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A B S T R A C T

The study of large-scale decentralised systems composed of numerous in-
teracting agents that self-organise to perform a common task is receiving
growing attention in several application domains. However, real world im-
plementations are limited by a lack of well-established design methodolo-
gies that provide performance guarantees. Engineering such systems is a
challenging task because of the difficulties to obtain the micro-macro link: a
correspondence between the microscopic description of the individual agent
behaviour and the macroscopic models that describe the system’s dynamics
at the global level. In this thesis, we propose an engineering methodology
for designing decentralised systems, based on the concept of design patterns.
A design pattern provides a general solution to a specific class of problems
which are relevant in several application domains. The main component
of the solution consists of a multi-level description of the collective process,
from macro to micro models, accompanied by rules for converting the model
parameters between description levels. In other words, the design pattern
provides a formal description of the micro-macro link for a process that
tackles a specific class of problems. Additionally, a design pattern provides
a set of case studies to illustrate possible implementation alternatives both
for simple or particularly challenging scenarios. We present a design pat-
tern for the best-of-n, decentralised decision problem that is derived from
a model of nest-site selection in honeybees. We present two case studies
to showcase the design pattern usage in (i) a multiagent system interacting
through a fully-connected network, and (ii) a swarm of particles moving on
a bidimensional plane.
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Nothing in life is to be feared, it is only to be under-
stood. Now is the time to understand more, so that
we may fear less.

—Marie Skłodowska Curie

1

I N T R O D U C T I O N

The last decades witnessed a proliferation of interconnected smart devices
that are able to operate in an autonomous way. This phenomenon will
increase in the future leading to a multitude of large-scale decentralised
systems (Helbing and Pournaras, 2015). These systems, which we refer to
as swarm systems in analogy with insect swarms or other similar biological
systems (see also Section 2.1), will be composed of numerous autonomous
agents (e.g., smart devices, robots) interacting with each other. Understand-
ing and controlling such swarm systems will be necessary in order to be able
to exploit their potential. Several studies investigated methods to analyse,
design and engineer swarm systems from different viewpoints (Liu et al.,
2011; Helbing, 2014; Lee et al., 2014). However, general methodologies to
design and engineer swarm systems are missing due to the difficulties to
model (complex) systems composed of numerous interacting components
and to predict their behaviour. The main cause of these difficulties is the
gap between the behaviour at the system (swarm) level and the behaviour
of each agent composing the swarm at the local, individual level. In sev-
eral cases, even if the individual behaviour of each agent is known, the
resulting swarm behaviour is hard to predict. The lack of tools to predict
the behaviour and, thus, to guarantee the performance of the system is one
of the main causes that prevents the diffusion of swarm systems in real
world applications. In fact, nowadays, swarm systems applications are still
bound within the research labs. We believe that an engineering method-
ology able to provide performance guarantees and to predict the swarm
behaviour would foster the introduction of swarm systems in commercial
applications and everyday life. Examples of large-scale distributed systems
that would benefit from a more rigorous methodology are swarms of robots
(Brambilla et al., 2013), cognitive radio networks (Akyildiz et al., 2011) and
cyber-physical systems (Derler et al., 2012).

A general design methodology is difficult (and may be impossible) to
achieve because of the difficulties in treating at the same time several com-
plexity factors (e.g., heterogeneities in the interaction topology or in the
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individual behaviour). Additionally, each application faces domain-specific
challenges. For instance, in swarm robotics, any design methodology needs
to deal with the inherent spatial factors (Hamann and Wörn, 2008b; Berman
et al., 2011b; Sartoretti et al., 2014; Scheidler et al., 2015). Instead of a general
design methodology, an alternative approach consists in providing general
solutions to specific classes of problems. In this thesis, we propose the use
of design patterns to organise and formalise such solutions. Each design pat-
tern consists in a reusable package of methods and guidelines to design a
swarm system allowing the prediction of the swarm behaviour and provid-
ing performance guarantees.

After introducing design patterns as a general methodology for the design
of swarm systems, we present a design pattern for the cognitive ability of de-
centralised decision making in the best-of-n problem, that is the ability of a
group of autonomous agents to select the best option among a set of n alter-
natives. We selected decentralised decision making in the best-of-n problem
because it represents a crucial ability in several application domains (Halloy
et al., 2007; Vigelius et al., 2014; Srivastava and Leonard, 2014; Valentini et al.,
2016). The design pattern presented in this thesis is based on behavioural
models of honeybee swarms selecting their nest site (Marshall et al., 2009;
Seeley et al., 2012; Pais et al., 2013). Generally speaking, the ability of a
biological system to select the most profitable option among the available
alternatives is a fundamental adaptive response that can determine death or
survival. This is why the decision-making strategy observed in honeybee
swarms presents a near-optimal speed-accuracy tradeoff: given a desired
accuracy level, a decision is taken in the shortest time possible (Marshall
et al., 2009; Seeley et al., 2012). Additionally, inhibitory signals among bees
allow the swarm to quickly break decision deadlocks and provide an adap-
tive mechanism to tune the decision dynamics as a function of the perceived
quality of the available options (Seeley et al., 2012; Pais et al., 2013). These
properties are desirable in many practical decision-making scenarios and
justify the selection of the honeybee model as the reference.

To achieve a complete formalisation of the design pattern, we extend the
model for binary decisions presented in (Seeley et al., 2012) to a more gen-
eral case that deals with decisions among n options. We report a descrip-
tion of the best-of-n decision process at various levels: (i) a macroscopic
description through an infinite-size, deterministic, time/state-space contin-
uous model, (ii) a macroscopic description through a finite-size, stochastic,
time continuous, state-space discrete model, and (iii) a microscopic, agent-
based, stochastic, time/state-space discrete description. We also present
rules to convert the model parameters from one description level to another.
Domain-specific challenges (such as spatial factors and heterogeneity be-
tween agents composing the swarm) are tackled through a set of guidelines.
Additionally, as a necessary intermediate step to the formalisation of the
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design pattern, we implement a preliminary case study using a bottom-
up design approach. This case study consists in the implementation of a
swarm robotics system (in physics-based simulation) with its performance
quantitatively predicted by the macroscopic model. Finally, we present two
case studies (implemented with a top-down approach) that showcase the
design pattern usage following various types of implementation strategies,
selecting various system parameterisations and in a particularly challenging
spatial scenario.

1.1 original contributions

In this section, we present the original contributions of this thesis and the
corresponding scientific publications.

I. We perform an accurate analysis of the state of the art of design meth-
ods for swarm systems aimed at providing performance guarantees
(see Section 2.2).

II. We propose design patterns as an engineering methodology for swarm
systems. A design pattern provides a well-formalised design solution
for swarm systems with performance guarantees. In other words, the
design pattern provides instructions to design a swarm system so that
a quantitative match between the dynamics of the macroscopic models
and of the implemented swarm system is attained (see Chapter 3).

III. We present the necessary steps to formalise a design pattern for swarm
systems (see Section 3.3).

IV. We attain a precise quantitative match between the macroscopic model
dynamics and the dynamics of a swarm robotics system performing a
shortest path discovery/selection task, implemented in physics-based
simulation (see Chapter 4).

V. We present a design pattern for decentralised decision making in the
best-of-n problem (see Chapter 5).

VI. We extend the binary decision-making model presented by Seeley et al.
(2012) to a more general case with n options (see Section 5.5.1).

VII. We introduce a master equation to study how the system dynamics
change as a function of the swarm size. We approximate the master
equation solution through numerical simulations using the Gillespie
algorithm (Gillespie, 1976) (see Section 5.5.2).

VIII. We showcase the design pattern implementation through two case
studies. The first case study allows the investigation of a wide set of
implementation choices, parameterisations and option qualities. The
second case study showcases the design in a more challenging scenario
that involves agents moving in a 2D environment (see Chapter 6).
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IX. We provide a method to estimate macroscopic transition rates directly
from experimental data through survival analysis (see Appendix A).

Part of the work and results presented in this thesis have been published
in international peer-reviewed journals and conferences. Here, we present
the list of these publications.

International journals

• A. Reina, G. Valentini, C. Fernández-Oto, M. Dorigo, and V. Trianni.
A design pattern for decentralised decision making. PLoS ONE, 10

(10):e0140950, 2015.

• A. Reina, R. Miletitch, M. Dorigo, and V. Trianni. A quantitative
micro-macro link for collective decisions: The shortest path discov-
ery/selection example. Swarm Intelligence, 9 (23):75–102, 2015.

International conferences

• A. Reina, M. Dorigo, and V. Trianni. Towards a cognitive design
pattern for collective decision-making. In M. Dorigo et al., editors,
Swarm Intelligence (ANTS 2014), volume 8667 of LNCS, pages 194–205.
Springer, Berlin, Germany, 2014.

• A. Reina, M. Dorigo, and V. Trianni. Collective decision making in
distributed systems inspired by honeybees behaviour. In Proceedings of
13th International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS), pages 1421–1422. IFAAMAS, New York, 2014.

Additionally, part of the results of (Reina et al., 2015d) have been pre-
sented as an extended abstract at the Biologically Distributed Algorithms Work-
shop (BDA 2015) (Reina et al., 2015c).

1.2 other contributions not related to this thesis

In this section, we present the scientific contributions generated during the
doctoral studies that are not related to the topic presented in this thesis.

i . distributed path planning using an overhead camera network .
In this study, we have proposed a novel system for distributed path
planning. The system is composed of an overhead camera network that
computes in a completely decentralised way the precise sequence of roto-
translations to guide a ground object of arbitrary shape from an initial lo-
cation to a given destination through a large, cluttered, dynamic environ-
ment. In the investigated scenario, each camera has only a partial, local,
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overhead view of the ground environment and can communicate only
with the neighbouring cameras. Through local calculations and wire-
less message exchanges, the camera network cooperatively computes
the full path. The task is made particularly challenging by alignment
errors between the field of view of neighbouring cameras. We evaluated
the performance of our system through an extensive set of simulation ex-
periments and a more limited set of real-world robot experiments. The
results showed that our distributed approach is more scalable, flexible
and robust than a monolithic centralised computation. This work re-
sulted in the following publication:

• A. Reina, L. M. Gambardella, M. Dorigo, and G. A. Di Caro. zeP-
PeLIN: Distributed path planning using an overhead camera network.
International Journal of Advanced Robotic Systems, 11(119), 2014.

ii . tools for improving swarm robotics experiments . We imple-
mented a set of tools to support a researcher while performing multi-
robot experiments.

II.i Augmented reality for robots. In this work, we have proposed a novel
virtual sensing technology in which robots are equipped with virtual
sensors. Virtual sensors allow a robot to perceive a simulated environ-
ment around itself while it moves and operates in the real world. This
technology is useful for (i) prototyping new sensors before produc-
ing them, and (ii) implementing and investigating robot experiments
in environments that cannot be reproduced within a laboratory (e.g.,
because involving dangerous components such as fire or radiations).
The architecture of the virtual sensing technology is based on an over-
head multi-camera system that tracks the robots and communicates
with a server running a physics-based robot simulator. The simulator
sends the virtual sensor’s information to each robot according to its
sensing range. The usage of this tool has been showcased through an
experiment involving 15 robots. This work resulted in the following
publication:

• A. Reina, M. Salvaro, G. Francesca, L. Garattoni, C. Pinciroli, M.
Dorigo, and M. Birattari. Augmented reality for robots: virtual
sensing technology applied to a swarm of e-pucks. In Proceedings
of the IEEE 2015 NASA/ESA Conference of Adaptive Hardware and Sys-
tems (AHS), pages 1-6, Los Alamitos, CA, 2015. IEEE Computer
Society Press. Paper ID sBp 3.

