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Abstract How groups of cooperative foragers can achieve efficient and robust
collective foraging is of interest both to biologists studying social insects and engi-
neers designing swarm robotics systems. Of particular interest are distance-quality
trade-offs and swarm-size-dependent foraging strategies. Here we present a collec-
tive foraging system based on virtual pheromones, tested in simulation and in
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swarms of up to 200 physical robots. Our individual agent controllers are highly
simplified, as they are based on binary pheromone sensors. Despite being sim-
ple, our individual controllers are able to reproduce classical foraging experiments
conducted with more capable real ants that sense pheromone concentration and
follow its gradient. One key feature of our controllers is a control parameter which
balances the trade-off between distance selectivity and quality selectivity of indi-
vidual foragers. We construct an optimal foraging theory model that accounts for
distance and quality of resources, as well as overcrowding, and predicts a swarm-
size-dependent strategy. We test swarms implementing our controllers against our
optimality model and find that, for moderate swarm sizes, they can be param-
eterised to approximate the optimal foraging strategy. This study demonstrates
the sufficiency of simple individual agent rules to generate sophisticated collective
foraging behaviour.

Keywords foraging · swarm robotics · stigmergy · Kilobot · augmented reality ·
traffic congestion

1 Introduction

Collective central-place foraging by super-organismal social insect colonies ele-
gantly and scaleably solves the problem of resource collection in a heteroge-
neous and uncertain environment (Olsson et al., 2008; Traniello, 1989; Detrain
and Deneubourg, 2008). Accordingly, engineers have drawn inspiration from so-
cial insects to design swarm robotics systems that collectively solve foraging-like
tasks in parallel (Labella et al., 2004; Hamann and Wörn, 2006; Liu et al., 2006;
Campo and Dorigo, 2007; Winfield, 2009; Berman et al., 2011; Pini et al., 2014;
Reina et al., 2015a; Ferrante et al., 2015; Scheidler et al., 2016; Essche et al.,
2015; Pitonakova et al., 2016, 2018; Hamann, 2018b). Engineering and biology
share common core interests in the efficiency of behaviour-generating mechanisms
(e.g. (Parker and Smith, 1990; Houston and McNamara, 1999; Ferrante et al.,
2013; Gauci et al., 2014; Özdemir et al., 2018)), and scaleability (e.g. (Rubenstein
et al., 2014b; Khaluf et al., 2017; Poissonnier et al., 2019)).

Here we extend a previous study of pheromone-based collective foraging
(Font Llenas et al., 2018); robots coordinate to find item sources in an unknown en-
vironment, collect an item and transport it back to a central depot. Each robot has
limited cognitive abilities and a minimal memory; it simply uses binary pheromone
sensors and follows a reactive behaviour with a minimal set of states. Despite the
limited capabilities of the robots and the simplicity of their individual behaviour,
the resulting collective behaviour qualitatively reproduces patterns observed in
real foraging ant colonies where the individuals have a more capable sensory sys-
tem (i.e. pheromone concentration sensors) and a more complex behaviour (i.e.
decisions based on difference of pheromone concentration (Thienen et al., 2014)
or on number of collisions with other ants (Fourcassié et al., 2010)). Our result-
ing collective behaviour is able to manage the distance-quality trade-off, and to
approximate the optimal allocation of foragers to resources using quality-sensitive
modulation of pheromone deposition and distance-sensitive abandonment rules.
The emergent bidirectional collective movement of foragers between sources and
depot is affected by crowding which is expected to reduce the efficiency of forage
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transportation from popular resources (Burd et al., 2002; Dussutour et al., 2004;
Fourcassié et al., 2010; Banks, 1999; Leduc et al., 2012). To assess the perfor-
mance of the emergent collective behaviour, we built an optimal foraging model
that explicitly takes account of crowding and we compared its predictions against
the results of simulations with swarms of varying sizes and experiments with up
to 200 physical robots. Our results are of potential interest to both swarm engi-
neers and behavioural ecologists, in that they demonstrate the sufficiency of very
simple individual agents to generate sophisticated collective behaviour, as well as
its scaleability, and reproduce empirically observed or theoretically predicted pat-
terns. This study follows previous work that used swarm robotics as a useful tool
in advancing the understanding of biological systems (Garnier, 2011; Webb, 2012;
Wischmann et al., 2012; Mitri et al., 2013; Bose et al., 2017).

2 Related works

Previous engineering studies have investigated the use of stigmergy as a form
of indirect communication within robot swarms where robots communicate with
others by modifying the environment. Significant attention has been given to the
use of indirect stigmergic communication to coordinate the collection of resources
spread in the environment (Goss et al., 1992; Werger and Matarić, 1996; Payton
et al., 2001; Nouyan et al., 2009; Campo et al., 2010; Ducatelle et al., 2011a;
Hoff et al., 2012; Purnamadjaja and Russell, 2007). Engineers have mainly been
inspired by social insect behaviours, especially the behaviour of some ant species
that we overview in Sec. 2.1. In Sec. 2.2 we review the techniques that engineers
have adopted to implement stigmergy-based foraging robots. Finally, in Sec. 2.3,
we introduce optimal foraging theory and present previous theoretical models of
collective foraging.

2.1 Stigmergy-based foraging in ant colonies

Some ant species coordinate their food collection by leaving pheromone trails when
returning from a discovered resource to their nest (Wilson, 1962; Hölldobler and
Wilson, 1990). In these ant species, the deposited pheromone trails serve as a
positive feedback mechanism for mass recruitment which guides nest-mates to
the location of a discovered source of forage (Sumpter and Pratt, 2003). Foraging
ants, equipped with pheromone concentration sensors (Thienen et al., 2014), reach
food sources by following the deposited pheromone trails with a preference to
higher concentration trails (Hangartner, 1969; Van Vorhis Key and Baker, 1982;
Choe et al., 2012). The modulation of positive feedback (e.g. as a function of the
source quality (Beckers et al., 1993; Portha et al., 2004; Shaffer et al., 2013) or
footprint frequency (Devigne et al., 2004)) allows ant colonies to reach various
collective patterns, such as selecting the best-quality food source available in the
environment (Beckers et al., 1990, 1993; Reid et al., 2012; Shaffer et al., 2013),
selecting the shortest path linking the food source to the nest (Goss et al., 1989;
Deneubourg et al., 1990), and balancing predation-risk and food quality (Nonacs
and Dill, 1990).
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In addition to the ability of collective resource exploitation, adaptation to
environmental fluctuations is a critically important ability for many biological or-
ganisms (Tsimring, 2014), including foraging ants (Dussutour et al., 2009). The
mechanisms behind mass recruitment abilities (i.e. positive feedback) are gener-
ally in opposition to those that allow adaptation and flexibility (Tabone et al.,
2010; Tsimring, 2014), therefore organisms showing adaptability are generally ca-
pable of a more complex behaviour. A remarkably interesting example is offered
by Monomorium pharaonis ants which make use of repellent pheromone as a form
of negative feedback (Stickland et al., 1999; Robinson et al., 2005, 2008; Detrain
and Deneubourg, 2006). Ants use this repellent pheromone to mark unrewarding
trails and could thus be a strategy to stop the exploitation of trails that lead to
depleted food sources. Other evidence of adaptability in ants has been documented
by Beckers et al. (1990) who showed that Tetramorium caespitum ants are able to
refocus their foraging efforts from a previously selected lower-quality food source,
to a newly available higher-quality food source. Ants are able to adapt to the en-
vironmental changes because, in addition to pheromone-based recruitment, they
use tandem running to recruit ants to newly available higher-quality food sources
(Beckers et al., 1990). In contrast, Lasius niger ants, using pheromone-based re-
cruitment only, are unable to switch their foraging efforts to the newly available
food source. In fact, Lasius niger ants only rely on indirect forms of negative
feedback, which may arise from physical constraints at the food source (e.g. over-
crowding or food depletion) or within the nest (e.g. filling of food reserve) (Detrain
and Deneubourg, 2006). Finally, in another study, Shaffer et al. (2013) showed that
Temnothorax rugatulus ants employing quality-dependent linear recruitment and
quality-dependent abandonment are able to adapt to the environmental changes.
T. rugatulus ants select the best-quality food source in case of two unequal-quality
sources, exploit equally the two sources if they have equal qualities, and refocus
their foraging efforts in case of changes in relative qualities (Shaffer et al., 2013).

2.2 Stigmergy-based foraging in swarm robotics

To implement the pheromone-based recruitment mechanism in a robot swarm,
an important question concerns the means of implementing pheromone trails; in
particular, how the robots deposit pheromone, how the pheromone trails in the
environment evolve, and how pheromone can be sensed by the robots. Here, we
categorise state-of-the-art work in this area into three main approaches: beacon
robots, robots with on-board actuators and sensors, and smart environments.

In the first category of robotic systems, some robots are tasked as static bea-
con robots (Goss et al., 1992; Werger and Matarić, 1996; Payton et al., 2001;
Nouyan et al., 2009; Campo et al., 2010; Ducatelle et al., 2011a; Hoff et al., 2012),
which have the functions of storing pheromone levels and communicating with
other robots in their neighbourhood. The biggest advantage of this approach is
that the system can be implemented with simple robots in largely unknown and
unstructured environments. However, there are some limitations: (i) allocation of
beacon robots means they are not actively contributing to the main task, such
as foraging; (ii) in large environments, the number of beacon robots increases in
order to cope with the communication requirements, thereby further limiting the
number of robots performing main tasks; (iii) beacon robots become obstacles
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themselves which restrict the movements of other robot agents. These issues can
be overcome by the creation of mobile beacon robots, which can contribute to a
main task as well as acting as beacons concurrently (Sperati et al., 2011; Ducatelle
et al., 2011b). However, the performance of the latter approach relies on finding
the correct balance between the swarm size and the communication range as a
function of the environment size.

