannot track the Kilobots and we cannot send any control commands to the modules.
Although we cannot use the novel way of message transmission we can run experiments
using direct robot to robot communication, i.e., local communication (approximately
2 < rc < 3). With this communication range we can show the slower is faster effect, as
it only appears in local communication range. We already did some real world experi-
ments7 for proving transferability of the in simulation developed code. We were able to
use the same code with slightmodifications (increasing counters needed for the random
walk, etc.).
Another issue we need to address is to modify the Kilobot plug-in for ARGoS 3, as it
spawns a process for each simulated robot and thus makes large scale simulations prob-
lematic. Finally, we can extend our study by testing more different parameter sets, e.g.,
different thresholds 𝜏1. Further, we can study different social interaction patterns, e.g.,
the direct switching pattern, which was also studied by Talamali et al. (2021) or different
communication range update behaviours, such as linear or exponential decrease of the
communication range.

7https://doi.org/10.5281/zenodo.6611777
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