II.ii IRIDIA’s Arena Tracking System. The main purpose of the tracking
system we implemented at the IRIDIA Lab is to allow a researcher
to record and control the state of the experiment throughout its com-
plete execution. Other than experimental analysis, the tracking sys-
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tem has also been extended to allow augmented reality for robots (see
(Reina et al., 2015b)). The IRIDIA’s Arena Tracking System details are
presented in the following technical report:

• A. Stranieri, A.E. Turgut, M. Salvaro, G. Francesca, A. Reina, M.
Dorigo, M. Birattari. IRIDIA’s Arena Tracking System. Technical
Report TR/IRIDIA/2013-013, IRIDIA, Université Libre de Bruxelles,
Brussels, Belgium, revision r003 July 2014.

iii . a swarm robotics perspective to the deployment and redeploy-
ment of wireless sensor networks . The deployment of wireless
sensor networks (WSNs) is a significant problem that may determine
the correct functioning of the whole sensing system. In recent WSN
systems, nodes have a certain degree of autonomy and mobility which
makes such systems very similar to swarm robotics systems in which
relatively simple agents rely only on local sensing and communication
to perform their task. In this work, we review the swarm robotics liter-
ature regarding coverage, exploration and navigation tasks to highlight
the link between the WSN deployment problem and swarm robotics
algorithms. We illustrate the challenges and opportunities offered by
swarm robotics with respect to the deployment of mobile WSNs, and
we identify relevant directions for a hybridization of WSN and swarm
robotics research.

The work has been published as Chapter 7 of the book Wireless Sensor
and Robot Networks:

• A. Reina and V. Trianni. Deployment and redeployment of wireless
sensor networks: a swarm robotics perspective. In N. Mitton and
D. Simplot-Ryl, editors, Wireless Sensor and Robot Networks, chapter 7,
pages 143-162. World Scientific, Singapore, 2014.

iv. automode : automatic design of control software for robot

swarms . In this work, the original idea has been contributed by col-
leagues of mine, while my contributions have been limited to: (i) give
help in the definition of the experimental protocol, (ii) define one of the
five experimental tasks, (iii) design and implement algorithms for two
swarm robotics tasks, (iv) design and implement part of the infrastruc-
ture needed to perform the robot experiments, and (v) edit a limited part
of the articles.

This work presents a novel tool to design and generate automatically
the control software of robot swarms. This tool is named AutoMoDe-
Chocolate and is the extension of a previous tool, AutoMoDe-Vanilla. The
tool makes use of a set of user-defined code blocks which get com-
bined via an optimisation algorithm to create control software for a
robot swarm. The optimisation algorithm evaluates the control software
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through a physics-based robot simulator and selects the control software
that maximises a user-defined performance function. In this work, the
generated control software is evaluated in real-robot experiments. The
performance of the control software generated by AutoMoDe-Chocolate
has been contrasted with the performance of robots that have been pro-
grammed by humans expert in swarm robotics. We show that, in this
set of experiments, the automatic tool outperforms the human expert
designers. In this work, I acted in the role of human expert. This work
resulted in the following publications:

• G. Francesca, M. Brambilla, A. Brutschy, L. Garattoni, R. Miletitch, G.
Podevijn, A. Reina, T. Soleymani, M. Salvaro, C. Pinciroli, F. Mascia,
V. Trianni, and M. Birattari. AutoMoDe-Chocolate: automatic design
of control software for robot swarms. Swarm Intelligence, 9 (2–3):125–
152, 2015.

• G. Francesca, M. Brambilla, A. Brutschy, L. Garattoni, R. Miletitch, G.
Podevijn, A. Reina, T. Soleymani, M. Salvaro, C. Pinciroli, V. Trianni,
and M. Birattari. An experiment in automatic design of robot swarms:
AutoMoDe-Vanilla, EvoStick, and human experts. In M. Dorigo et al.,
editors, Swarm Intelligence (ANTS 2014), volume 8667 of LNCS, pages
25–37. Springer, Berlin, Germany, 2014.

v. co-supervised master of science theses . During my doctoral stud-
ies, I co-supervised five Master of Science students during their final
thesis work. All of them successfully defended their theses and com-
pleted their studies. In most cases (marked with •), I contributed to the
conception of the original idea and I co-directed the research work. In
the works marked with ◦, I contributed to the definition of the research
problem and I assisted the student in the implementation of the experi-
ments. Here, the list of students and thesis titles:

◦ Davide Brambilla. Environment Classification: an Empirical Study of
the Response of a Robot Swarm to Three Different Decision-Making Rules.
M.Sc. Thesis in Computer Science Engineering, Politecnico di Milano,
Italy, 2015. Supervised together with Marco Dorigo, Gabriele Valen-
tini and Anthony Antoun.

• Anthony Debruyn. Human-Swarm Interaction: An Escorting Robot
Swarm that Diverts a Human away from Dangers one cannot perceive.
M.Sc. Thesis in Computer Science Engineering, Université Libre de
Bruxelles, Belgium, 2015. Supervised together with Mauro Birattari
and Gaëtan Podevijn.

• Mattia Salvaro. Virtual sensing technology applied to a swarm of au-
tonomous robots. M.Sc. Thesis in Computer Science Engineering, Uni-
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versità di Bologna, Italy, 2015. Supervised together with Mauro Birat-
tari and Gianpiero Francesca.

• Bernard Mayeur. A tool for automatic robot placement in swarm robotics
experiments. M.Sc. Thesis in Information Technology, Université Li-
bre de Bruxelles, Brussels, Belgium, 2014 (in French). Supervised
together with Mauro Birattari and Gianpiero Francesca.

◦ Jacopo De Stefani. Spatial Allocation in Swarm Robotics. M.Sc. Thesis
in Computer Science Engineering (Project TIME for double degree),
Université Libre de Bruxelles, Brussels, Belgium, 2013. Supervised
together with Mauro Birattari and Alessandro Stranieri.

1.3 thesis layout

This thesis is organised in seven chapters and two appendices.
In Chapter 2, we situate our work in the literature and we present a thor-

ough review of the investigated area. In Section 2.1, we define the swarm
systems, their main characteristics and their significance. In Section 2.2, we
illustrate which are the challenges and difficulties in designing swarm sys-
tems and we present the state of the art with respect to the design problem.
In particular, we focus on design methods that, similarly to the methodology
proposed in this thesis, provide guarantees on the system performance.

In Chapter 3, we introduce the idea of design patterns as a methodol-
ogy for the design of swarm systems. In Section 3.1, we discuss previous
works that have similarities to ours under the aspect of using a catalogue of
reusable solutions. In Section 3.2, we present the components that constitute
a design pattern, and, in Section 3.3, we report the road map for the formal-
isation of novel design patterns. Part of the work presented in this chapter
has been published in (Reina et al., 2015d).

In Chapter 4, we present the intermediate steps we moved to reach the for-
malisation of our design pattern. In particular, in this chapter, we select the
reference model of decentralised decision making from the literature (moti-
vating this choice), and we implement a validation case study. The goal of
the validation case study is to demonstrate the possibility of attaining a pre-
cise quantitative match between the dynamics of the selected macroscopic
model and the dynamics of the implemented multiagent system. For doing
so, in Section 4.1, we sketch the implementation guidelines (which later will
be formalised in a design pattern). Then, in Section 4.2, starting from these
guidelines, we implement in simulation an abstract particle system and a
swarm robotics system. Finally, in Section 4.3, we show the attainment of
a precise quantitative match between the macroscopic model dynamics and
the dynamics of the two implemented systems. The work presented in this
chapter has been published in (Reina et al., 2015a).
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In Chapter 5 and 6, we present the complete design pattern for decen-
tralised decision making in the best-of-n problem. A formal description of
the design pattern is provided in Chapter 5, which discusses models and
guidelines to support the implementation of best-of-n decision making. The
chapter is composed of five sections, each presenting an attribute of the
formalised design pattern. An important element of design patterns are im-
plementation examples that showcase its usage. Chapter 6 is dedicated to
describe two case studies that complement the formal description given in
Chapter 5. The performance of the systems implemented in these case stud-
ies is evaluated through a set of metrics which are defined in Section 6.1.
The first case study, presented in Section 6.2, shows decentralised decision
making by static agents that interacts on a fully-connected network. Thanks
to the simplicity of this case study, we are able to show results for several
parameterisations, implementation strategies and option qualities. The sec-
ond case study is presented in Section 6.3 and illustrates the design of a
multiagent system in a more challenging scenario involving spatiality. The
work presented in these chapters has been published in (Reina et al., 2015d).

Finally, in Chapter 7, we summarise the contributions of this thesis and
we outline the future research work.

Appendix A introduces a methodology, based on survival analysis, to
estimate from experimental data the transition rates of a macroscopic model.
Appendix B shows the stability analysis and the mathematical details for
selecting the parameterisation of the case study presented in Section 6.2.1.

Note that the contents of Chapters 4, 5, and 6 and Appendices A and B
substantially match the text of the two papers (Reina et al., 2015a) and (Reina
et al., 2015d).





Student: “Dr. Einstein, aren’t these the same questions as
last year’s final exam?”
Dr. Einstein: “Yes; but this year the answers are different.”

—Albert Einstein

2

T H E D E S I G N P R O B L E M

This thesis describes an engineering methodology for the design of swarm
systems. In this chapter, we situate our work in the literature. We first
describe swarm systems, their characteristics and some of their possible ap-
plications in Section 2.1. Then, in Section 2.2, we motivate our work by illus-
trating the challenges related to the engineering and the design of swarm
systems, and we present some of the main solutions in the literature. We or-
ganise these solutions in two opposite (although very coupled) approaches:
the bottom-up approach in Subsection 2.2.1 and the top-down approach in
Subsection 2.2.2.

2.1 swarm systems

Swarm systems are composed of a large number of autonomous agents that
interact with their environment and with each other for achieving a com-
mon goal without relying on any central controller (Haykin, 2005; Hatziar-
gyriou et al., 2007; Nakamoto, 2008; Dressler, 2008; Driesen and Katiraei,
2008; Rajkumar et al., 2010; Dorigo et al., 2014). Such systems are based
on the principles of swarm intelligence (Bonabeau et al., 1999; Dorigo and
Birattari, 2007) and their functioning is based on the underlying idea that
a self-organisation process allows the swarm to display an intelligent col-
lective behaviour. In contrast to classical monolithic systems composed of
a single agent that must be endowed with all the capabilities necessary to
conduct the designed task, swarm systems exploit self-organisation to dis-
play swarm-level capabilities beyond the ones of a single agent. Therefore,
swarm systems can perform tasks that are more difficult than the tasks that
a single agent could deal with. Based on this concept, swarm systems profit
of a simpler individual agent design because the desired system capabilities
are shifted from the agents to the swarm. In other words, the individual
agent capabilities can be reduced, in exchange for a more complex collec-
tive behaviour that arises from self-organisation. This kind of approach
results in reduced hardware costs as a consequence of fewer agent require-
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ments, and could allow future swarm systems to operate in environments
that are currently inaccessible due to either extremely reduced dimensions
(e.g., nanoscale) or to particularly isolated environments (e.g., space or ocean
floor). For instance, an envisioned application of swarm systems concerns
the injection in human bodies of nanorobot swarms to perform healing op-
erations (Hauert et al., 2013; Hauert and Bhatia, 2014). Here, the individual
agent hardware is clearly constrained by its limited dimensions and has to
rely on a minimalistic design (thus minimal capabilities). Such minimalistic
agents may exploit swarm intelligence principles to achieve their goal. A sec-
ond application example is underwater operations (Kalantar and Zimmer,
2006; Fiorelli et al., 2006; Leonard et al., 2007). In this case, the constraints
on the agent capabilities are imposed by underwater communication limita-
tions that do not allow a centralised human control, global communication
or any global positioning system. Swarm systems are a potential approach
to deal with such constraints.