Researchers have made several attempts to equip robots with on-board actu-
ators and sensors to implement indirect communication. For example, one early
solution was to install marker pens on robots so they could draw lines on the
path as pheromone trails (Svennebring and Koenig, 2004). This method improved
robots’ performance in the area coverage task, however, it did not incorporate
pheromone evaporation or diffusion which are features of real ant trails; evapora-
tion in particular is considered important to avoid runaway positive feedback (Gar-
nier et al., 2007, 2013). Another design proposed in (Purnamadjaja and Russell,
2007) equipped robots with devices to emit and detect gas, which then provided
guidance to robots towards a source area. The main limitation of this design was
the high volatility of the chemicals used. In (Mayet et al., 2010), a technique of en-
ergising phosphorescent paint using UV-LEDS mounted on E-Puck robots to mark
the path, as well as sensors for picking up the glowing paint signal representing the
pheromone trail, was presented. Although this allowed emulation of pheromone de-
cay, diffusion could not be emulated. A more recent study (Fujisawa et al., 2008,
2014) used ethanol for indirect communication signals between robots, with an
ethanol pump and an ethanol sensor installed on each robot, which preserved the
four characteristics of pheromone: evaporation, diffusion, locality (i.e. pheromone
level is only affected by the local environments) and reactivity (i.e. pheromone
evolution is based on reactions with the environment).

Perhaps the most popular approach in implementing pheromone communica-
tion is through a smart environment (Sugawara et al., 2004; Garnier et al., 2007;
Hecker et al., 2012; Garnier et al., 2013; Arvin et al., 2015; Valentini et al., 2018),
which has the capability to store and to supply virtual pheromone information to
robot agents in real-time. The popularity arises from the fact that this approach
is generally low-cost and easily adaptable to different sizes of swarm and environ-
ment. Smart environments may be difficult to install and use for real applications;
rather, such setups are often employed for targeted research experiments. This cat-
egory can be further divided into three classes: the usage of (i) Radio-Frequency
Identification (RFID) tags (Mamei and Zambonelli, 2005, 2007; Herianto et al.,
2007; Herianto and Kurabayashi, 2009; Bosien et al., 2012; Khaliq et al., 2014);
(ii) simulated pheromone environments, using projected light or other custom
hardware for virtual pheromone implementations (Sugawara et al., 2004; Garnier
et al., 2007, 2013; Arvin et al., 2015; Valentini et al., 2018) , and (iii) augmented
reality tools in which a virtual environment is sensed and acted on by robots using
virtual sensors and actuators (Reina et al., 2015b, 2017).

2.3 Optimal foraging theory

Foragers make economic decisions; hence optimality models need to be based on
suitable assumptions about ‘currencies of costs’ and benefits, as well as on con-
straints which may originate from features in the environment where foraging
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takes place (extrinsic) or inherent to the animals (intrinsic) (Stephens, D.W. and
Krebs, 1986). It is often assumed that reproductive success (or fitness) and forag-
ing behaviour are linked (Pyke, 1984; Houston and McNamara, 1999). Regarding
currencies, i.e. the quantities to be maximised to achieve optimality, foraging an-
imals often face a trade-off involving energy and time (Houston and McNamara,
1999). Typically an animal gains energy from eating a food item but it also needs
to invest time in handling such an item. Hence, if the quality of the food item
is poor, the animal must decide whether to pick it, or to leave it and continue
searching for better items. If the animal is a central place forager (Orians and
Pearson, 1979; Kacelnik, 1984), then its nest is the central place and food needs
to be transported from the food source to the nest, where it is consumed.

Traditionally two different currencies have often been used in foraging theory:
the net rate of energy gain and efficiency (Kacelnik, 1984; Houston and McNamara,
2014). Whereas the net rate of energy gain is computed as the difference between
the forager’s gross rate of gain and its rate of energy expenditure, efficiency is de-
rived by dividing gross rate of energy gain by rate of energy consumption (Houston
and McNamara, 2014). In honeybees, for example, there is mounting evidence that
maximising energetic efficiency provides a better account of the observed foraging
behaviour (Schmid-Hempel et al., 1985; Seeley, 1986, 1994; Cox and Myerscough,
2003; Houston and McNamara, 2014; Baveco et al., 2016). However, optimal forag-
ing theory does not always apply to real systems, as has, for instance, been noted
for leaf-cutting ants (Kacelnik, 1993). Another study investigating seed-harvester
ants, which always carry exactly one seed, made use of a different currency involv-
ing the seed mass to study optimal foraging (López, 1987). Developing a theory
that works for several foraging species seems inherently difficult, as mechanisms
underlying foraging can be quite different (Traniello, 1989). For example, red har-
vester ants (Pogonomyrmex barbatus) do not rely on pheromone trails during for-
aging; rather, interactions between ants at the nest site regulate their foraging
behaviour (Gordon, 1991; Greene and Gordon, 2003; Pagliara et al., 2018). There
are, however, many ant species where the production of pheromone trails is crucial
in the foraging process (Wilson, 1962; Hölldobler and Wilson, 1990; Detrain et al.,
1999; Nicolis and Deneubourg, 1999; Sumpter and Pratt, 2003). In principle, other
aspects also need to be considered when a foraging model is developed, which are
more generally related to the overall state of the forager (e.g. competing alterna-
tive activities) and the conditions characterising the foraging landscape (such as
predation risk) (Houston and McNamara, 1999).

We emphasise that this section has only touched on the complex nature of
foraging behaviour of animals and insect colonies and that it is by no means an
exhaustive collection of references. For the latter, we refer to more comprehensive
overviews, e.g. see Charnov (1976); Pyke (1984); Stephens, D.W. and Krebs (1986);
Houston and McNamara (1999). In our swarm robotics study we made use of
several aspects of the biological systems discussed above (see Sec. 3 and 4) and we
constructed a model for optimal resource collection which is described in Sec. 5
and in Appendix A.
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3 Resource collection in an unknown environment

In this section, we formally define the investigated problem and the required ca-
pabilities of the robot (Sec. 3.1), then we describe the robotic platform (Sec. 3.2)
and the augmented reality technology in use (ARK, Sec. 3.3).

3.1 The resource collection task

In this study, we investigate the problem of resource collection by a swarm com-
posed of S robots. The environment has n circular source areas of radius 10 cm,
denoted by Ai with i ∈ {1, . . . , n}, which are scattered around a central depot.
Each area Ai offers resource items of quality Qi. The quality is a numerical in-
dication of the importance of the resource with respect to the task that will be
performed; this is similar to the nutritional value of food items in animal foraging.
In this work we are interested in the foraging process at steady state, therefore,
we assume sources which never deplete. If a robot enters a source area, it imme-
diately collects one virtual item (or object) and returns it to the central circular
depot (of radius 10 cm). We do not take into account any handling time of the
resource item. Also, we do not consider the time spent in the resource patch, as the
robot immediately finds an object and returns to the depot (no exploration within
the source area). The load carried back to the nest site is always one item at a
time. Travelling takes place with the same speed independent of the load carried
(i.e. either unloaded or loaded with one object). Keeping these aspects in abstract
terms helps to focus the study on the collective motion aspect and allocation of
robots to source areas. In fact, this study focuses on strategies to coordinate the
robot motion between depot and source areas through decentralised self-organising
mechanisms. In particular, we explore how indirect communication in the form of
virtual pheromone trails can allow the robot swarm to balance the trade-off be-
tween the quality of resource items and the distance between the source area and
the central depot.

The robots have limited computational and memory capabilities and need to
operate in an unknown environment. Robots are incapable of memorising source
areas’ locations, instead rely on pheromone trails to find again the previously
discovered sources. This form of indirect communication requires the robots to
be able to apply and read temporary marks in the environment. Additionally we
assume that robots always know the direction to the depot (similarly to path
integration in ants and in other social insects (Collett and Collett, 2002; Bregy
et al., 2008; Heinze et al., 2018)) and are able to detect walls in front of them.
However, robots do not possess any form of direct communication amongst each
other, and cannot perceive other robots in their surroundings.

3.2 The Kilobot robot

This study is conducted using Kilobots (Fig. 1(a)), which are minimalistic robots
widely employed in swarm robotics research, with very limited capabilities pro-
vided by a small range of sensors and actuators (Rubenstein et al., 2014a). The
Kilobot moves on a flat surface through a pair of vibration motors that allow the
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robot to perform a slip-stick differential-drive motion. A Kilobot moves at a speed
of v0 ≈ 1 cm/s and rotates at ∼ 40 ◦/s. It also has an infrared (IR) transceiver
to communicate with other Kilobots in a range of 10 cm and to receive messages
from an overhead control board (OHC), an RGB LED to display internal states
through colours, and an ambient-light sensor. The OHC allows users to quickly
program large swarms through wireless IR communication, and in our case, is used
to augment the Kilobots with virtual sensors and actuators (see Sec. 3.3). While
the Kilobot is quite limited in its capabilities, its simplicity results in a low-cost
and easy-to-operate platform which is highly scaleable.

