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We model opinion dynamics on a time-varying network and we show that model predictions are improved by
using Holling’s type II functional response to modulate the interaction rate.

We study the opinion dynamics of a large group of agents that moves in a bidimensional environment and
interact locally with each other. This kind of model can describe diffusion of opinions in living societies, as
well as in artificial swarms. We aim to engineer the behaviour of an adaptive robot swarm able to agree on
the best available option in a dynamic environment. Options refer to environmental aspects that robots can
locally sense from the environment (e.g. locations of interest in the environment) and make noisy estimates of
the option’s quality. We analyse a minimal voting behaviour that allows the system to both reach consensus
when environmental conditions are stable, and to adapt to changes when the options vary.

Behaviour. Robots diffuse in the environment (through random walk) to monitor the available options and
to share with each other their opinion on the best location. The robots have a minimalistic behaviour and
only store the location and quality of the preferred option. The robots do not know about the number of
options or their quality; a robot knows about an option only when it discovers it or other robots vote for it.
The voting model that the robot employs is the classical voter model in which, at every update step, robots
select one random message among the ones received from the neighbours and set their opinion to the one of the
selected message. Voting messages only contain the location of the preferred option thus a robot once informed
goes to assess the received option’s quality. The swarm converges towards the best option because each robot
communicates with a frequency linearly proportional to the estimated quality.

Adaptation to changing environment. In several scenarios, the environment can be subject to changes
in terms of appearance of new candidate locations, the disappearance of existing location, or change in their
quality. A simple variation of the voter model that allows the system to adapt to these changes of options consists
in constantly monitoring the environment. The monitoring is implemented by the robots which estimate the
quality of every encountered option and switch to it when its quality is superior of the current option’s quality.

Modelling of the decentralised process. A classical macroscopic description of the decision dynamics is
to derive from the state transitions a mean-field model in the form of a system ODE system. Each equation
of the model describes how subpopulations (group of robots with the same opinion) change over time. The
model assumes a well-mixed system in which interactions are not constrained by the interaction network. This
model’s prediction is that the system would always adapt to the best existing option even when the initial
state is consensus for another option. The predictions do not match the results of the multi-agent simulations.
Most of the times, in multi-agent simulations, large swarms do not adapt to changes. To address this behavior,
we modify the model by taking into account that in typical robotic systems the network dynamics (change in
neighbourhood) are slower than the opinion dynamics (voting between neighbours). Therefore we model the
interactions among robots via the Holling’s type II functional response. Normally employed in ecology, in our
model this functional response describes that new information can diffuse at a rate sublinear to the number
of robots and constrained by the rate of interaction with new individuals. This means that the rate by which
robots in subpopulation x recruit robots of subpopulation y, when y is much larger than x, is independent of
the size of y. The modified model presents a fold bifurcation as a function of the robots’ density (i.e. average
number of robots in communication range) and option’s quality. The system prior to bifurcation has a single
stable point which corresponds to adaptation to the best option. After the bifurcation, the system has two
stable points which may trap the system in the current consensus and not allow it to adapt to the new option.
The new model predictions match the multi-agent simulations (see left figure) and the (preliminary) swarm
robotics experiments (not shown). In addition, the model also gives insights on how to modify the system
in order to improve adaptability in large swarms. A counterintuitive solution suggested by the model results
is that adaptability of the group increases as the robot’s communication range decreases (see central figure).
That is, in our setup, speaking with fewer individuals at a time seems to improve the ability of the system to
disseminate new localised information (see right figure).
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