Further advantageous characteristics that, in the literature, are normally
ascribed to swarm systems are adaptivity, fault tolerance, parallelism and
scalability (Brambilla et al., 2013; Hecker and Moses, 2015).

adaptivity. We refer to adaptivity as the capability of the swarm to adapt
to changing environments and/or to unpredicted conditions. We expect
this capability to derive from the self-organisation process which allows the
swarm to independently organise itself in different ways according to the
given environmental circumstances. Adaptivity can be useful in scenarios
that cannot be known and accurately modelled in advance, such as disaster
areas (Ghassemi et al., 2010; Athreya and Tague, 2012), space explorations
(Truszkowski et al., 2006), or scenarios that may change rapidly over time,
such as environments involving human crowds (which may be considered
by the swarm as obstacles that continuously change shape and position)
(Guzzi et al., 2013).

fault tolerance . We refer to fault tolerance as the system property to
keep functioning in case of failure of part of the agents. Given the decen-
tralised nature of swarm systems, there is no central point of failure and
none of the agents is indispensable to the functioning of the system. Agent
failures result in a graceful deterioration of the system performance, yet
without an overall task discontinuation. This property derives from the high
redundancy of swarm systems which are composed of a large number of in-
terchangeable agents (Christensen et al., 2009). Application areas that may
benefit from fault tolerant systems are characterised by hazardous environ-
ments, such as war battlefields or disaster areas (Athreya and Tague, 2012;
Dames et al., 2012), or by environments out of human reach where main-
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tenance is impossible, such as space or underwater exploration missions
(Truszkowski et al., 2006).

parallelism . We refer to parallelism as the system property of process-
ing multiple pieces of information and/or performing multiple operations
at the same time. This property is attained exploiting the large number of
agents (of which the swarm is composed) that can autonomously act in the
environment. An agent may perform its tasks either individually or joining
other agents to create work-teams. Parallelism may be particularly benefi-
cial in applications that involve the repetition of the same operation several
times. For instance, construction of buildings is an application that typically
requires the sequential accumulation of building blocks (e.g., bricks) to cre-
ate a solid structure; here, parallelism may have a crucial role on the system
speed (Soleymani et al., 2015).

scalability. We refer to scalability as the system property to function
with different swarm sizes (i.e., the number of agents in the swarm) without
the need of re-programming or tuning the agent’s behaviour. The local, de-
centralised, self-organising process allows the swarm to cope with varying
swarm size and does not require the agents to have global knowledge of the
state of the process or of the total number of agents. Scalability allows the
employment of swarm systems in applications that require the increment
(or decrement) of agents at runtime.

The above properties are desired in several domains. However, a real
world application of swarm systems is hindered by the difficulty in mod-
elling and designing such systems. In the literature, the modelling and the
design of swarms have been the focus of several studies which we present
in the next section.

2.2 engineering swarm systems

A recent survey (Brambilla et al., 2013) of swarm robotics states that the im-
plementation of swarm systems is rarely assisted by engineering methods
that guide the design process. More commonly, the design relies on the in-
genuity of the human designer for finding a satisfactory solution through
an unsupervised trial-and-error approach. This approach is clearly very un-
structured and is solely based on the expertise and intuition of the designer.

An alternative and more structured approach, that has been the subject
of several works in the last decade, consists in using automatic methods
(Panait and Luke, 2005; Trianni, 2008; Francesca and Birattari, 2016). These
methods, through metaheuristic optimisation, automatically generate and
test a large number of possible individual agent’s behaviours to determine
the behaviour that optimises a task-specific target metric. This target metric
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is defined by the designer and is tailored to the specific task. The perfor-
mance of the generated solution is evaluated through a set of simulation
experiments, and eventually tested on real systems. Even if these methods
have empirically shown to be able to generate in an automatic way swarm
systems for a variety of tasks (Francesca et al., 2014b), there are no guaran-
tees on the generated system’s performance.

Despite most swarm systems have been implemented through heuristic
techniques (such as the trial-and-error process, or metaheuristic optimisa-
tion), we believe that engineering methodologies that provide performance
guarantees are needed to enable the employment of swarm systems in real
world applications. Our work follows this direction by proposing an engi-
neering methodology that provides guarantees in statistical terms for the
provided solution. Hereafter, we give an overview of the main works in
swarm robotics that investigated the problem of ensuring a particular level
of performance through engineering tools. We focus on swarm robotics sys-
tems because they exemplify the main challenges of swarm systems and a
large number of works investigated their design. The design challenges dis-
cussed at the end of the section pertain also to other swarm systems, such
as cyber-physical systems (Ilic et al., 2010; Lee et al., 2014; Lee, 2015), mobile
wireless sensor networks (Leonard et al., 2007; Dressler, 2008), distributed
smart grids (Rohden et al., 2012; Ma et al., 2013; Olivares et al., 2014) or
cognitive radios (Haykin, 2005; Akyildiz et al., 2006; Trianni et al., 2016a).

2.2.1 Micro to macro

The most common approach to providing guarantees on the system per-
formance is to create a model of the collective dynamics starting from the
individual agent implementation, and then analyse such a model. As al-
ready mentioned in Section 2.1, the main challenge in modelling swarm
systems is attaining an accurate and well-formalised relationship between
the macroscopic system dynamics and the microscopic (individual-agent)
behaviour. In the literature, this relationship is typically called the micro-
macro link (Schillo et al., 2001; Hamann and Wörn, 2008b). Attaining the
micro-macro link is a challenging task given the difficulties to develop and
analyse nonlinear systems composed of numerous interacting parts. It may
be even more difficult due to heterogeneities in the interaction topology, in
the agent behaviour, and/or in the environmental features. In order to attain
treatable models, several simplifications and abstractions are necessary. As
a result, the macroscopic model usually describes the system dynamics only
qualitatively, and extensive tuning may be required to obtain an appropriate
parameterisation for the real system.

Several works successfully derived a micro-macro link by creating a
macroscopic model from the microscopic implementation of the individual
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agents (Parker and Zhang, 2009, 2010; Montes et al., 2010; Valentini et al.,
2014; Wilson et al., 2014; Sartoretti et al., 2014; Scheidler et al., 2015). With
this bottom-up approach, the resulting macroscopic model is tailored to the
investigated problem and allows the analysis of only the system from which
the model is derived. In the case of a change in the problem, the imple-
mentation is modified accordingly and thus the model must be consistently
adjusted and the analysis repeated. Each iteration of this process may be
very resource demanding due to the difficulty of attaining an accurate quan-
titative micro-macro link. For instance, the studies presented by Montes et al.
(2010) and by Scheidler et al. (2015) present a differential latencies model to
describe and analyse the dynamics of a binary decision making process of
mobile agents. The investigated case study is very similar to the case study
that we present in Chapter 4 and their solution is a valid alternative to solve
that problem. However, their model is specific to differential latencies prob-
lems and cannot generalise to the other decision making case studies that
we considered in this thesis (e.g., the case study II of Section 6.3).

In the following, we list notable modelling techniques that we think are
worth discussing in more details because of the tractability of the produced
models and of their widespread usage in a variety of swarm implemen-
tations. Note that in these works the macroscopic model is derived from
the microscopic agent behaviour, therefore following a (tailored-to-solution)
bottom-up approach.

Martinoli et al. (2004) and Lerman et al. (2005) present a methodol-
ogy to mechanically develop microscopic and macroscopic models in good
correspondence with each other—i.e., attaining the micro-macro link—for
swarms of homogeneous robots in a homogeneous environment. The
method consists in deriving from a probabilistic finite state machine (PFSM)
a master equation and a rate equation (as a system of ODEs). The PFSM de-
scribes (or directly corresponds to) the individual robot control software.
The master equation describes the temporal evolution of an individual
robot’s probability density. The rate equation describes the average pro-
portion of agents in each state of the PFSM. This approximation assumes
a well-mixed system (i.e., interactions between any couple of agents are
equally probable) and an infinite size of the swarm (i.e., infinite number of
robots, therefore, the model prediction are more accurate for large swarm
size). Correll and Martinoli (2006) show that, through heuristic optimisation
of the macroscopic model parameters, it is possible to increase the predictive
accuracy of the model and to attain a quantitative match between dynamics
at the microscopic and the macroscopic level. The authors of these works ex-
ploited their modelling methodology to analyse a variety of swarm robotics
case studies among which collaborative stick pulling (Martinoli et al., 2004),
collaborative object collection (Agassounon et al., 2004), task allocation (Ler-
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man et al., 2006), area coverage (Winfield et al., 2008) and aggregation (Cor-
rell and Martinoli, 2011).

Hamann and Wörn (2008b) obtain the micro-macro link by modelling
robot swarm dynamics through statistical physics methods, in particular
through Fokker-Planck equations. This modelling approach allows an ex-
plicit representation of space, and thus, takes into account heterogeneous
spatial distribution of agents. Their method results in a good qualitative cor-
respondence between the predictions of the macroscopic dynamics and mul-
tiagent simulations. However, this method presents a few issues: (i) achiev-
ing quantitative correctness may require a considerably big amount of com-
putational resources, (ii) Fokker-Plank modelling requires a significant effort
for the designer, and (iii) only basic communication can be modelled. De-
spite these points, Fokker-Plank modelling has been successfully employed
to support the design of various case studies: aggregation (Schmickl et al.,
2009; Hamann et al., 2008; Hamann and Wörn, 2008a), collective perception
(Hamann and Wörn, 2008b), phototaxis (Hamann and Wörn, 2008b), com-
plex environment exploration (Prorok et al., 2011) and foraging (Hamann
and Wörn, 2007).

In (Hamann et al., 2014), the authors devise a mathematical represen-
tation of a decentralised decision-making system in the form of a drift-
diffusion model (DDM). Through recursive equations, they find in an auto-
matic way the drift coefficient. This method as been validated in modelling
a single case study of the binary decision of locusts motion. At the current
stage, this method allows the attainment of only a qualitative micro-macro
link and works with the assumption of a memoryless (i.e., Markovian) and
well-mixed system. However, it has the potential of being extended to be-
come a more powerful modelling tool.

Vigelius et al. (2014) propose a framework to derive from a multiagent
implementation a macroscopic description of the system. In particular, the
system is described through a master equation which allows the analysis
of the finite-size effects (i.e., how the systems behaves when the swarm is
composed of a specific number of agents). In the paper, the framework is
validated through a decentralised decision-making case study and the mi-
croscopic implementation includes both simulation and robot experiments.
The attainment of a good agreement between the two levels (micro-macro)
is achieved only for memoryless and well-mixed systems. Since spatial-
ity hinders the satisfaction of these two properties, the micro-macro link is
not accurate in some of the scenarios that involve spatiality. Similar mod-
elling techniques have been employed in other works investigating decen-
tralised decision making (Massink et al., 2013; Valentini et al., 2014, 2016;
Scheidler et al., 2015). Also in these works, the decision process has been
modelled both through an ODE system using a mean-field approximation,
and a master equation to investigate the finite-size effects. The results have
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been validated through robot experiments (Scheidler et al., 2015; Valentini
et al., 2016). Similarly, other tools of statistical physics have been employed
to analyse the coordinated motion of swarms of simple, reactive agents (Fer-
rante et al., 2013). In this work, the authors employ non-linear elasticity
theory to investigate the phase transitions of their system.

Khaluf and Dorigo (2016) show how some swarm systems can be mod-
elled as a linear birth-death process. This modelling technique allows the
prediction of the swarm performance in terms of the average activity time
(that is, how long the swarm will be operative before stopping to function)
and the swarm energy consumption.

A recent work proposes a novel model checking procedure based on the
mean-field approximation to facilitate the modelling of swarm behaviours
by increasing the level of abstraction (Latella et al., 2015). This procedure
assumes infinite swarm size (thus it only approximates results of finite size
swarms) and requires a well-mixed system.