3.3 Increasing Kilobots’ capabilities through augmented reality

To overcome the Kilobot’s limitations, researchers implemented open-source tech-
nology to extend the Kilobot’s capabilities via customisable virtual sensors and
actuators (Reina et al., 2017; Valentini et al., 2018). This technology allows Kilo-
bots to operate in an augmented reality in which, in addition to the real world, the
Kilobots can sense and modify a computer-simulated environment in real-time (see
Sec. 2.2). Two implementations of this technology have been proposed in recent
years: the Augmented Reality for Kilobots (ARK) by Reina et al. (2017) and the
Kilogrid by Valentini et al. (2018). In this study, we use the ARK system because
of its low installation cost and its ability to automatically perform several house-
keeping tasks such as motor calibration, unique ID assignment, and experiment
video-recording.

ARK consists of an overhead camera array to track the Kilobots, an IR-OHC
to communicate to the Kilobots, and a computer (base control station, BCS) to
simulate the virtual environment. The information about the virtual sensors is
computed on the BCS and communicated to the specific robot with addressed
messages via the OHC. The information about virtual actuators is computed on-
board by the Kilobots, communicated with colour-coded messages via LEDs visible
by the overhead cameras, and processed by the BCS which updates the virtual
environment. Additionally, the BCS updates the temporal dynamics of the virtual
environment. In this way, each Kilobot can receive personalised information about
its virtual sensors in real-time and autonomously decides when to modify the
virtual environment through virtual actuators.

In this study, we employ ARK to allow robots to apply and read virtual
pheromone which evaporates and diffuses over time. We equip the Kilobots with
five virtual sensors and one virtual actuator. In particular each robot is equipped
with:

– area sensor (either depot or source): the Kilobot is able to perceive if it is
within the depot or a source area (this information is encoded in 2 bits);

– item quality sensor: the Kilobot is able to estimate the quality of the item it
retrieves from the source area. Additionally, when the Kilobot enters in the
depot, it can estimate the quality of the items that have been collected up to
now (this information is encoded in 4 bits);

– depot direction sensor: the Kilobot has always knowledge about its relative
direction to the depot (this information is encoded in 4 bits);
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Fig. 1 (a) A picture of a Kilobot with a 3D printed ring (originally designed for the study of
Pratissoli et al. (2019)) which considerably improves ARK’s performance in terms of tracking
and LED colour detection. (b) Kilobots sense via ARK the presence of virtual pheromone
in front of themselves at a distance of ∼ 3.5 cm in four 45◦-wide sectors. The virtual sensor
indicates the presence or absence of pheromone as binary values, therefore, the Kilobot has
no information about the pheromone quantity or concentration difference. In this illustration,
pheromone is represented as blue circles and thus the virtual sensor readings are [1,0,1,0]. When
an exploring Kilobot detects pheromone, it interrupts random exploration and moves towards
the detected pheromone. If more than one sector has pheromone (as in the illustration), to
decide its motion direction the robot compares the sectors’ direction with the depot direction
(depot illustrated as a house and direction differences as red and green angles), and moves
towards the largest angle (green arrow).

– wall sensor: the Kilobot can sense if there is a wall at a distance of ∼ 5 cm in
front of itself; note that this does not allow the Kilobot to sense the presence
of other robots (this information is encoded in 4 bits);

– pheromone gland actuator: the Kilobot can deposit a drop of pheromone at its
location (it expresses this behaviour by blinking its LED blue);

– pheromone antennae: the Kilobot can sense the presence of pheromone at a
distance of∼ 3.5 cm from its centre in front of itself (this information is encoded
in 4 bits, see Fig. 1(b)).

To store information about the pheromone, ARK models the environment as a
discrete 2D matrix with cells of 6.7×6.7 mm2. Each time-step of length ∆t = 0.5 s,
ARK updates the pheromone matrix by adding pheromone deposited by the robots
(each drop consists of an increment of φ = 250 in the cell under the robot’s centre),
and computes evaporation and diffusion of the pheromone. Each matrix cell m(i, j)
is updated as

m(i, j) = m(i, j)[ elog(0.5)ε∆t − 4 γ ∆t ] + [m(i, j ± 1) +m(i± 1, j)]γ ∆t, (1)

where the parameters ε = 0.1 and γ = 0.02 are the evaporation and diffusion
rates respectively. Equation (1) is a discrete realisation of Fick’s law of diffusion
(Fick, 1855), where we introduce the exponential term to take into account the
pheromone evaporation consistently with studies from biology (Garnier et al.,
2013).
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4 A simple individual behaviour for complex coordination

The individual robot behaviour is relatively simple and can be described by the
Probabilistic Finite State Machine (PFSM) illustrated in Fig. 2. The main struc-
ture of the behaviour is based on the control software designed by Font Llenas
et al. (2018). The behaviour has been enriched by adding a new Obstacle Avoid-
ance state (indicated as AO in Fig. 2), by including an additional form of indirect
communication that enables adaptability to different quality scales (as described
in Sec. 4.1), and by allowing for probabilistic transitions and tuneable pheromone
functions (as described in Sec. 4.2).

The robots do not have previous knowledge about the number, location, and
items’ quality of the source areas. Therefore, a robot starts by exploring the en-
vironment to discover source areas (state RW in Fig. 2). Due to the Kilobot’s
limited capabilities (see Sec.3.2), the exploration is performed via an isotropic
random walk which is a simple and efficient method to search for targets in an un-
known environment (Dimidov et al., 2016). The random walk consists of alternate
straight motion for 10 s and uniformly random rotation in [−π, π]. Upon encounter
of a source area, the robot (virtually) picks up an item and transports it to the
depot (state GD in Fig. 2). As indicated in Sec. 3.1, we assume that the robots are
limited in memory and only able to keep track of the direction towards a single
location in the space, in our case the direction to the depot. This assumption is
in line with the behaviour of several ants species which rely on path integration
to return to the nest (Collett and Collett, 2002; Bregy et al., 2008; Heinze et al.,
2018). The robots follow the direction to depot to bring back collected items.
Instead, to memorise the source locations, the robots rely on their stigmergic co-
ordination which represents a form of collective memory. Therefore, on its way to
the depot, the robot lays down virtual pheromone to allow itself, as other robots,
to find again the source area. The robot, every four seconds, takes a probabilis-
tic decision to deposit the next pheromone drop using the function Pφ(Qi) which
is function of the collected item’s quality Qi

1. The function Pφ(Qi) is given by
Eq. (2) and described in details in Sec. 4.2. On arriving to the depot, the robot
unloads the item and probabilistically decides (according to Eq. (3)) to turn back
to follow the just-formed pheromone trail (state TB in Fig. 2), or to interrupt its
exploitation of this source area and to resume exploration through random walk.
When a robot senses virtual pheromone via the virtual antennae (composed by
four sectors described in Sec. 3.3), the robot follows the trail by moving in the
direction of the triggered antennae sector (state FP in Fig. 2). If the robot senses
pheromone in more than one direction, e.g. both left and right sectors as in the
illustration of Fig. 1(b), the robot compares the sensed-pheromone directions with
the direction to depot (red and green angles in Fig. 1(b)) and moves towards the
direction with the largest difference (green arrow in Fig. 1(b)). This decision relies
on the assumptions that robots only deposit pheromone in their straight path from
a source area to the depot and that they always have access to the depot vector.

Compared with previous studies (Font Llenas et al., 2018), the robot’s be-
haviour has been enriched through the inclusion of obstacle avoidance (state AO

1 Lasius niger ants follow a similar behaviour, laying pheromone trails on their way back to
the nest while depositing a quantity of pheromone proportional to the quality of the foraged
food (Portha et al., 2004; Czaczkes et al., 2013).
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Fig. 2 Probabilistic Finite State Machine (PFSM) of the individual robot behaviour. Circles
represent states and arrows are transitions. Robots start exploring the environment through
a random walk (RW); when they find a source area they collect an item and return to the
depot (GD) laying pheromone according to Eq. (2). Once arrived at the depot, they either
turn back (TB) or resume exploration (RW). When explorer robots detect pheromone, they
follow it (FP). When robots detect a wall, they avoid it (AO). Controlling individuals through
this simple PFSM leads to sophisticated collective foraging dynamics.

in Fig 2). In fact, robots have been equipped with a virtual sensor to detect walls
(see Sec. 3.3). The robot reacts to a wall only if sensed in a frontal position, i.e.
the two central sectors in the range [−45◦, 45◦] of the robot’s heading (note that
the virtual wall sensor is composed by four sectors equal to the virtual antennae
of Fig. 1(b)). Upon wall detection, the robot turns left or right for about 22.5◦

in the opposite direction of the sensed obstacle, then moves straight for 2.5 s, and
finally returns to either the random walk (RW) state or the go depot (GD) state,
depending on whether it carries an item or not. This behaviour may be triggered
multiple times, until no obstacle is sensed in the central sectors. In case of symmet-
ric sensing, i.e. both central sectors sense an obstacle, the robot uses as tie-breaker
the lateral obstacle sectors to turn in the freest direction. In the case of complete
symmetry, the direction is selected at random.

4.1 Adaptivity to relative quality differences

The robots do not have any prior information about the range of the sources’ qual-
ities that the unknown environment can offer. In order to allow the swarm to tune
its behaviour to an unknown quality range, the individual robots update over time
their knowledge on the best currently available quality Qmax. Initially, the robot
has no prior knowledge about the quality range and thus ranks the first source
it finds as the best available. Over time, the robot constantly compares its range
(i.e. the best available quality Qmax) with other items collected by other swarm
members. The communication between robots is indirect and takes place within
the depot. Each time a robot enters the depot, it can see the qualities of the items
collected by the swarm until now; thus, the robot compares its information with
the best quality and, if higher, updates its Qmax accordingly. This mechanism is
consistent with animal behaviour where individuals can assess the nutrient quality
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of the swarm’s reserves and compare against their own (Dussutour and Simpson,
2009; Arganda et al., 2014).