2.2.2 Macro to micro

An alternative approach consists in deriving a microscopic implementation
from a model that describes the target macroscopic dynamics. The main
advantage of this top-down approach is that the engineer can, at first, de-
sign the desired swarm system behaviour at a macroscopic level, and then,
(in an automated way) convert the swarm behaviour to individual agent be-
havioural rules. The methodology must provide the engineer with tools that
guarantee the attainment of a quantitative accurate micro-macro link, thus
a predictable global behaviour.

Unfortunately, a general top-down methodology to automatically pro-
vide the micro-macro link for any given macroscopic description of the de-
sired collective behaviour is currently unavailable. However, some works in
the literature have proposed various solutions that follow a top-down de-
sign paradigm. Hereafter, we organise these works in two categories with
respect to the approach used to provide performance guarantees: popula-
tion dynamics models and control theory.

population dynamics . Through this approach, the macroscopic model
describes the evolution over time of the proportions of swarm subgroups
(subpopulations) with respect to the total swarm size (population). Agents
are grouped into subpopulations according to either similar internal state
or proximal location. Usually, the model is a set of rate equations described
as an ODE system or chemical reactions, and the subpopulation variations
are determined by transition rates. The micro-macro link is established by
mapping these rates into probabilities to be used in the control software of
the individual agents.
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In (Berman et al., 2009), the authors formalise a design method to allocate
mobile robots to tasks using rate equations. The rate equations are in the
form of an ODE system that describes how the number of agents allocated
to each task varies; while the transition rates describe how frequently robots
change their task. Previous to this work, this method had been successfully
employed to model a set of foraging scenarios (Berman et al., 2007b,a; Halász
et al., 2007; Hsieh et al., 2008). Afterwards, the design method has been used
to implement robot swarms control software for two simulated task alloca-
tion scenarios (Berman et al., 2011b; Dantu et al., 2012). However, there are
some criticisms of this methodology. A comparative experimental analysis
of this methodology evidenced that the underlying assumptions —such as
infinite number of robots, perfect localisation, global communication— may
be unrealistic for most swarm systems (Mermoud et al., 2014). The analy-
sis shows that the performance of a robot system implemented through this
methodology does not match the performance predicted by the macroscopic
model, at least in the investigated experiments.

The methodology described above is extended in (Berman et al., 2011a) to
deal with spatially inhomogeneous swarms, that is, considering the spatial
distribution of agents throughout the space. Here, the swarm is modelled as
a system of advection-diffusion-reaction (ADR) partial differential equations
(PDEs), which is numerically solved through the technique of smoothed
particle hydrodynamics.

Brambilla et al. (2015) propose an high-level method for top-down de-
sign of robot swarms based on model checking. The method consists in
organising the design in four phases: requirements, model, simulation and
implementation on robots. In the first phase, the designer formally speci-
fies the system requirements; in the second phase, (s)he creates a (popula-
tion dynamics) model of the robot swarm’s dynamics; in the third phase,
(s)he implements physics-based computer simulations of the systems; and,
finally, the fourth phase concerns the implementation on a swarm of robots.
Additionally, similarly to our work, the authors report two case studies to
illustrate the usage of the proposed method. The advantage of this design
method is its generality because, in principle, it can be employed to design
any swarm robotics system. Shortcomings of this method are that it gives
guidelines at a very-high level, it provides limited support to guide the sys-
tem implementation and it requires a big creative effort from the designer
to follow the four design phases. Instead, the methodology that we propose
in this thesis is less general, in the sense that each design pattern gives a so-
lution to a specific class of problems. However, our methodology provides
a precise set of rules to derive, in an automated way, the individual agent
behavioural rules from the macroscopic model. Finally, we believe that the
method proposed by Brambilla et al. (2015) might be a good method to as-
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sist the formalisation of a novel design pattern (see the second step defined
in Section 3.3).

control theory. A number of works make use of a control-theoretic
approach to define control laws for each agent and derive formal proofs
of the global system dynamics. Through such proofs, the engineer may
attain formal guarantees on the swarm behaviour (typically regarding the
system stability). This approach is grounded in solid mathematical basis;
however, its usage in the design of swarm systems presents big challenges.
The control-theory approach is normally based on closed-loop systems, in
which the system behaviour is modified through time as a function of the
current measured state. In swarm systems, a measure of the current state is
not easy to attain. Most of the early works assume each agent of the swarm
capable of attaining at each timestep a measure of the global system state
and of adapting its behaviour accordingly (Desai et al., 2001; Leonard and
Fiorelli, 2001; Ögren et al., 2001, 2004; Bachmayer and Leonard, 2002; Gazi
and Passino, 2002, 2003, 2004; Lawton et al., 2003; Cortes et al., 2004; Gazi,
2005; Sepulchre et al., 2007; Leonard et al., 2007; Michael and Kumar, 2009;
Bhattacharya et al., 2014). A review of most of these methods and their limi-
tations is presented in (Gazi and Fidan, 2007). Additionally, all these works
focus on behaviours aimed at achieving some form of spatial organisation
of the agents (e.g., pattern formation, coverage), where the measured state is
the relative position of each agent. The main limitation of these works comes
from the assumption of an unbounded sensing range. That is, every agent
is capable of locating any other agent at any distance. This global informa-
tion assumption may be unrealistic in several applications with real robots
(or mobile sensors), and may present scalability issues when the number of
robots is very large.

Accounting for only local sensing and communication while ensuring
guarantees has been possible only by reducing the attainable guarantees
(e.g., Ji and Egerstedt, 2007; Kennedy et al., 2015) or for simpler tasks (e.g.,
McNew et al., 2007; Sepulchre et al., 2008).

In (Ji and Egerstedt, 2007), the agents can only perceive neighbours within
a local range, (while they still have access to a common axis of reference for
global orientation). Under such assumption, the authors propose a solu-
tion to the formation control problem that provides guarantees only for the
connectedness of the neighbour network.

Kennedy et al. (2015) propose a distributed control algorithm for the col-
lective transport of a target object by a swarm of robots. The robots can
only locate and communicate with neighbours within a local range, how-
ever, each robot knows its absolute orientation and its position with respect
to the target object, and can estimate the net wrench being exerted on the
object. The authors provide the formal proof of the asymptotic convergence
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to a force distribution with zero interaction forces, i.e., without exerting op-
posite (and conflicting) forces on the object.

McNew et al. (2007) propose an algorithm, that is based only on the rel-
ative positioning of neighbour agents (i.e., taking in consideration a limited
sensing and communication range), to organise the agents in a triangular
lattice. The algorithm is specified in Embedded Graph Grammars (EGGs)
which allow having guarantees of convergence to the target spatial config-
uration. This deployment and coordination algorithm has been validated
through the implementation on a multi-robot system (Smith et al., 2009).
The attainment of guarantee proofs is very difficult with algorithms based
on EGGs. For this reason, this approach has been used only for relatively
simple problems.

In (Sepulchre et al., 2008), the authors propose the use of Lyapunov func-
tions as individual agent control laws to stabilise steering particles moving
on a plane. This work extends a previous approach by considering local
communication among agents. As the authors say, extending the approach
to more complicated models may be intractable: “An open question of partic-
ular interest is the robustness of the proposed approach to more complicated models
for individuals [...]” (Sepulchre et al., 2008).

Srivastava and Leonard (2013, 2015) propose a very interesting study of
decentralised decision making in which they formally prove the expected
decision time and its variance as a function of the individual agent param-
eters. Each agent behaviour is modelled as a drift-diffusion model (DDM),
the system dynamics as a coupled drift-diffusion equation, and the interac-
tion network is defined through a Laplacian matrix. Here, the micro-macro
link is attained without the need of a mean-field approximation. This de-
sign method provides a solid basis for the engineering of swarm systems;
however, the current work still presents some limitations. In particular, the
study is limited to a binary decision problem, the interaction network is
static and the DDMs are linear. Notwithstanding, this work paves the way
for a promising direction of research for the design of swarm systems.

2.2.3 Discussion of engineering methods for swarm systems

In Sections 2.2.1 and 2.2.2, we have seen a series of different endeavours
to obtain an accurate quantitative micro-macro link to provide performance
guarantees for swarm systems. These works proposed different methods,
explored the use of various techniques and tackled problems of various diffi-
culty and complexity. Despite the numerous efforts, a general methodology
is missing. We can conclude that the attainment of such a micro-macro link
is a very challenging task. The difficulties are due to the fact that: (i) macro-
scopic modelling is limited by the available theory and methodologies to
deal with the non-linearity and stochasticity of the system; and (ii) the de-
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sign of the individual behaviour should account for the decentralised nature
of the system based on limited agent communication and sensing capabili-
ties, and on the asynchronous, parallel processing of partial information.

While a general method to derive individual agent rules from any macro-
scopic model is currently unworkable, general solutions to specific classes
of problems can be provided exploiting the concept of design patterns. De-
sign patterns provide formal guidelines to deal with recurring problems in
a specific field. For the swarm systems field, design patterns prescribe the
individual-level microscopic behaviour required to obtain desired system-
level macroscopic properties. In the next chapter, we present a design
methodology based on design patterns.





The important thing in science is not so much to obtain
new facts as to discover new ways of thinking about
them.

—William Lawrence Bragg

3

D E S I G N PAT T E R N S A S A N E N G I N E E R I N G
M E T H O D O L O G Y F O R D E C E N T R A L I S E D S Y S T E M S

In Section 2.2, we have seen that, for most swarm systems, obtaining a quan-
titative micro-macro link to provide guarantees on the system performance
is very complicated and may require much effort. While a universal design
methodology is currently out of reach, a viable approach consists in having
reusable methods to top-down design swarm systems that tackle specific
classes of problems. To be reusable, a method should aim to (i) be general,
(ii) tackle a recurrent (relevant) problem, and (iii) follow a reusable formal-
isation. Formalising and organising the methods on a common underlying
structure allows an easier spread and adoption of them. Finally, a collection
of such methods would represent a methodology which would guide engi-
neers in the swarm system design. We propose to formalise each reusable
method as a design pattern. The underlying idea is to have a consistent way
of representing packages of knowledge that are mainly composed of a prob-
lem, a solution and the micro-macro link.

The idea of having a catalogue of reusable solutions in the form of de-
sign patterns has been originally proposed in the domain of architecture
(Alexander et al., 1977) and it has been then exported in various domains
ranging from pedagogy (Jones et al., 1999) to software engineering (Gamma
et al., 1995). We believe that the concept of design patterns as an engineer-
ing methodology should be exported to the swarm system field too. This
idea has been acknowledged in a number of works in the literature, which
we cover in Section 3.1. Differently from previous work, our methodology
pivots on the formalisation of the micro-macro link. We present our inter-
pretation of design patterns for swarm systems in Section 3.2. Finally, in
Section 3.3, we present the procedure to formalise a novel design pattern.

35
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3.1 a catalogue of reusable solutions

A first attempt to organise design solutions for swarm systems in a cata-
logue has been made by Nagpal (2004). In this work, she lists a series of
solutions to attain various collective behaviours. However, we can consider
this as a preliminary work in this direction as it does not include any formal
problem/solution description nor tackles the problem of guaranteeing the
attainment of desired performance levels.

Babaoğlu et al. (2006) propose a first design pattern catalogue for decen-
tralised systems. The work consists in the definition of five design patterns
for decentralised systems and a set of case studies to illustrate their usage in
various scenarios. Similar works have extended the catalogue or redefined
some of the existing patterns (Gardelli et al., 2007; De Wolf and Holvoet,
2007). The main limitations of these works are the lack of a precise formali-
sation of problems and solutions, and of the micro-macro links that connect
the macroscopic behaviours to the individual agent rules. The absence of
these components does not allow having any guarantee on the system per-
formance. With our formalisation of the design pattern, we aim to overcome
these limitations and we propose methods to attain an accurate quantitative
micro-macro link.