In our study, we consider unlimited item sources to investigate the steady state
regime, however, in case of limited sources (i.e. with a limited number of items)
the robots may update their quality range by only observing the latest collected
items. In this way, we predict the swarm being able to flexibly adapt to appearance
or depletion of sources.

4.2 Modulation of the individual rules to obtain a plastic behaviour

After collecting an item, the robot returns to the depot laying a pheromone trail.
The pheromone trail acts as a form of indirect communication between robots
which inform each other about paths connecting depot to discovered sources. Col-
lective contribution to these trails leads to a form of swarm memory which allows
the swarm to remember the location of sources in the environment. In fact, our
simple robots cannot internally store sources’ locations, although the swarm, as
a whole, can remember locations through pheromone trails. A pheromone trail is
formed by a sequence of drops that the robot deposits via its virtual pheromone
gland (see Sec. 3.3). Similar to the approach of Font Llenas et al. (2018), a robot
probabilistically decides every four seconds whether to lay the next drop or not.
In the previous work, we implemented a simple linear function to map the quality
Qi into a pheromone deposition probability, i.e. Pφ(Qi) = Qi/Qmax. Linking the
pheromone deposition function to perceived source quality allowed the swarm to
give priority to better quality sources over inferior sources.

In this study, we implement a tuneable function to allow the robot to regulate
its selectivity on the quality through a single parameter α ≥ 0. The probability to
deposit the next pheromone drop is given by

Pφ(Qi) = eα(Qi−Qmax)Q−1
i . (2)

The individual robots have access to α in a decentralised way and can alter this
value to vary the global response. Using an α > 1, the function has an exponential
shape on Qi resulting in high selectivity in favour of the highest quality sources.
A value of α ≈ 1 leads to (approximately) linear response therefore approximating
the function investigated in (Font Llenas et al., 2018), thus having Eq. (2) as a
generalisation of the previous specific function. Finally, decreasing α < 1 gradually
flattens out the function to a constant value, that at the limit of α = 0 becomes
constant Pφ(Qi) = 1; this results in constant pheromone trails irrespective of the
sources’ qualities.

To further expand the individual robot capabilities to be able to balance the
distance-quality trade-off, we introduce a decay function Pd(ti) that robots use,
upon arrival in the depot with an item (event indicated with the letter ‘a’ in
Fig. 2), to decide whether to keep exploiting the same source or to start exploring
for new sources. Pd(ti) is inspired by similar abandonment behaviours observed in
social insects (e.g. foraging ants (Shaffer et al., 2013) and house-hunting honeybees
(Seeley et al., 2012)) and allows the robots to abandon exploiting source Ai that
required a long travel time ti (either because it is distant or has an overcrowded
path). The travel time ti is measured by the robots as the time spent between the
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item collection (from the source Ai) and the item deposition (in the depot). The
function Pd(ti), similarly to Pφ(Qi) of Eq. (2), is modulated by the parameter α
as

Pd(ti) = (α+ 1)−2e
ti−tmax
(α+1)

√
ti (3)

where tmax is a parameter indicating robot’s prior knowledge on the maximum
acceptable time to return from a source. The tmax could be adaptively tuned
(similarly to Qmax in Sec. 4.1), although in this study we do not explore this
aspect and we fix tmax = 100 s. Assuming a fixed tmax is reasonable, because in
both biological and artificial systems source areas may be accepted only if they
are located within a certain maximum distance (or travel time ti) from the depot
that is decided a priori.

Equations (2) and (3) are linked by the parameter α which the robots can
regulate to alter the swarm behaviour. Increasing α > 1 has the combined effect of
increasing discriminability on quality Qi and flattening Pd(ti) ≈ 0 for any distance;
therefore the swarm ignores distance but selects the higher quality source. Con-
versely, small α < 1 flattens out quality differences Pφ(Qi) ≈ 1 and accentuates
differences on travel time with an exponential abandonment Pd(ti) on high travel
times; this leads to a system where the only discriminating factor on source selec-
tion is distance due to a combination of evaporation and abandonment on farther
sources. Finally, intermediate values α ≈ 1 give a quasi-linear response of Pφ(Qi)
and sublinear Pd(ti) > 0 which allow the swarm to balance the distance-quality
trade-off (similarly to what has been reported in (Font Llenas et al., 2018)).

5 An optimal resource collection model

In this section we model the optimal resource collection by the robot swarm
through a mathematical model inspired by general aspects of optimal foraging
theory (Kacelnik, 1984; Houston and McNamara, 2014).

Our model describes the utility gained by collection of resource items dis-
counted by the cost incurred in transporting these items to the depot. The main
components of our model are the items’ qualities, the allocation of robots to vari-
ous source areas, and the source-depot travel time. We model the robot allocation
as ρj (with j ∈ {1, . . . , n}) which is the fraction of robots on the trail between
central depot and source area Aj . All robots that are actively involved in trans-
portation of items from the n sources are called workers; their fraction is denoted
by ρw =

∑n
j=1 ρj . The remaining robots that explore the landscape are called ex-

plorers, their fraction is denoted by ρe = 1−ρw. The travel time is a function of the
source-depot distance and of the traffic congestion on the path. In fact, crowded
paths lead to frequent collisions between robots and result in longer travel times.
The model is derived in Appendix A; here we report the main quantity which is
the swarm yield R, defined as

R =
n∑
j=1

qj βj ρj S

d̃2
j

, with d̃j = dj + vo TC,j(ρj S) . (4)

where S is the swarm size, qj = Qj/Qmax is the normalised quality of source area
Aj , ρj is the fraction of robots on the trail between central depot and source area
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Aj , the parameter βj is a fitting parameter characterising the relationship between
the number of collected items from source Aj and the number of robots on the
trail to Aj (see Eq. (7) in Appendix A), dj is the distance between source area
Aj and depot, v0 = 1 cm/s is the Kilobot’s speed, and the function TC,j(ρj S), de-
fined in Eq. (12), models the additional travel time arising from traffic congestion.
Therefore, Eq. (4) models traffic congestion as an increase of the travel distance
dj by accumulating the additional length of vo TC,j(ρj S).

5.1 Estimation of model parameters from simulation data

As for the model of Appendix A, three free parameters per source area (T0,j , βj ,
and κj , with j ∈ {1, . . . , n}) need to be estimated from data. To do so, we use the
relationship between the number of robots on a path and the number of collected
items given in Eq. (7). For the case of two source areas, the results of fitting are
depicted in Fig. 3 and summarised in Table 2 (in Appendix A). As shown in Fig. 3,
for small-to-medium numbers of robots on a trail, the number of collected items
per time interval increases linearly with the number of robots on a trail; whereas
for medium-to-large numbers of robots on a trail, we observe a nonlinear decay.
This type of curve is widespread in several natural and artificial systems and is
often indicated as Universal Scalability Law (Gunther, 2000; Krause et al., 2002;
Hamann, 2012, 2013, 2018a).

5.2 Basic properties of the optimal resource collection model

To study the basic properties of the yield function R in Eq. (4), we consider the
case of resource collection in an environment with n = 2 source areas. The robot
swarm aims at optimally allocating its robots between the two source areas to
maximise the yield R. For simplicity, we assume that all robots in the swarm are
involved in resource collection (i.e. all robots are workers and ρw = 1, ρe = 0); the
fraction ρ1 = ρ collects items from source A1, and the fraction ρ2 = 1− ρ collects
items from source A2. The yield function in Eq. (4) is then given as

R(ρ) = R1(ρ) +R2(ρ) ; R1(ρ) =
q1 β1 ρS

d̃2
1

, R2(ρ) =
q2 β2 (1− ρ)S

d̃2
2

, (5)

Here, we are interested in how the robot swarm allocates its resources. Therefore
we explicitly mention the dependency of R on ρ in Eq. (5); in what follows we
derive the optimal value of 0 ≤ ρ ≤ 1 that maximises Eq. (5). Different outcomes
are possible. If we consider increasing ρ, where ρ ∈ [0, 1], then we have

– 1 global maximum at ρ = 1 (all workers allocated to source area A1), if R(ρ)
monotonically increases,

– 1 global maximum at ρ = 0 (all workers allocated to source area A2), if R(ρ)
monotonically decreases, or

– either 1 global maximum or 2 local maxima (one of which is also the global
maximum) where 0 < ρ < 1 (workers split between source area A1 and A2).
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Fig. 3 Fits of Eq. (7) to data generated by physics-based simulations in order to obtain the
model parameters reported in Table 2 in Appendix A. Fitting is performed in case of n = 2
source areas with different quality and equal distance in panel (a), equal quality and different
distance in panel (b), and equal quality and distance in panel (c). Data points are represented
using symbols and fits are represented using lines (circles and solid grey lines show collection
from source A1 while triangles and dash-doted blue lines show collection from source A2).
Error bars represent 95% confidence intervals. There is a linear growth for small-to-medium
numbers of robots on a path, and a nonlinear decay for medium-to-large numbers of robots on
a path. This type of growth-decay curves on population size is widespread in nature (Krause
et al., 2002) as in engineering (Gunther, 2000).

For the last case we can derive the optimal swarm deployment with respect to
ρ from ∂R/∂ρ = 0. We give the full expressions of the first order derivatives in
Eq. (15) in Appendix B and use a graphical approach in this section to picture the
behaviour of R(ρ). Without loss of generality, below we make use of the averaged
quantities obtained for d1 = d2 = 1 m and q1 = q2 = 1 (reported in Table 2) to
demonstrate the basic behaviour of the model.