The work of Fernandez-Marquez et al. (2013) extends the design pattern
approach by introducing a more accurate formalisation of the solutions and
providing a description of the effects of the individual parameters on the
global outcome. Despite these improvements, this work does not provide
tools to guarantee performance levels, yet. The work gives guidelines to the
design and the implementation of swarm systems without providing formal
rules to attain a micro-macro link, which we believe is a necessary require-
ment for having performance guarantees. An interesting aspect of this work
is the study of interactions—dependencies and interference—among design
patterns. We believe that interactions between patterns are a very important
aspect that needs to be deeply investigated. In our work, we do not tackle
this aspect since we present only a single design pattern. However, we plan
to perform studies in this direction once a set of patterns will be developed.

Field calculus (Beal and Viroli, 2015) is a framework that allows program-
ming swarm systems through an amorphous medium abstraction. Through
this abstraction, the system (that is composed of a finite number of agents)
is modelled as a space continuous medium (Beal, 2005). The field calculus
employs Proto (Beal and Bachrach, 2006) as spatial language, and provides
a set of building blocks as basic macroscopic functions that define simple
behaviours at the swarm level. The main advantage of this programming
paradigm is that the designer deals only with building blocks at the macro-
scopic level, while the implementation of the microscopic behaviour is hid-
den and is managed automatically and implicitly by the aggregate program-
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ming framework. These building blocks can be used as language operators
to compose algorithms for collective behaviours. Similarly to design pat-
terns, these algorithms for collective behaviours, called libraries, represent
reusable solutions to recurrent collective problems. Differently from our
work, field calculus focuses primarily on the aspects of the implementation
to provide an aggregate programming framework and allows a mathemati-
cal validation of only a few general properties, such as spreading process sta-
bilisation over a network (see (Viroli and Damiani, 2014) for further details).
Instead, in our work, the design pattern is meant to provide mathematical
tools to guarantee certain levels of system performance. At the moment,
this aspect is missing in field calculus. Furthermore, field calculus is still
at a preliminary stage, no libraries have been proposed yet and the current
number of available building blocks is quite limited; for instance, there is
no support (yet) for functionalities to control the agent movement (that is of
utmost importance in domains such as swarm robotics).

3.2 the design pattern and its attributes

While the concept of design patterns in swarm systems has been already
employed, previous work has devoted limited attention to guaranteeing the
attainment of desired performance levels. Instead, we believe that provid-
ing performance guarantees, at least in statistical terms, is a key requirement
for the engineering of swarm systems. Therefore, in our definition of design
patterns, the key component is the micro-macro link formalisation. A quan-
titative micro-macro link allows the analysis of the macroscopic model to
design and predict the swarm behaviour.

For consistency with the literature, we organise the design pattern in the
same six attributes as Babaoğlu et al. (2006): name, problem, context, design
rationale, solution, and case-studies. However, the definition of these at-
tributes (especially the solution) differs from previous work. The name iden-
tifies the design pattern, and should be informative enough to summarise
its objective. The problem formally describes the purpose of the design pat-
tern, and possibly gives constraints on the system that limit the domain
of the possible solutions (e.g., constraints on agent’s memory or communi-
cation capabilities). The context determines the domain of applicability of
the design pattern, and presents a set of preconditions that must be ful-
filled for its usage. The design rationale explains the what and the how of
the design pattern, that is, its origin and working principles. Typically, the
design rationale contains a description of the basic principles underlying
the proposed solution, together with some insight about why it efficiently
functions. The solution provides tools and guidelines for the implementa-
tion of the decentralised system. The core of the solution is represented by
the formal description of the decentralised process at different abstraction
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Figure 1: Schematic representation of a design pattern for swarm systems com-
posed of six attributes: name, problem, context, design rationale, solution, and
case-studies.

levels—from macroscopic to microscopic—together with the relationship be-
tween them. Additionally, a set of recommended implementation strategies
describe how to deal with problems recurring in practical application sce-
narios, which may have a bearing on the relationship between microscopic
and macroscopic description levels (i.e., the micro-macro link). Finally, a de-
sign pattern includes a set of case studies along with a thorough evaluation to
showcase the functioning of the design pattern. Figure 1 shows a graphical
representation of the components of a design pattern.

3.3 how to build a design pattern

In Chapter 2, we contrasted analysis with design methods. In general, an-
alytical models are tailored on a specific system implementation and de-
veloped once the system is implemented. Instead, design methods typically
rely on models that are independent of a specific implementation or scenario.
However, in several cases, analysis and design share the same modelling
tools (e.g., master equations, Markov chains), and the distinction between
analysis and design methods in some cases may be very subtle.

These similarities are evident in the process of formalisation of a design
pattern. As defined above, a design pattern is a design method that pro-
vides the engineer with tools to attain an accurate micro-macro link for the
implemented solution. The micro-macro link is typically the outcome of an
analysis process. Therefore, defining a design pattern consists in formalising
the analysis of a general system as a reusable design methodology.
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We organise the process of formalisation of a novel design pattern for
swarm systems in three steps. First, the identification of well conceived
macroscopic models is performed. These models should have been deeply
analysed, have an engineering relevance (i.e., potentially useful for some-
thing) and generally well understood. In fact, one of the main underlying
ideas of design patterns for swarm systems is to leverage the principled
understanding of theoretical models to engineer artificial systems. Second,
at least one validation case study should be implemented to demonstrate
the possibility of attaining a micro-macro link based on the target model.
Here, the micro-macro link is attained through analysis tools following a
bottom-up approach. During the third, final step, the analysis must be for-
malised and extended to obtain rules to convert parameters between mod-
els at different abstraction levels (macro-micro). In addition, the knowledge
must be organised in the six attributes (see Figure 1), which include a set of
case-studies. In this thesis, we present the identification of the macroscopic
model and the validation case study in Chapter 4, a complete design pat-
tern for the best-of-n, decentralised decision making in Chapter 5 and two
further case studies in Chapter 6.

Well-conceived case studies are a necessary milestone for the develop-
ment of a design pattern, and they are as important as the theoretical charac-
terisation of the micro-macro link that serves as guidance for the implemen-
tation. Indeed, case studies demonstrate the viability of the methodology
by showing practical situations in which the micro-macro link is obtained
quantitatively, and also offer a representative case that can be used as a
guideline for future implementations. Preferably, they tackle a particularly
challenging scenario, for instance involving spatiality which may hinder a
match between the two abstraction levels.





The beginning is the most important part of the work.

—Plato

4

T O WA R D S T H E F O R M A L I S AT I O N O F A D E S I G N
PAT T E R N F O R D E C E N T R A L I S E D D E C I S I O N M A K I N G

Among the classes of cognitive processes that can be addressed through
well-conceived design patterns, the best-of-n, decentralised decision mak-
ing represents a fundamental ability in several contexts and application do-
mains (Halloy et al., 2007; Vigelius et al., 2014; Srivastava and Leonard, 2014;
Valentini et al., 2016). In this thesis, we propose a design pattern for this type
of decision making based on the nest-site selection behaviour of honeybee
swarms (Marshall et al., 2009; Seeley et al., 2012; Pais et al., 2013). Previous
experimental and theoretical studies have demonstrated near-optimal speed-
accuracy tradeoffs in the selection of the most profitable option among a set
of alternative nesting sites by honeybees (Marshall et al., 2009; Seeley et al.,
2012). Most importantly, inhibitory signals among bees provide an adap-
tive mechanism to quickly break deadlocks and tune the decision dynamics
according to the perceived quality of the discovered options (Seeley et al.,
2012; Pais et al., 2013). The above properties of the nest-site selection process
are relevant for many practical decision-making scenarios in decentralised
systems, and justify its choice in this study.

In this chapter, we study how to obtain a quantitative correspondence
between the dynamics of the microscopic implementation of a robot swarm
and the dynamics of the macroscopic model of nest-site selection in honey-
bees. We do so by considering a decentralised decision-making case study:
the shortest path discovery/selection problem (Gutiérrez et al., 2010; Montes
et al., 2010; Scheidler et al., 2015). This problem requires the identification
and collective selection of the shortest path between target areas, to be per-
formed by a (possibly large) swarm of autonomous robots. In this case
study, without loss of generality, we limit the study to a binary decision
problem, i.e., the swarm has to select between two alternative paths. This
choice allows us to investigate several system parameterisations while keep-
ing the analysis and result interpretation simple. Path discovery/selection
is particularly demanding from a decision-making standpoint because spa-

41
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tial factors strongly influence the collective dynamics, as they determine the
interaction patterns among the robots. As a consequence, finding a micro-
macro link between a non-spatial macroscopic model of decision making
and a strongly-spatial decision problem is not trivial. A preliminary study
and partial results have been presented in Reina et al. (2014a,b) for a very
abstract scenario involving agents moving in a one-dimensional space. Here,
we present the complete study of a more realistic scenario for agents/robots
moving on a flat surface. The attainment of the micro-macro link presented
in this chapter is a prerequisite and a necessary step towards the formal
characterisation of the design pattern for the general case of decentralised
decisions in the best-of-n problem, which is presented in its complete form
in Chapter 5.

This chapter is organised as follows. In Section 4.1, we introduce a set
of high-level implementation guidelines inspired by studies of honeybee
nest-site selection, which describe the target macroscopic dynamics (Seeley
et al., 2012; Pais et al., 2013). In Section 4.2, we report a solution to the
shortest path discovery/selection problem both in an idealised multiagent
simulation that retains the relevant spatial factors but neglects physical inter-
actions (see Section 4.2.2), and in a physics-based simulation of a swarm of
e-pucks (Mondada et al., 2009), therefore accounting for limited swarm size
and physical interferences (see Section 4.2.3). In Section 4.3, we analyse the
implemented behaviour under a variety of different parameterisations, and
show that in every case there is a precise correspondence between the mi-
croscopic and the macroscopic descriptions. We extend the analysis towards
varying group size, and also show the correspondence with Monte Carlo
simulations of a macroscopic finite-size model. As discussed in Section 4.4,
the case study presented in this chapter contributes to the formalisation of
a design pattern for decentralised decision making by extending the high-
level guidelines presented in Section 4.1 with specific recommendations for
dealing with issues deriving from spatiality.

4.1 from macroscopic descriptions to implementation guide-
lines

As mentioned above, how collectives can achieve consensus is widely stud-
ied in many different contexts, and several models have been proposed in
the literature (e.g., Castellano et al., 2009; Vicsek and Zafeiris, 2012; Kao
et al., 2014). In this work, we selected a macroscopic model inspired by the
nest-site selection behaviour observed in honeybees (Seeley et al., 2012; Pais
et al., 2013). We selected this model because it possesses properties that
are desirable in artificial decentralised systems: (i) it attains near-optimal
speed-accuracy tradeoffs in the selection of the best option (Marshall et al.,
2009), and (ii) it exploits adaptive mechanisms to tune decision speed and
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to break symmetry deadlocks (e.g., caused by same-quality options). In this
section, we first discuss the macroscopic model; then, we present a high-
level description of the implementation path prescribed by a design pattern
to obtain a quantitative micro-macro link.