5.2.1 Equal distances and varying qualities (fixed swarm size)

We expect that the effect of crowding on a trail will lead to different behaviours
when the source areas are near the depot compared with the case when they are
sufficiently far away that crowding can be neglected. We consider both scenarios
with n = 2 source areas at equal-far or equal-near distance and show the corre-
sponding results in Fig. 4(a)-(b) for fixed q1 = 1 and varying q2 ∈ {0.5, 0.75, 1},
respectively. In case the qualities of items contained in the two different source
areas are different, at first glance it seems intuitive to allocate as many workers as
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Fig. 4 Model predictions of yield R depending on worker allocation ρ for equally distant
sources d1 = d2 = 3.5 m, in panel (a), and equally nearby sources d1 = d2 = 0.6 m, in
panel (b), for fixed q1 = 1 and varying q2 ∈ {0.5, 0.75, 1}. When sources are relatively far
(panel (a)), it is optimal to allocate all workers to the better quality source area, whereas for
source areas in close proximity (panel (b)) the yield is maximised if the trail between the higher
quality option and depot does not become overcrowded. Parameters: β1 = β2 = β̄ = 0.965,
T0,1 = T0,2 = T̄0 = 0.029, κ1 = κ2 = κ̄ = 2.321, and S = 200.

possible to the source with the higher quality items. However, this strategy may
lead to frequent collisions on the transport path and hence to traffic congestion
that slows down the resource income. This means that there is a limitation on the
item collection efficiency which depends on the number of workers and the space
available on the transport trail.

Fig. 4(a) shows that for sufficiently large distances between source area and
depot it is indeed optimal to allocate all workers to the source containing higher
quality items. If the qualities of resource items in the two source areas are also
equal then the yield is, albeit only marginally, larger if both source areas are
exploited equally. In case both source areas are near the depot then the optimal
strategy is different. Exploiting equally both resources does not give the highest
yield, instead the best strategy is to avoid traffic congestions on the trail leading
to the higher quality items (low ρ in Fig. 4(b)). Interestingly, reducing collisions
and congestion on the higher-quality source path means allocating more workers
to the lower-quality source. Even when both source areas provide items of equal
quality, it is better to focus on any of the two available sources to optimise the
resource income from the other (Fig. 4(b)).

5.2.2 Equal qualities and varying distances (fixed swarm size)

Let us now consider the case when both available source areas contain objects
of equal quality. Given a fixed swarm size, optimising the transport yield R
should then be affected by the distance of each source area to the depot. In
Fig. 4 we depict the corresponding yield function for equal qualities q1 = q2 = 1,
swarm size S = 200, fixed A1’s distance d1 = 0.6 m, and varying A2’s distance
d2 ∈ {0.3m, 0.6m, 0.9m}. The model results of Fig. 5(a) predict the effect of over-
crowding. The optimal strategy consists of allocating most robots to the more
distant source area in order to keep the path to the closer source congestion-free
and to allow for more efficient resource collection.
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Fig. 5 Model predictions of yield R depending on workers allocation ρ for equal qualities
q1 = q2 = 1. In panel (a), we show the effect of distance on R; we fixed swarm size S = 200
and A1’s distance d1 = 0.6 m, and varied of A2’s distance d2 ∈ {0.3 m, 0.6 m, 0.9 m}. Due
to the effect of overcrowding the maximum yield is attained when only a limited number of
workers, 10% ∼ 20%, collected from the nearer source in order to keep the path free from traffic
congestion. In panel (b), we report the effect of the swarm size S when it is larger, smaller, or
equal to the critical size Sc. The sources have equal qualities q1 = q2 = 1 and depot-source
distances d1 = d2 = 0.6 m. The critical swarm size Sc characterises the effect of overcrowding,
i.e. when the swarm is sufficiently large (S > Sc) it is optimal to keep at least one path
with less than 50% workers; otherwise the effect of overcrowding would decrease the income
of resources on both paths. Parameters: β1 = β2 = β̄ = 0.965, T0,1 = T0,2 = T̄0 = 0.029,
κ1 = κ2 = κ̄ = 2.321.

5.2.3 Critical swarm size for equal qualities and equal distances

Through our model, we can derive the critical size Sc, below which the best pre-
dicted strategy is to equally split workers between the two source areas, assuming
sources at equal distances and with equal qualities. We analytically derive the
expression to obtain Sc in Appendix C and we depict in Fig. 5(b) how R varies
for swarm sizes S larger, smaller, or equal to Sc. If the swarm size gets too large
(S > Sc), it is optimal to allocate more robots to one source although collection
from either source would give the same reward and incur identical costs. This
means that the robot swarm should avoid overcrowding both paths to maximise
the yield from resource collection. However, compared with the case S < SC , the
possible yield for S > Sc is smaller, i.e. if the swarm exceeds its critical size Sc of
collecting workers it cannot achieve the maximum yield it could possibly achieve
for a smaller number of workers involved in the resource transportation. This result
highlights the importance of controlling the number of workers to maximise the
global intake; a strategy implemented in a decentralised fashion by ants (Charbon-
neau et al., 2015; Pagliara et al., 2018), and recently investigated in the context
of swarm robotics (Mayya et al., 2019).

6 Results

Through physics-based simulations, we systematically tested a variety of experi-
mental conditions to study the performance of the proposed system. We validated
some of the simulation results through experiments with up to 200 physical Kilo-
bots. In Sec. 6.1 we present a set of simulation results that highlight the benefits
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Fig. 6 (Colours online) A picture of a 50 real Kilobots experiment with the virtual environ-
ment superimposed on the image. The red (bottom-left) source area A1 has quality Q1 = 10
while the yellow (top-right) source area A2 has quality Q2 = 4. The sources are placed at
d1 = 1 m and d2 = 0.6 m from the central (blue) depot. The (light-blue) shades represent
the pheromone trails that the robots deposit and follow. Full videos available as supple-
mentary material (Online Resource 1-9) and at https://www.youtube.com/playlist?list=
PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a.

of having introduced a virtual wall sensor, adaptability to unknown environmental
scenarios, and behaviour modulation to balance the distance-quality trade-off. In
Sec. 6.2 we compare the model predictions against robot swarm simulations for
different swarm sizes.

The physics-based simulations were conducted with ARGoS (Pinciroli et al.,
2012, 2018) which is a state-of-the-art swarm robotics simulator that accurately
and efficiently simulates the Kilobots and the ARK system via a dedicated plug-
in (Pinciroli et al., 2018). The physical robot experiments were run with fully
charged Kilobots whose motors have been automatically calibrated through ARK
(Reina et al., 2017). The videos of these experiments are augmented by super-
imposing the virtual environment information (see a sample image in Fig. 6) and
available as online supplementary material (Online Resource 1-9) and at https://
www.youtube.com/playlist?list=PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a. The
robot simulation code is open source and available online at https://github.

com/DiODeProject/PheromoneKilobotSwarmIntell.

6.1 Results show tuneable and adaptive swarm responses

We report here the simulation and physical robot results to show evidence of
the behaviours obtained through obstacle avoidance, adaptivity, and individual
function modulation.

Obstacle avoidance Figure 7(b) shows a screenshot of an experiment inspired by
the well-known study of Goss et al. (1989) which showed that ants are able to
exploit the shorter path in double bridge experiments with branching paths of dif-
ferent lengths. In our system, the individual robots have lower cognitive capabili-
ties than the individual ants. In fact, the Kilobots cannot distinguish pheromone
intensity, follow its gradient, nor make decisions with respect to differences in

https://www.youtube.com/playlist?list=PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a
https://www.youtube.com/playlist?list=PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a
https://www.youtube.com/playlist?list=PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a
https://www.youtube.com/playlist?list=PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a
https://github.com/DiODeProject/PheromoneKilobotSwarmIntell
https://github.com/DiODeProject/PheromoneKilobotSwarmIntell
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(a) (b)

Fig. 7 A 50 simulated Kilobot swarm experiment inspired by the ants’ double-bridge experi-
ment by Goss et al. (1989) in which two paths, a longer path (1.8 m long) and a shorter path
(1.4 m long), connected source to depot. When the simulated swarm had access to only the
longer path, panel (a), the Kilobots reinforced pheromone on that path and used it for their
collections. Instead, when both paths were available, panel (b), the Kilobots disregarded the
longer path and (almost exclusively) used the shorter for their collections. Panel (c) shows the
number of robots on the two paths at the end of one simulated hour (boxes range from 1st

to 3rd quartile of the data from 100 simulations and indicate the median with a horizontal
line, the whiskers extends to 1.5 IQR). The individual Kilobots cannot follow a pheromone
gradient nor detect any difference in pheromone concentration. Despite their limited individual
capabilities, the robot swarm shows (in certain experimental conditions) behaviour similar to
ants’ colonies, which instead rely on much higher cognitive abilities at the individual level.

pheromone concentration. Nevertheless, the robot swarm was able to preferen-
tially exploit the shorter path. This outcome was not limited to conditions where
the pheromone evaporation was too high to exploit the longer path while suffi-
cient to establish a path on the shorter, but it also applied to scenarios in which
both paths were viable. In fact, we tested the swarm in an environment where
we blocked the shorter path and only the longer path was active (see Fig. 7(a))
and the robots exploited the longer path, as illustrated in the plot of Fig. 7(c).
Similar double-bridge experimental setups have been emulated and investigated
in previous swarm robotics studies such as (Montes de Oca et al., 2010; Scheidler
et al., 2016), in which however the swarm behaviour and goal were different.

Our results indicate that, for certain types of experimental conditions, cogni-
tively simpler individuals would suffice to reproduce the collective level behaviour
observed in colonies of more complex ants. However, we believe that the ants,
exploiting gradient sensing, are more flexible and can optimise path lengths in a
larger range of environments than our robotic system. In fact our results may vary
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Fig. 8 Simulation results showing the adaptivity of the system. We measured the number
of collected items in panel (a) and the number of robots on each path in panel (b) for the
two source areas, the superior A1 and inferior A2, both at equal distance d1 = d2 = 1 m. We
kept the same quality ratio, i.e. Q2/Q1 = 0.4, but varied the absolute value of the objects
(indicated on the x-axis). All experiments were conducted with swarms of S = 50 Kilobots and
an intermediate value of α = 0.85 in Eq. (2) and Eq. (3). Boxes range from 1st to 3rd quartile
of the data from 100 simulations and indicate the median with a horizontal line; the whiskers
extend to 1.5 IQR. Having a constant range (dark boxplots) shows good results only if the
predefined range matches the actual range of the environment (central experiment). Instead
an adaptive strategy allows the swarm to exploit resources as a function of the their relative
qualities in a range adapted to the environment.

if we would increase the robots density and/or vary the paths’ lengths. However,
we cannot ascribe the observed behaviour to the manually tuned maximum travel
time tmax = 100 s of Eq. (3) because our experiments were conducted with α = 10
which flattens Eq. (3) to zero for every path length. Therefore, the observed dy-
namics emerged from a more complex interplay between the Kilobots’ behaviour
and the virtual pheromone dynamics, and resulted in an efficient swarm selection
of the shortest path.

Adaptivity As described in Sec. 4.1, the swarm is able to adapt to any quality range
and have a response that only considers the ratio between qualities rather than the
absolute quality values. Figure 8 shows the system’s response to three scenarios
with n = 2 sources with the same quality ratio (i.e. Q2/Q1 = 0.4) but different
absolute quality values (i.e. Q1 = 15, Q2 = 6 on the left, Q1 = 10, Q2 = 4 in
the centre, and Q1 = 5, Q2 = 2 on the right of the x-axes of Figs. 8(a)-(b)). The
results show that the adaptive strategy (white boxplots) adapted to any condition
and, as the quality ratio remained the same, also the swarm response remained the
same. Instead, the constant range strategy (dark boxplots) reckoned with absolute
quantities and led to the desired outcome only when the prior knowledge on the
quality range matched the environment’s range (central experimental scenario of
Fig. 8). The ability to respond to the relative quality of food sources, rather than
to an absolute quality range, has been recently documented also in foraging ants
(Wendt et al., 2018).
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Behaviour modulation Via Eqs. (2) and (3), the individual robots can modulate
their behaviour to give priority to closer (low α) or better-quality (high α) source
areas. This modulation at the individual level translates to different collective
responses at the swarm level. We investigated such dynamics in swarms of S = 50
Kilobots operating in an n = 2 sources scenario environment with a superior source
area A1 at distance d1 = 1 m with Q1 = 10 and an inferior source area A2 with
Q2 = 4 and varying distance d2 ∈ [0.5, 1]m. The relatively small swarm size was
motivated by preliminary results that we reported in (Font Llenas et al., 2018)
which showed that large swarms do not discriminate between sources as there are
enough robots to maximally exploit any area. Figure 9 shows the effect of the three
tested values of α ∈ {0, 0.85, 10} on the swarm dynamics. Using α = 0 promoted
distance selectivity, in fact the simulated swarm had the highest item collection
per minute (panel (a)) from the closest source (A2) to which the majority of the
workers was deployed (panel (b)). Using α = 10 promoted quality selectivity, in
fact the simulated swarm had the highest item collection per minute from the
highest-quality source (A1) to which the majority of the robots was deployed.
Finally, intermediate values of α, e.g. α = 0.85, led to a distance-quality trade-off
where the swarm exploited the nearest inferior-quality source only if it was much
closer than the farther superior-quality source.

We ran three experiments with 50 physical robots for each of the two limit
cases of quality-selective α = 10 (solid black symbols) and of distance-selective
α = 0 (solid light-grey symbols). The videos of these six experiments are available
as online supplementary material (Online Resource 1-6) and at https://www.

youtube.com/playlist?list=PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a. Physical
robots showed a resource collection less efficient than simulation; despite this, in
both cases, the two strategies favoured either the best-quality or the nearest source
area, as shown by the simulations. We explain the observed difference between re-
ality and simulation (the reality gap) as a motion speed difference between robots
and simulation. In fact, the simulation was accurately tuned on the movement of
fully charged Kilobots (Pinciroli et al., 2018), but did not take into account that
the robot’s speed was reduced over time due to the decrease of its battery level.

Figure 9(c) shows the rate per minute of collected items weighted by their nor-
malised qualities (q1 = 1.0 and q2 = 0.5). We did not include any cost because in
our experiments every robot moved constantly and continuously (either as worker
or as explorer). Therefore the swarm incurred a constant cost independent of the
collections (this would be different if, as ants do, some individuals would stop ex-
ploration to save energy (Charbonneau et al., 2015), or to avoid overcrowding as
discussed above). Interestingly, the results show that there was not one α-value
that was better than all others; rather the best strategy varied in relation to the
environment. For large distance difference, i.e. d2 � d1, the distance-selective
strategy (α = 0) displayed the highest weighted collection. Conversely, for similar
distances, the best strategy consisted of favouring the best-quality source (α = 10),
analogously to what has been observed in some species of ants which focused their
foraging efforts on the richer of two equally-distant sugar sources (Beckers et al.,
1993; Shaffer et al., 2013).

https://www.youtube.com/playlist?list=PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a
https://www.youtube.com/playlist?list=PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a
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Fig. 9 Effect of the modulation of the parameter α from Eqs. (2) and (3) to favour nearer
source areas (α = 0), to favour the best-quality sources (α = 10), or to balance the distance-
quality trade-off (0 < α < 10). Results of α = 0 are shown in light-grey, α = 0.85 in dark-grey,
and α = 10 in black. We report the results for simulations and physical robots experiments
of one hour each in scenarios with n = 2 sources. We excluded the initial exploration phase
and indicate mean values for the last 30 minutes. Physical robots results are indicated as
solid symbols with vertical bars indicating the 95% confidence intervals of 3 runs for each
condition (the symbols are slightly shifted to avoid bar overlaps but all represent results for
d2 = 0.6 m). Lines represent the mean of 100 simulations (shaded areas are 95% confidence
intervals). Source A1 had quality Q1 = 10 and was located at distance d1 = 1 m; source A2

had quality Q2 = 4 and varying distance d2 ∈ [0.5, 1.0]m. We report the rate of collected items
per minute in panel (a), the mean number of robots on each path in panel (b), and the rate
per minute of collected items weighted by the normalised quality q1 = 1.0 and q2 = 0.5 in
panel (c). Individual robots can locally modulate the decentralised parameter α to lead the
swarm to a range of different collective responses, e.g. selecting almost exclusively the best-
quality source (high α) or balancing the distance-quality trade-off (low α). Physical robots are
less efficient than simulations, however ordering between sources is preserved; this confirms
the effects of α-modulation observed in simulation.

6.2 Comparison of model and simulation data

Here we compare the performance of binary resource collections for varying swarm
sizes S and varying α which regulates the swarm strategy (as from pheromone
deposition in Eq. (2) and trail abandonment in Eq. (3)). The plot in Fig. 10 shows
the yield R as a function of the fraction of workers allocated to source A1 (with
ρ1 = ρ) divided by the fraction of total workers involved in resource collection
ρw, and of the number of worker robots ρw S (i.e. involved in collecting resource
items).
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Fig. 10 (Colours online) Comparison of model with simulations and experiments: Total yield
R as a function of the normalised swarm allocation ρ/ρw and the number of worker robots ρw S.
We report the predicted yield R from the model of Eq. (4) as a colour heatmap and we overlay
robot simulations for three strategies: distance-selective α = 0 (circles), distance-quality trade-
off α = 0.85 (diamonds), and quality-selective α = 10 (triangles). We report simulations for
swarm sizes S = 50 (cyan), S = 100 (green), S = 200 (purple) and S = 500 (white). Under
the model’s assumptions, the simulated robot swarm performs best for S = 200 and α = 0.85
(R = 150.6 m−2) in (a), α = 10 (R = 177.1 m−2) in (b) and α = 10 (R = 120.4 m−2) in (c).
Swarms of large size (S = 500) do not achieve good performance as they equally exploit
both sources and do not avoid overcrowding. The star symbol in (c) was obtained from three
experiments with 200 Kilobots assuming α = 0.85 (see online videos). Error bars represent
95% confidence intervals. Parameters: βj , T0,j and κj are given in Table 2.

Best performing swarms have an intermediate size (i.e. S = 200). Relatively
small swarms allocate robots more selectively depending on the implemented strat-
egy. For instance, in Fig. 10(a), the quality selective strategy (α = 10 indicated as
triangles) shows an allocation of workers predominantly to the best-quality source
(ρ/ρw > 0.8) when S ≤ 200. Instead, large swarms of S = 500 do not discriminate
between sources and equally exploit both. The distance selective strategy (α = 0
indicated as circles) in Fig. 10(b) has a much smaller deviation and is visible only
for the smallest swarm. Observing such a change in the swarm response is not an
obvious result because robots cannot perceive each other. The observed change is
an emergent property.