4.1.1 The macroscopic model

An analytical model of the nest-site selection process in honeybee colonies
has been developed and confronted with empirical results, confirming the
existence of both positive and negative feedback loops that determine the
collective decision (Seeley et al., 2012). The model describes a decision-
making process in which only two options are available, referred to as A
and B. Each option i is characterised by an objective quality vi. The collec-
tive decision problem consists in identifying and selecting the best option,
or any of the equal-best options. The model treats a population of agents
that can be either uncommitted (sub-population U with fraction ΨU of the
total population) or committed to one of the two options (sub-populations A
and B, respectively with fraction ΨA and ΨB). Populations dynamics can be
easily described by a system of two coupled ordinary differential equations,
plus a mass conservation term:

Ψ̇A = γAΨU − αAΨA + ρAΨAΨU − σBΨAΨB
Ψ̇B = γBΨU − αBΨB + ρBΨBΨU − σAΨAΨB
ΨU + ΨA + ΨB = 1

, (1)

The variation of the population fraction Ψi, i ∈ {A, B} results from four
concurrent processes, which correspond to the four terms of each differential
equation in (1):

(i) Ψi increases as uncommitted individuals spontaneously discover and
become committed to the option i at the rate γi;

(ii) Ψi decreases as individuals committed to option i spontaneously aban-
don it and get uncommitted at the rate αi;

(iii) Ψi increases as individuals from population i actively recruit uncom-
mitted ones at the rate ρi;

(iv) Ψi decreases as individuals from population i are inhibited by individu-
als of population j 6= i at the rate σj.

All transition rates—γi, αi, ρi, σi—are greater than zero. It is worth noting
that this model does not require any explicit comparison of the option qual-
ities. The quality value vi of the two options is instead encoded in the tran-
sition rates (i.e., implementing a value-sensitive decision making, see Pais
et al., 2013): different-quality options correspond to biased transition rates,
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while same-quality options correspond to unbiased transition rates. Over-
all, the collective decision is based purely on the system dynamics resulting
from individual-to-individual interactions.

4.1.2 Implementation guidelines

working regime The choice of the parameters of the macroscopic model
determines the working regime for the decision-making process. Under-
standing the macroscopic dynamics leads to a principled choice of the de-
sired parameterisation, which ultimately translates in prescriptions for the
implementation.

When the two options have different quality (e.g., vA > vB), a biased pop-
ulation distribution is obtained thanks to similarly biased commitment rates.
Everything else being equal, a population distribution biased for the better
option can be obtained thanks to a higher discovery rate (e.g., γA > γB, see
Figure 2(A)) or similarly through recruitment (e.g. ρA > ρB, see Figure 2(B)).
Abandonment and cross-inhibition instead reduce the size of a population
committed to a given alternative. Abandonment should be small enough to
avoid that a large fraction of the population remains uncommitted, possibly
biased toward the lower quality (i.e., αA < αB). Cross-inhibition instead,
being proportional to the size of the inhibiting population, contributes to
the creation of an unbalanced distribution of individuals between commit-
ted populations even for unbiased inhibition rates (i.e., σA = σB, see Fig-
ure 2(C)). This is true also for same-quality alternatives (i.e., vA = vB). In
this symmetric case, discovery, abandonment and recruitment are equal and
are therefore not sufficient to break the symmetry. However, a sufficient level
of cross-inhibition makes the equilibrium point unstable, therefore leading
to a symmetry breaking, as shown in Figure 2(D). Through linear stability
analysis, it is possible to identify the cross-inhibition level for which the
system breaks the deadlock and converges to the choice of one option (see
Seeley et al., 2012). The working region is {ρ > α, σ > σ∗}, with critical
value:

σ∗ =
4αγρ

(ρ− α)2 . (2)

As a general guideline for the choice of the transition rates determining the
working regime of the macroscopic model, it is advisable to have a param-
eterisation linked to the option quality, so that commitment is proportional
to quality, abandonment inversely proportional, while cross-inhibition can
be proportional to the option quality or independent of it, but in any case it
must be sufficiently large to ensure convergence (for a detailed analysis, see
Pais et al., 2013):

γi, ρi ∝ vi, αi ∝ 1/vi, σi > σ∗, i ∈ {A, B} (3)
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(A) (B)

(C) (D)

Figure 2: Effects of different parameterisations on the phase portrait of the
macroscopic system of Equation (1). System trajectories in the phase plane
0 ≤ ΨA + ΨB ≤ 1 are displayed as grey arrows, stable equilibria are displayed
as dark blue dots and unstable saddle equilibria as light green dots. The bold ma-
genta curve, in overlay, is the trajectory starting from the fully uncommitted state,
ΨA = ΨB = 0. See text for a detailed discussion on the effects of the different
parameterisations on the macroscopic dynamics.
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Figure 3: A compact representation as a probabilistic finite state machine of the
individual agent behaviour. Solid arrows are spontaneous individual transitions,
while dashed arrows represent interactive transitions that are triggered when an
agent encounters an agent of another population (which happens with probability
PΨi for population i).

individual behaviour Once a suitable working regime is identified, the
four concurrent processes resulting in the macroscopic dynamics of (1) need
to be implemented as a multiagent system. As a general guideline, the agent
behaviour should be implemented as the probabilistic finite state machine
shown in Figure 3. Here, the agent can be in three different commitment
states that indicate whether the agent is uncommitted (CU) or committed to
either option A or B (CA or CB). Two types of transition need to be imple-
mented: spontaneous transitions and interactive transitions. Spontaneous
transitions correspond to discovery and abandonment, and pertain to the
individual agent behaviour. Interactive transitions depend instead on the
result of the interaction among agents, and are regulated by the probability
of encountering agents of population i, which we refer to as PΨi : the larger
the proportion of agents committed to population i, the larger the probabil-
ity of encountering one of its members. The transition probabilities between
different states determine the outcome of the decision-making process, and
should be influenced by the option quality vi to restrict the system dynam-
ics within the working regime discussed above. Therefore, Pγi and Pρi—
respectively the discovery and recruitment probability for option i— should
be biased toward the option of higher quality; the abandonment probability
Pαi should be small and possibly inversely proportional to the option quality
vi; finally, cross-inhibition should be governed by a high-enough probability
Pσi . Prior to formalisation of the link between microscopic transition prob-
abilities and macroscopic transition rates, the above high-level guidelines
need to be verified for their sufficiency in providing a quantitative micro-
macro link. In Section 4.2, we show how these guidelines translate to an
actual implementation. Additionally, we discuss the inclusion of spatial fac-
tors influencing the interactions between agents, and we indicate possible
extensions of the guidelines to deal with dynamic interaction topologies.

required properties To obtain a quantitative micro-macro link, two
properties are fundamental: state transitions must be memoryless and the
system must be well-mixed.
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Memorylessness is required by the macroscopic model, which can be de-
rived as a mean-field approximation of a population-level continuous-time
Markov process (see Seeley et al., 2012, for details). Memorylessness implies
that, at any time, the probability that any agent undergoes a state transitions
depends only on the current system state, and is independent of the previ-
ous state of the system (thus the macroscopic process fulfils the Markov
property). This can be achieved by ensuring a memoryless behaviour at the
microscopic level, that is, ensuring that state transitions are governed by
fixed probabilities per time unit, which results in an exponential distribu-
tion of the time intervals between entrance and exit from a state. Note that
spatiality may interfere with memorylessness, and particular care must be
given to the microscopic implementation, as exemplified in the case study
presented in this chapter.

The well-mixed property ensures that the probability of interaction be-
tween any two agents is constant. This can be achieved by a fully con-
nected interaction topology, or by a uniformly random interaction topology.
If different populations were segregated, the well-mixed property would not
hold anymore, therefore resulting in altered system dynamics (e.g., creation
of islands of agents with different opinions). To overcome this, interaction
among agents should take place only when an unbiased sample of all pop-
ulations is available.

4.2 case study : shortest path discovery/selection

The high-level prescriptions discussed above need to be reified through ex-
perimentation in challenging case studies. Among the several factors that
may hinder a macroscopic micro-macro link in a swarm robotics context,
spatiality and physical interferences are probably the most important ones.
Spatial features constrain the ability of interaction among different popula-
tions and may easily lead to departures from the ideal well-mixed condition,
while the physical embodiment of specific robotic platforms constrains both
motion and robot-robot interactions. In some cases, embodiment may also
impose a limit on the maximum number of robots that can operate in a
given scenario, as beyond this limit physical interferences might impede the
robots correct functioning.

A well-conceived case study should exemplify the challenges introduced
by spatiality and embodiment and propose strategies to address them. We
have chosen a decision-making scenario that strongly depends on spatial
factors and in which physical interferences may have strong effects since
the robots share the same space: the discovery and selection of the shortest
path between two areas in a foraging context (see Section 4.2.1). We first
implement an abstract multiagent simulation (presented in Section 4.2.2) to
isolate the challenges introduced by the spatial distribution of target areas
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Figure 4: Graphical representation of the environment in the the shortest path
discovery/selection case study. Target areas A and B are located at distance respec-
tively dA and dB from the home area (in this figure, dA = 2 m and dB = 2.5 m). All
the three areas have radius R = 0.3 m. Robots move at constant speed ν = 0.1 m/s
and can communicate with neighbours within a range dI = 0.6 m.

while ignoring the target robot embodiment and the resulting physical in-
teractions. Here, agents are modelled as dimensionless particles that do not
interfere with each other, so that we can analyse the performance of large
swarms, study how the system dynamics vary as a function of the group
size, and propose specific solutions to tackle spatiality effects. The robotic
simulation instead addresses both spatiality and embodiment, and requires
specific strategies to limit the physical interferences which are discussed in
Section 4.2.3. Here, we have chosen a robotic platform—the e-puck robot
(Mondada et al., 2009)—that stresses the challenges given by physical inter-
ferences due to their relatively small perceptual and interaction range.

Overall, the goal of this study consists in obtaining a good quantitative
match between the non-spatial macroscopic model of Section 4.1 and the
multiagent and robotic implementation, as discussed in Section 4.3.

4.2.1 Problem definition

Foraging is a classic problem in swarm robotics (see Brambilla et al., 2013),
and often solutions take inspiration from the food-gathering behaviour ob-
served in social insects. Broadly speaking, agents involved in a foraging
task are required to carry out search and retrieval activities. They explore
the environment to locate target areas that contain the objects to be retrieved
(e.g., a food patch). Then, they exploit the chosen path to retrieve objects
to a given home area (e.g., the nest). Foraging encompasses a wide range of
activities, such as exploration, navigation between target areas, retrieval and
clustering of objects, and collective decision making. All these activities are
key components in several real world applications envisioned as potential
swarm robotics scenarios — e.g., search and rescue in disaster zones, collec-
tive construction in hazardous environments, nuclear disaster cleaning, etc.
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Here, we focus on decision making and we neglect other aspects (e.g., object
retrieval) that are out of the scope of the present work.

In this study, the goal of the swarm is to identify and exploit the short-
est path between a home area and any of two target areas, referred to as
target area A and target area B (see Figure 4). The environment is a 2D
infinite plane without obstacles, and all areas have circular shape with ra-
dius R = 0.3 m. The targets are located at a distance from home that varies
in the range di ∈ [1.5, 3.5]m, with i ∈ {A, B}. The swarm is composed of
agents/robots with local sensing and communication. An agent perceives
home and targets only when within the corresponding areas, moves at con-
stant speed of ν = 0.1 m/s and communicates only with neighbours at a
maximum distance dI = 0.6 m (indicated by the dotted circle around the
robot in Figure 4). Agents have perfect knowledge of the home location,
while target areas need to be located through exploration. The collective de-
cision is taken when the number of agents that have chosen a single target
area reaches a quorum Q.