In general, simulations and the model show differences especially for swarms
of size S = 500. In fact, for large swarms, the model predicts that the best strat-
egy would be to allocate only a limited number of robots to the best path, in
order to avoid overcrowding. We suggest that it would be possible to implement
such a strategy by allowing the robots to sense and perceive peers (whilst they
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do not in this study). In the current strategy, we tried to overcome overcrowd-
ing by including the trail abandonment function of Eq. (3), although this did not
demonstrate sufficient ability to deviate from a symmetric exploitation for large
swarms. The resulting dynamics for S = 500 are an equal split between the two
paths (Fig. 10(a)), which could be caused by physical ‘pushing’ between individu-
als, similarly to what is observed in some experiments of ants’ traffic organisation
(Dussutour et al., 2004, 2005; Fourcassié et al., 2010).

To investigate how collision between individuals affects the collective dynamics,
we reproduced the results of Fig. 10 in the collision-free case in which we removed
any effect of physical interactions between robots. Fig. 11 reports the model results
with null traffic congestion contribution, i.e. Eq. (12) becomes TC,j(ρj S) = 0. We
overlay the simulation results with deactivated collisions, i.e. the Kilobots’ physical
body is not simulated and robots can move through each others.

As expected, the model predicts that for every workers size, ρw S the best
strategy is always to allocate all workers to the best quality source (Fig. 11(a)),
or to the closest source (Fig. 11(b)). Some of the simulations approximate such an
optimal behaviour. In the case of asymmetric qualities (Fig. 11(a)), the quality-
selective strategy (α = 10 represented as triangles) has high values of ρ. Similarly,
the closer area in Fig. 11(b) is largely exploited by distance-selective strategies
(α = 0 represented as circles and α = 0.85 represented as diamonds).

7 Discussion

Our results show how simple individual agents can collectively forage in a sophis-
ticated manner. We assumed a minimal cognitive architecture including mainte-
nance of a home vector (well evidenced in ants (Collett and Collett, 2002; Heinze
et al., 2018)), and simple binary detection of pheromone trails and obstacles; our
agents are thus much simpler than real ants. Combined with a simple pheromone
deposition rule with a single tuneable parameter, however, we are able to qualita-
tively reproduce classical results such as the shortest path exploitation observed
in lab ant colonies (Goss et al., 1989), and able to manage the classical distance-
quality trade-off of foraging. We have further derived an optimality model account-
ing for congestion costs in foraging and examined the effect of resource distribution
and colony size on the optimal distribution of foragers over forage patches. While
others have previously considered the effect of colony size on recruitment strategy
(Planqué et al., 2010; Pagliara et al., 2018; Mayya et al., 2019), our analysis instead
assumes the recruitment strategy, and considers the optimal distribution. Our sim-
ple heuristic agent controllers are able to approximate the optimal distribution for
relatively small swarm sizes, although large swarms depart from optimality. Large
swarms cause crowded environments which require strategies to clear paths in or-
der to reduce traffic congestion. We identify two possible strategies to limit traffic
congestion: modifying the abandonment strategy or enriching the individual be-
haviour with collision-reactive states. In this work, after abandonment, the robots
simply resumed exploration. The effects of this abandonment strategy are limited
as robots quickly rediscover a path (which may be already congested). We be-
lieve that a better abandonment strategy (e.g. to stay at the depot for a period
of time before resuming exploration, similar to ants (Pagliara et al., 2018)) could
improve the results of the abandonment behaviour introduced in this work. Com-
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Fig. 11 (Colours online) Total yield R as a function of the normalised swarm allocation ρ/ρw
and the number of worker robots ρw S in the collision-free condition. We removed the effect
of physical interactions (i.e. collisions between robots) that may cause traffic congestions and
we report the predicted yield R from the model (4) as a colour heatmap and we overlay robot
simulations for three strategies: distance-selective α = 0 (circle), distance-quality trade-off
α = 0.85 (diamond), and quality-selective α = 10 (triangle). We report simulations for swarm
sizes S = 50 (cyan), S = 100 (green), S = 200 (purple) and S = 500 (white). Without collision,
the predicted best strategy is allocation of all workers to the best-quality or closest source
area. The collision-free simulations approximate such result when the corresponding strategy
is activated, e.g. quality-selective α = 10 (triangle) in panel (a) and the distance-selective
α = 0 (circle) in panel (b). Error bars represent 95% confidence intervals. Parameters: βj , T0,j

and κj are given in Table 2.

plementarily, traffic flow can be maintained undisrupted even in relatively crowded
conditions by individual ants changing their behaviour as a function of collisions
with other ants (Dussutour et al., 2004; Poissonnier et al., 2019). Inspired by these
results, the robot behaviour could be enriched with new collision-dependent states.

Our results are complementary to other approaches to minimal controllers
necessary for collective behaviour in the swarm robotics field (Gauci et al., 2014;
Özdemir et al., 2018). Simple controllers increase the transferability to various
robotics platforms thanks to their limited hardware requirements. Additionally,
simple behaviours generally reduce the impact of the reality gap and preserve
consistent dynamics in reality and simulations, as shown in our experiments where
the same control software produced qualitatively similar results.

Our results illustrate the sophisticated collective dynamics that can be gener-
ated even by simple agents, which should be of interest to biologists and of practical
utility to engineers. Similarly, our study of swarm size, and the scaleability of for-
aging success, should interest both biologists and engineers, although it is worth
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noting that at least in some species of ants congestion is much less of a problem
compared to robots (Hönicke et al., 2015; Poissonnier et al., 2019). In Sec. 6.2,
we investigated a case closer to biology in which congestions did not impact the
travel time; with model and simulations adapted accordingly. Nevertheless, we ar-
gue that taking a unifying perspective on the biology and engineering of collective
foraging is illuminating, both through their similarities, and their differences.
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Arganda S, Nicolis SC, Perochain A, Péchabadens C, Latil G, Dussutour A (2014)
Collective choice in ants: The role of protein and carbohydrates ratios. Journal
of Insect Physiology 69:19–26

Arvin F, Yue S, Xiong C (2015) Colias-φ: An autonomous micro robot for artificial
pheromone communication. International Journal of Mechanical Engineering
and Robotics Research 4(4):349–353

Banks JH (1999) Investigation of some characteristics of congested flow. Trans-
portation research record 1678(1):128–134

Baveco JM, Focks A, Belgers D, van der Steen JJ, Boesten JJ, Roessink I (2016)
An energetics-based honeybee nectar-foraging model used to assess the potential
for landscape-level pesticide exposure dilution. PeerJ 4:e2293

Beckers R, Deneubourg JL, Goss S, Pasteels JM (1990) Collective decision making
through food recruitment. Insectes Sociaux 37(3):258–267

Beckers R, Deneubourg JL, Goss S (1993) Modulation of trail laying in the ant
Lasius niger (Hymenoptera: Formicidae) and its role in the collective selection
of a food source. Journal of lnsect Behavior 6(6):751–759

Berman S, Kumar V, Nagpal R (2011) Design of control policies for spatially
inhomogeneous robot swarms with application to commercial pollination. In:
Proceedings of the 2011 IEEE/RSJ International Conference on Robotics and
Automation (ICRA 2011), IEEE, pp 378–385

Bose T, Reina A, Marshall JAR (2017) Collective decision-making. Current Opin-
ion in Behavioral Sciences 16:30–34

Bosien A, Turau V, Zambonelli F (2012) Approaches to fast sequential inventory
and path following in RFID-enriched environments. International Journal of
Radio Frequency Identification Technology and Applications 4(1):28–48

Bregy P, Sommer S, Wehner R (2008) Nest-mark orientation versus vector navi-
gation in desert ants. Journal of Experimental Biology 211(12):1868–1873

Burd M, Archer D, Aranwela N, Stradling DJ (2002) Traffic dynamics of the
leafCutting ant, Atta cephalotes. The American Naturalist 159(3):283–293

Campo A, Dorigo M (2007) Efficient multi-foraging in swarm robotics. In: Ad-
vances in Artificial Life (ECAL 2007), Springer, LNCS, vol 4648, pp 696–705
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APPENDIX

A Derivation of an optimal resource collection model

To link the behaviour of the robot swarm with optimal resource collection, we developed a
mathematical model which is inspired by optimal foraging theory and relates to maximising
energetic efficiency (Kacelnik, 1984; Houston and McNamara, 2014). An overview of the pa-
rameters used in our model is given in Table 1. The following derivation assumes that the robot
swarm is in a steady state reached after time Teq . We further assume that the simulation ends
at time Tend. The time between Teq and Tend is divided into Nt smaller intervals with length
∆t = (Tend − Teq)/Nt. In our study, we have Teq = 30 min and Tend = 60 min. This means
∆t = 1 min if we assume Nt = 30 intervals. The swarm size is denoted by S. We can now
define the total utility gain of the swarm in the steady state related to the collection of items
from source area Aj as

gj = e0 qj ∆Uj , (6)

where e0 is a utility unit, and qj = Qj/Qmax is the normalised quality of source area Aj , Qj ,
with respect to the maximum quality Qmax. Qmax is the maximum quality value known to the
robot swarm, and ∆Uj = Uj(Tend)− Uj(Teq) is the total number of items carried back from
source area j to the central depot within the time interval Tend−Teq . Note that if Qj = Qmax

(i.e. qj = 1) then the utility gained per resource item with the maximum quality carried back
to the depot is e0. We may assume that the number of collected items from source Aj has the
following functional relationship with the number of robots on the trail

∆Uj = ϕj (Tend − Teq)βj ρj S , (7)

where ρj is the fraction of robots on the trail between central depot and source area Aj , i.e.∑
j ρj = 1− ρe = ρw, where ρe denotes the fraction of robots that explore the landscape and

are not involved in object transportation—called explorers—and ρw is the total fraction of
robots actively involved in transportation of resource items—called workers. The parameter
βj is a constant characterising the relationship between workers collecting from source Aj and
the number of collected items carried back to the nest, and ϕj is a foraging rate, which we
may approximate by

ϕj =
1

TUj + TLj
, (8)

where TLj and TUj are the travel times to overcome the distance between central depot and

source Aj with and without load, respectively.
The cost for one robot in the swarm (unit cost) associated with travelling between depot

and source Aj to collect resource items is given as

cj = cUj T
U
j + cLj T

L
j , (9)

where cLj and cUj are the costs per time interval related to travelling with an item (L =loaded)

and without (U =unloaded). Using Eqs. (6) and (9), let us define the transport yield (in the
steady state) per unit cost as

R̃ =

n∑
j=1

gj

cj
=

n∑
j=1

e0 qj ∆Uj

cUj T
U
j + cLj T

L
j

=

n∑
j=1

e0 (Tend − Teq)βj qj ρj S(
cUj T

U
j + cLj T

L
j

)(
TUj + TLj

) . (10)
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Table 1 Overview of parameters used in the derivation of the optimal foraging model.

symbol brief description

S size of the robot swarm

Qj quality of resource j

Qmax maximum resource quality available

qj normalised quality of resource j (qj = Qj/Qmax)

Uj number of items carried from source j back to nest

ϕj foraging rate related to item collection from source j

ρj fraction of robots on trail j

ρ fraction of robots on trail 1 (ρ=ρ1)

ρw fraction of robots that are workers (i.e. robots which actively collect items)

ρe fraction of robots that are explorers (i.e. robots which explore

the environment but do not collect items)

dj distance between nest and source j

v0 velocity of Kilobots

e0 utility unit

cj unit cost corresponding to item collection from source j

cUj cost per time interval when unloaded robot travels from nest to source j

cLj cost per time interval when loaded robot travels from source j back to the nest

TUj travel time of unloaded robot when it travels from nest to source j

TLj travel time of loaded robot when it travels from source j back to the nest

T0,j time constant which sets the time scale of the additional travel time on trail j due to crowding

ZKB radius of a Kilobot

βj experimentally obtained parameter characterising the relationship between

robots on trail j and items carried back along this path

κj constant to fine-tune the nonlinear effect of overcrowding on trail j

Ncrit,j critical number of robots on trail j when crowding affects resource collection

Teq time when the robot swarm is in a steady state

Tend final time when simulations/experiments stop

As we consider virtual (weightless) objects, the cost for travelling with and without load is
identical, hence cLj = cUj = c0. Similarly, travel times with and without load may be assumed

to be identical, that is, we have TUj = TLj = Tj . We can then express the travel time as

Tj =
dj

v0
+ TC,j(ρj S) , (11)

where dj is the distance between depot and source area Aj , and v0 ≈ 1 cm/s is the travel speed
of the Kilobot (see Sec. 3.2). The term TC,j(ρj S) is a function that takes into account how
the travel time is influenced by the number of robots ρj S on the path to Aj . Overcrowded
paths cause prolonged travel time due to frequent collisions between robots. We model the
additional time arising from traffic congestion as

TC,j(ρj S) = T0,j

(
exp

[
κj

ρj S

Ncrit,j

]
− 1

)
, (12)

where T0,j is a constant which sets the time scale of the additional travel time, κj is a constant
included to fine-tune the nonlinear effect of overcrowding on the path to Aj , and Ncrit,j is the
critical number for which traffic congestion may have a significant effect. This means that
TC,j(ρj S) is negligible if κj ρj S � Ncrit,j. The critical number Ncrit,j may be obtained using

Ncrit,j = max (bξjc, 1) , ξj =
dj

ZKB
, (13)

where ZKB = 3.3 cm is the diameter of a Kilobot and bξjc returns the greatest integer less
than or equal to ξj .
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Normalising Eq. (10) by the experimental constant K = e0 v2
0 (Tend − Teq)/(4 c0), we can

derive the normalised yield as

R =
R̃

K
=

n∑
j=1

qj βj ρj S

d̃2
j

, with d̃j = dj + vo TC,j(ρj S) , (14)

which is identical to Eq. (4), and mentioned here again for convenience. This means that travel
distance dj increases due to traffic congestion between central depot and source area Aj by
the additional length vo TC,j(ρj S). The normalised yield, R, in Eqs. (4) and (14), respectively,
is given in the physical unit m−2, which seems appropriate as we consider robots looking for
source areas in a two-dimensional space.

Table 2 Overview of estimated model parameters. The goodness-of-fit is quantified by
R2

GoF,j = 1 −
∑
i(yi − yfit

i )2/
∑
i(yi − ȳ)2, where yi = ∆Ui/min, the yfit

i correspond to the

fitted values, and ȳ represents the mean value of all yi. The index j corresponds to the trail.
Mean model parameter values including one standard deviation errors (values in brackets) are
given.

task condition β1 β2 T0,1 (s) T0,2 (s) κ1 κ2 R2
GoF,1 R2

GoF,2

q1 = 1, q2 = 0.5, 1.035 1.009 0.180 0.150 1.483 1.586 0.985 0.991

d1 = d2 = 0.6 m (0.004) (0.004) (0.019) (0.015) (0.027) (0.026)

q1 = q2 = 1, 0.951 1.091 0.0004 0.805 3.692 0.991 0.968 0.990

d1 = 1 m, d2 = 0.5 m (0.004) (0.004) (0.0001) (0.046) (0.110) (0.012)

q1 = q2 = 1, 0.961 0.968 0.026 0.032 2.327 2.315 0.984 0.985

d1 = d2 = 1 m (0.003) (0.003) (0.004) (0.005) (0.042) (0.039)

B Derivation of first and second order derivatives of yield function
with respect to swarm allocation for binary resource collection

Here we derive the first and second order partial derivatives that correspond to the binary
resource collection problem discussed in Sec. 5.2. We let ρ1 = ρ and ρ2 = ρw − ρ. The first
order derivative of the yield function in Eq. (5) with respect to ρ is given as

∂R

∂ρ
=
∂R1

∂ρ
+
∂R2

∂ρ
=

∂R1

∂TC,1(ρ)

∂TC,1(ρ)

∂ρ
+

∂R2

∂TC,2(ρ)

∂TC,2(ρ)

∂ρ
, (15)

where TC,j(ρ) is given in Eq. (12). Performing the derivatives we find

∂R

∂ρ
= S

{
q1 β1

d̃2
1

−
q2 β2

d̃2
2

− 2 v0 S

(
ρ q1 β1 κ1 T0,1

Ncrit,1 d̃
3
1

exp

[
κ1

ρS

Ncrit,1

]

+
(ρ− ρw) q2 β2 κ2 T0,2

Ncrit,2 d̃
3
2

exp

[
κ2

(ρw − ρ)S

Ncrit,2

])}
,

(16)

where d̃j (j = 1, 2) is given in Eq. (14). Note that we set ρw = 1 in Sec. 5.2, for simplicity.
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Using the expression in Eq. (16), we obtain the second order partial derivative as

∂2R

∂ρ2
= 2 v0 S

2

[
q1 β1 κ1 T0,1

Ncrit,1
g1(ρ) +

q2 β2 κ2 T0,2

Ncrit,2
g2(ρ)

]

g1(ρ) =
exp

[
κ1

ρ S
Ncrit,1

]
d̃3

1

(
κ1 ρS

Ncrit,1

[
3 v0 T0,1 exp

[
κ1

ρ S
Ncrit,1

]
d̃1

− 1

]
− 2

)

g2(ρ) =
exp

[
κ2

(ρw−ρ)S
Ncrit,2

]
d̃3

2

×
(
κ2 (ρw − ρ)S

Ncrit,2

[
3 v0 T0,2 exp

[
κ2

(ρw−ρ)S
Ncrit,2

]
d̃2

− 1

]
− 2

)
.

(17)

C Deriving the critical swarm size for equal qualities and equal
distances

The critical swarm size, denoted by Sc, indicates when it is better to collect items from both
source areas when we assume equal qualities and equal distances. The critical size Sc may be
derived from solving

3 v0 T̄0

d̃
exp

[
κ̄ Sc

2Ncrit

]
= 1 +

4Ncrit

κ̄ Sc
, (18)

where we used d̃1 = d̃2 = d̃, Ncrit,1 = Ncrit,2 = Ncrit and ρw = 1 (giving ρ = 1/2). Further
to this we substituted κ1 = κ2 = κ̄ = (κ1 + κ2)/2, T0,1 = T0,2 = T̄0 = (T0,1 + T0,2)/2 and
β1 = β2 = β̄ = (β1 + β2)/2, where the model parameters are given in Table 2. The expression
in Eq. (18) follows from the second order derivative according to

∂2R(ρ; S = Sc)

∂ρ2

∣∣∣∣
ρ= 1

2

= 0 , (19)

at which point the global maximum at ρ = 1/2 becomes a local minimum and two local
maxima (ρ 6= 1/2) arise with equal yields R for S ≥ Sc. The full expression of the second order
derivative ∂2R/∂ρ2 is given in Eq. (17) in Appendix B.
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