4.2.2 Implementation of abstract multiagent simulations

The swarm is composed of dimensionless agents, so that no collisions or
physical interferences are possible. Error-free odometry is exploited to track
the position of known areas. Agents can be either committed to a specific
target, or uncommitted. The committed agents—state CA and CB in Fig-
ure 3—keep moving back and forth between home and target thanks to
odometry. The uncommitted agents—state CU—explore the environment to
discover potential target areas. Agents can communicate with neighbours
and share information about their commitment state and the location of dis-
covered target areas.

interactive and latent agents Following the guidelines presented in
Section 4.1, we have implemented a microscopic behaviour paying particular
attention to the effects of spatiality. Indeed, given the locality of communi-
cation and the distance between target areas, agents committed to different
targets and uncommitted agents cannot always interact with each other. In
particular, different populations of agents are spatially segregated, and come
into contact only when in the home area. To ensure the well-mixed prop-
erty, we have therefore decided to let the agents interact with each others
only when they are within the home area. When agents leave home, inter-
actions are disallowed. More formally, agents can be in one of two activity
states: an interactive state I (i.e., when inside the home area) and a latent
state L (i.e., when outside the home area). Switching between activity states
follows the dynamics prescribed by the implemented behaviour, and can
be modelled by the simple PFSM shown in Figure 5 left. We introduce a
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Figure 5: Microscopic description for the shortest path selection/discovery prob-
lem. Left: PFSM describing the switch between interactive and latent states. Right:
PFSM describing the complete agent behaviour. White circles represent interactive
states, while grey circles represent latent states in which no interaction is possible.
Solid arrows correspond to spontaneous transitions, while dashed arrows repre-
sent interactive transitions, and they both correspond to transitions described in
the PFSM of Figure 3. Dash-dotted arrows instead identify the transition between
activity states, i.e., the interactive and latent states. See text for further details.

constant probability PL for an agent to become latent. Conversely, agents
become interactive in different ways depending on their commitment state,
as will be detailed below. We refer to PI as the average probability to be-
come interactive. We can describe the change in the activity state through
the PFSM model in the left part of Figure 5, which predicts that a fraction
PI/(PI + PL) of agents can be found on average in the interactive state. We
exploit this prediction to tune the value of PL: to ensure that on average 10%
of the agents are interactive within the home area, we set PL = 9PI .

Given the three possible commitment states prescribed by the design pat-
tern (Figure 3) and the two activity states, the multiagent implementation
can be described by a PFSM with six states as shown in the right part of
Figure 5. Therefore, the agent committed to target A is interactive when in
state CI

A and latent when in state CL
A (respectively, CI

B and CL
B for the agent

committed to target B). Otherwise, the uncommitted agent is interactive in
state CI

U and latent in state CL
U. The prescribed PFSM of Figure 3 can be

easily obtained aggregating states by commitment.

interaction patterns When agents are in the interactive state, they can
exchange short communication messages with neighbours, and on the basis
of this communication they can change their commitment state. To obtain
the well-mixed property, the distribution of interactive agents in the dif-
ferent commitment states must provide an unbiased representation of the
entire population, including latent agents. More precisely, given the fraction
ΨI (ΨL) of agents in the interactive state I (latent state L), we require that:

ΨI
i

ΨI ≈
ΨL

i
ΨL ≈ Ψi, i ∈ {A, B, U}, (4)



4.2 case study : shortest path discovery/selection 51

where ΨI
i and ΨL

i represent the fractions of agents that are found in state CI
i

and CL
i within the entire population. In fact, if changes in the commitment

state within the interactive sub-population (fraction ΨI) are much faster than
changes in the activity state (i.e., agents switching between states I and L),
the distribution of commitment states among interactive agents would mis-
represent the global population distribution, and therefore the microscopic
and macroscopic dynamics would diverge. We have therefore decided to
bind any change in the commitment state resulting from agent-agent inter-
actions to the dynamics of activity change, which ensures the requirements
given in (4). In other words, interactions are allowed only upon transitions
from the interactive to the latent state: whenever an agent decides to become
latent (following the constant probability per time unit PL), it engages in an
interaction with another agent in state I and updates its commitment state
accordingly. In this way, changes in commitment state happen at the same
rate as changes in the activity state.

Upon interaction, the probability of selecting a partner belonging to
each population is proportional to the corresponding fraction of interactive
agents. We refer to these probabilities as PΨA , PΨB and PΨU . Thanks to the
attentive design of the interactive/latent dynamics discussed above, such
probabilities closely represent the global fractions ΨA, ΨB and ΨU. Table 1

indicates all possible transitions from interactive to latent states and also
links the transition probabilities to the control parameters Pρ and Pσ that
are introduced in the following. Here, it is worth noting that the sum of all
outgoing transitions from any interactive state equals to PL, which imple-
ments the link between changes in activity and commitment state discussed
above. The actual change in the commitment state depends on the randomly
selected partner, as detailed in the following.

motion patterns Agents always move at constant speed ν = 0.1 m/s,
and their motion direction is determined by a motion vector m whose values
depends on the agent state. Uncommitted agents explore the environment
in search of target areas through a correlated random walk (Bartumeus et al.,
2005; Codling et al., 2008). When in the latent state CL

U, uncommitted agents
compute their motion vector m as the sum of an inertia and a random vector
as follows:

m = ri θi + 1 θr (5)

where the notation ri θi indicates a vector in polar coordinates, with length ri
and angle θi. The angle θi is the agent’s heading direction, θr is an angle uni-
formly drawn in the range [−π, π], and ri = 2 is the relative strength of the
inertia vector determining the random walk. Uncommitted agents switch
between latent and interactive states with fixed probabilities per time unit.
While searching for target areas (state CL

U), uncommitted agents stop explo-
ration to return home with constant probability PIU . The actual transition
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Table 1: Correspondence between the transition probabilities of the PFSM of Fig-
ure 5 and the control parameters of the implemented behaviour, for each interactive
or latent state. This correspondence is shown in the central column of the table: the
arrows indicate how each probability of the PFSM (left of the arrow) is implemented
in the agent behaviour (right of the arrow). Considering that PΨA + PΨB + PΨU = 1,
the sum of all outgoing transitions from any interactive state equals to PL.

from transition probability to

CI
U

PΨA PρA → PLPΨA Pρ CL
A

PLU → PL(PΨU + (1− Pρ)(PΨA + PΨB)) CL
U

PΨB PρB → PLPΨB Pρ CL
B

CI
A

PΨB PσB → PLPΨB Pσ CL
U

PLA → PL(PΨA + PΨU + PΨB(1− Pσ)) CL
A

CI
B

PΨA PσA → PLPΨA Pσ CL
U

PLB → PL(PΨB + PΨU + PΨA(1− Pσ)) CL
B

CL
U

PγA → PγA CL
A

PIU → PI CI
U

PγB → PγB CL
B

CL
A

Pα → Pα CL
U

PIA → PI CI
A

CL
B

Pα → Pα CL
U

PIB → PI CI
B
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to the interactive state CI
U takes place as soon as the agent enters the home

area. When in the interactive state CI
U, agents remain within the home area

and move by correlated random walk (5). An interactive uncommitted agent
becomes latent and resumes exploration with probability PLU (see Table 1).

Committed agents move back and forth between home and target ex-
ploiting odometry, which is used to update the motion vector m toward the
stored area locations. Similarly to uncommitted agents, committed interac-
tive agents (state CI

A or CI
B) remain within the home area and move with a

correlated random walk (5). They become latent with probability PLA (PLB ,
see also Table 1). When latent (state CL

A or CL
B), they travel toward the target

area and return home after a full round trip. This is modelled in the PFSM
of Figure 5 by the transition probability PIA (PIB).

As already mentioned, to provide the well-mixed property, the proba-
bility to switch between active and interactive states must be comparable
across the agents’ commitments states: in this way, the agents in state I are
an unbiased sample of the populations A, B and U. To this end, we tune the
probability PIU to obtain a match between the average time of return to the
home area of uncommitted agents with the average round-trip time of the
committed agents. Given the agent speed ν and the distance range of target
areas, the average round-trip time is τm = 2d/ν = 50 s, where d = 2.5 m is
the average target area distance. Therefore, we fix the probability to become
interactive per time unit to PIU = 1/τm = 0.02 s−1.

Note that in the present case study different distances of the target cor-
respond to different round-trip times: the closer the target area, the shorter
the time needed to return home, the higher the frequency with which agents
become interactive. This bias toward closer target areas can be exploited for
decision purposes, as the rate of becoming interactive positively bias the
system dynamics towards the selection of the shortest path. Starting from
these considerations, the implementation of the four concurrent processes
prescribed by the design pattern—discovery, abandonment, recruitment and
cross-inhibition—can be easily obtained.

discovery Uncommitted agents discover target areas through random ex-
ploration while in the latent state CL

U. Whenever an agent stumbles upon a
target area, it stores the area location and becomes committed to it. In the
PFSM model of Figure 5, this event corresponds to the transition between
CL

U and CL
A (CL

B), which happens with a probability PγA (PγB). Discovery
events result from correlated random walks that start from the home area:
the closer the target area, the higher the discovery probability. Therefore,
at a macroscopic level, the discovery rate is biased toward shorter paths as
prescribed by the design pattern.
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abandonment Committed agents may spontaneously abandon their
commitment and revert to an uncommitted state with constant probability
Pα. Only agents in the latent state CL

A (CL
B) are allowed to abandon commit-

ment, and become uncommitted in order to resume exploration in state CL
U,

as shown in Figure 5. Given that longer paths imply longer travel times,
the macroscopic abandonment rate is larger for longer paths, which is in
agreement with the prescriptions of the design pattern. After abandonment,
agents return home and from there retrieve exploration. In this way, the
dynamics of abandonment do not interfere with discovery, ensuring that ev-
ery discovery event results from a random exploration that originates from
the home location. This allows to preserve the memoryless property of the
agent behaviour as required by the design pattern.

recruitment An uncommitted agent (state CI
U), upon interaction with

a committed agent (state CI
A or CI

B), gets recruited and thus committed to
the other agent’s target area with constant probability Pρ. Given the in-
teraction pattern discussed above, uncommitted agents get recruited only
when becoming latent, therefore with a constant probability PL. Given that
the interactions with committed agents are bound to the probability PΨA
(PΨB), the overall recruitment probability is given by PLPΨA Pρ (PLPΨB Pρ), as
shown in Table 1

1. Given that the interactive populations are slightly bi-
ased by shorter paths, at the macroscopic level recruitment for closer targets
is slightly higher, as prescribed by the design pattern. The commitment
message sent by a committed agent contains the information relative to the
corresponding target area location, which can be used by the recruited agent
for navigation. The transferred information is the angle and distance of the
target location relative to the recruiter. The receiver combines this infor-
mation with the recruiter’s relative location and orientation, and through
triangulation computes the target location.

cross-inhibition An interactive agent committed to target A (B) in state
CI

A (CI
B), upon interaction with an agent in state CI

B (CI
A), gets cross-inhibited

and reverts to an uncommitted state with constant probability Pσ. Recall
that interactions take place with probability PL, and that the probability of
interacting with an agent from population A (B) is PΨA (PΨB). It follows
that the overall cross-inhibition probability is PLPΨB Pσ (PLPΨA Pσ, see also
Table 1). Upon interaction, an agent recognises that the partner is committed
to a different target area by measuring the distance between the target area
location internally stored and the area location communicated by the partner.
If the distance is greater than the target area radius R, cross-inhibition takes
place.

1 Table 1 also shows that with probability PLU uncommitted agents do not get recruited and become
uncommitted latent agents (CL

U). In this way, the sum of all outgoing transitions from the interactive
uncommitted state CI

U is equal to PL.
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Table 2: Control parameters and chosen value or value range. In this case study, all
parameters are fixed but the recruitment and cross-inhibition probabilities.

Parameter Description Value
ν agent speed 0.1 m/s
dI interaction radius 0.6 m
ri relative strength of the inertia vector 2

PIU probability of abandoning exploration ν/2d = 0.02 s−1

PL probability of becoming latent 3PIU

Pα probability of abandoning commitment 0.005 s−1

Pρ probability of recruitment [0, 1]
Pσ probability of cross-inhibition [0, 1]

control parameters The implemented behaviour has several control
parameters that can be varied to obtain slightly different macroscopic dy-
namics. Some parameters have been arbitrarily chosen, while others are
tuned to preserve the properties prescribed by the design pattern. In this
study, we fix all parameters but Pρ and Pσ, which determine the interaction
pattern between agents. Table 2 summarises the parameters we introduced
and the values that have been chosen.

4.2.3 Implementation of physics-based swarm robotics simulations

To study how the agent embodiment influences the system dynamics, we
implemented the decision process on a swarm of simulated robots. The
robotic platform that is simulated is the e-puck robot (Mondada et al., 2009),
equipped with a range-and-bearing board (Gutiérrez et al., 2009) to allow
short-range localised communication and an embedded computer running
Linux2. Experimentation is conducted exploiting the ARGoS simulator (Pin-
ciroli et al., 2012). The robot behaviour is implemented in accordance with
the multiagent behaviour described in Section 4.2.2. However, the robot char-
acteristics and the physical embodiment introduce several constraints that
require ad-hoc modifications of the behaviour. We group the introduced
modifications for (i) sensors and actuators, (ii) random walk, (iii) obstacle
avoidance, and (iv) path exploitation.

sensors and actuators In the multiagent implementation, agents have
an abstract perception of the environment as well as abstract interactions
with neighbours. In a robotic system, the same functionalities are imple-
mented employing the available sensors and actuators. More specifically,
the robotic implementation needs specific solutions for area localisation and
robot-robot communication.

2 http://www.gctronic.com/doc/index.php/Overo_Extension

http://www.gctronic.com/doc/index.php/Overo_Extension
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E-pucks detect and discriminate areas according to the floor grey level,
as measured through the infrared ground sensor. We paint the floor with
three grey levels: one grey level for the target areas, a second grey level
for the home area, and a third one for the empty area. In this way, robots
can perceive an area when physically over it through their ground sensor,
and differentiate between types of area by looking at the different sensor
activations resulting from different grey scales.

Communication is implemented through a combination of range-and-
bearing infrared communication (IR) and WiFi, in a way similar to the range-
and-bearing implementation of Roberts et al. (2009). Even if robots commu-
nicate via WiFi, interactions are kept local by delivering messages only to
robots within IR range (we limit this range to R = 30 cm). Robots constantly
broadcast via the IR channel their IP address, so that only upon reception of
an IR message a robot may deliver a WiFi message to the corresponding IP
address. On the receiver side, WiFi messages are filtered out when they do
not have an IR counterpart. In this way, WiFi communication gets enhanced
by the localised aspect: besides receiving the message content, a robot may
localise the sender position using the IR signal strength and angle. In ad-
dition, by keeping interactions local, the risk of a communication channel
overload is limited even when operating with large groups. However, com-
munication with high robot densities or cluttered environments is limited to
the subset of the closest neighbours because IR communication works only
in line-of-sight. This may have a bearing on the macroscopic dynamics, as
discussed below. Range-and-bearing communication is also used to estab-
lish a common frame of reference among two communicating agents, given
that robots cannot recognise the relative heading of neighbours. We adopt
here the solution described by Gutiérrez et al. (2010), based on sharing the
relative bearing among the interacting robots.

In this study we consider noiseless sensors and actuators. In a real robot
implementation the odometry error of the physical robot could be compen-
sated for exploiting robot-robot communication as done in (Gutiérrez et al.,
2010).

random walk Differently from the multiagent system, e-pucks employ a
differential-drive motion system that does not allow immediate changes of
direction. Therefore, during random walk, if the movement vector m varies
at each control step as described in eq. (5), the robot might not be able to
change its position due to the time required to rotate on place for heading
towards m. To work out this issue while keeping the implementation as
close as possible to the multiagent system, a robot computes m as in (5) and
keeps unaltered the desired motion vector m for w = 5 control steps before
the next update. This gives the robot a sufficient time to rotate and move
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along the desired direction, while keeping a frequent update of the motion
vector m.

obstacle avoidance Due to their physical embodiment, robots must
avoid collisions with each other and consequently alter their ideal motion
trajectories. To avoid collisions, a robot computes its motion vector m—
either from random walk (5) or from directed movements toward target
areas—and sums to this an obstacle avoidance vector o. The latter is com-
puted by taking into account neighbouring robots’ locations that are per-
ceived in a range of 20 cm over the IR communication channel, and calculat-
ing a sum vector in the opposite direction. Finally, the robot motion vector
mo is computed as:

mo = m + 2o, (6)

where a larger weight is given to the obstacle avoidance component to en-
sure collision-free motion.

path exploitation Obstacle avoidance alone is not sufficient to allow
a smooth navigation back and forth between home and target areas. In-
deed, groups of robots moving towards opposite locations interfere with
each other. To reduce such interferences, we designed the robot trajectories
in a round-trip to create a double-line motion, letting robots keep the right
with respect to the robots travelling in the opposite direction. To achieve
this organised motion, committed robots going to a location rotate clockwise
their motion vector m by an angle θ ∈ [0◦, 30◦], with θ linearly decreasing as
a function of the distance to the target location.

expected effects of embodiment The physics-based implementation of
the robotic simulations allows us to investigate the effects of physical em-
bodiment on the collective dynamics. The solutions described above deal
with part of the constraints and interferences caused by the robot embodi-
ment, but do not completely solve them. The most important consideration
is that the robotic system cannot work with high robot densities, as motion
between and within target areas would be strongly altered or completely
disrupted. Therefore, we limit our study to groups of 50 robots. With this
group size, we expect only a mild divergence from the ideal motion pat-
terns. Additional constraints are given by the line-of-sight communication,
which may prevent well-mixed interactions between the interactive robots.
However, given that the average number of interacting robots is limited to
10% of the group size according to the multiagent implementation, minor
departures from a well-mixed condition are expected. A further analysis
of the effects of embodiment in the robotics implementation is presented in
Section 4.3.2.
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4.3 results

We evaluate the correctness of the microscopic implementation in both the
multiagent and the swarm robotics simulation. To this end, we compare the
dynamics of the macroscopic model with the results of the microscopic sim-
ulations. In this study, the parameterisation of the macroscopic model is esti-
mated directly from the simulations and we investigate the decision-making
dynamics for varying probabilities of recruitment and of cross-inhibition (Pρ

and Pσ, respectively), and for a set of different decision problems for varying
option quality vi (i.e., varying the target areas distance di, i ∈ {A, B}).

4.3.1 Abstract multiagent simulations

The effects of spatiality can be appreciated by looking at the decision-making
dynamics of multiagent simulations by varying the position of target areas.
We show results for a set of decision problems in which the distance of tar-
get B is fixed (dB = 2.5 m), while the distance of target A systematically
varies (dA ∈ {1.5, 2, 2.5, 3, 3.5}m). When not stated otherwise, simulations
are run for a total population of N = 500 agents. We first discuss the rela-
tion between estimated transition rates and the target area distances. Then,
we evaluate the micro-macro link comparing the final population distribu-
tions in multiagent simulations with the macroscopic model attractors, and
we verify the presence of the same type of phase transitions at both levels.
Finally, we extend the analysis to varying group size N to identify finite-size
effects on both microscopic and macroscopic dynamics.

estimation of the macroscopic transition rates To verify the ex-
istence of the micro-macro link, it is necessary to relate the microscopic
implementation to the macroscopic model. This is possible by estimating
the transition rates of the macroscopic model directly from the multiagent
simulation. We do so through survival analysis, which provides powerful
non-parametric methods (Nelson, 1969) to estimate how the probability of
events changes over time directly from the experimental data (for a detailed
explanation of the methods, see Appendix A). We designed a set of exper-
iments to estimate all the macroscopic transition rates of the ODE system
in (1)—γi, αi, ρi, σi, i ∈ {A, B}—for each possible distance of the target areas.
For the interactive transitions, we also varied the control parameters Pρ and
Pσ in the set {0.1, 0.4.0.7, 1}.

Figure 6 shows the result of the parameter estimation. In agreement
with the implementation choices, the estimated discovery rate γ̂i decreases
with the distance di of the target area i, while the estimated abandonment
rate α̂i follows the opposite trend (see Figure 6(A)). Note that discovery
follows an exponential decay with increasing distance at an estimated decay
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Figure 6: Macroscopic transition rates
estimated from the multiagent simu-
lation. (A) Estimated rates for discov-
ery (γ̂i) and abandonment (α̂i) plotted
against the target area distance di. Note
the exponential decay of the discovery
rate (γ̂i = γo e−λdi , λ = 1.97), as indi-
cated by the inset where the y-axis is
plotted in logarithmic scale. (B)-(C) Es-
timated rates for recruitment (ρ̂i) and
cross-inhibition (σ̂i) plotted against tar-
get area distance di and control proba-
bility Pρ/Pσ. See text for details.

rate λ = 1.97, as shown in the inset of Figure 6(A). This is a result of the
motion pattern implemented for uncommitted agents, which is governed
by exponentially distributed exploratory trips. Such an exponential decay
implies that farther targets are more difficult to discriminate than closer ones
through discovery, and agent-agent interactions are useful to break possible
deadlocks and lead to consistent decisions.

The interaction rates of recruitment ρ̂ and cross-inhibition σ̂ have been
estimated for different values of the control probabilities Pρ and Pσ, respec-
tively. Also in this case, the rates are inversely proportional to the distance
of the target area to which the interacting population is committed (see Fig-
ure 6(B)), in agreement with the implementation choices. Indeed, such a
bias in the transition rates derives from the shorter round-trips performed
by agents committed to closer targets. As a result, biased rates favour con-
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vergence on shorter paths, confirming the correctness of the multiagent im-
plementation. Note that the effect of distance on the transition rates is linear,
and is important for larger values of the control probability but nearly neg-
ligible for smaller values, as shown in Figure 6(B). The estimated transition
rates vary approximately linearly also with respect to the control probabil-
ity of the individual agents, Pρ and Pσ, as shown in Figure 6(C). A slight
departure from linearity is visible for cross-inhibition, which is mainly due
to errors in the estimation procedure given by the fact that returning home
of committed agents is not a purely memoryless process.

final distribution Given the estimated macroscopic parameters for
varying distance dA and varying control parameters Pρ and Pσ as result-
ing from the previous analysis, we can evaluate the micro-macro link and
compare the dynamics displayed by the two description levels. For each
decision problem obtained varying target distances and control probabili-
ties, we perform 500 runs and we compare the population distribution after
5 · 103 s (with an integration time-step of 0.1 s) with the vector field and phase
portrait of the ODE system (1) obtained using the estimated macroscopic
parameterisation. Figure 7 shows the correspondence between microscopic
and macroscopic dynamics for selected decision problems. The complete
set of results for every decision problem we investigated is available in Fig-
ures S1–S5 in the online supplementary material3. As can be observed in
Figure 7, we obtained a very good agreement between the macroscopic dy-
namics and the multiagent simulations, which confirms the existence of a
quantitative micro-macro link as a result of the correct implementation of
the multiagent behaviour. The agreement is noticeable not only when the
microscopic dynamics have stabilised (i.e., population distributions around
the macroscopic stable point, see Figures 7(A), (B) and (D)), but also in un-
stable transitory states which precisely follow the macroscopic vector field,
as shown in Figure 7(C). Here, the macroscopic dynamics predict a quick
convergence to a one-dimensional manifold, followed by a slower diffusion
toward the one or the other attractor (Pais et al., 2013). These dynamics are
well reproduced by the multiagent simulations, which show several points
scattered around the one-dimensional manifold.

Analysing the system dynamics, it is possible to notice that for low val-
ues of Pρ a decision is not taken and a large majority of the agents remains
uncommitted (see Figure 7(A)). This behaviour results from a small positive
feedback from recruitment which cannot balance the spontaneous abandon-
ment rate (see also Figure 6). In fact, by increasing the value of Pρ, the sys-
tem reliably converges towards the best option (see Figure 7(B)). As shown
in the inset, 100% of the runs reach the quorum Q = 0.75 for the best option.
Cross-inhibition has a different role in the system dynamics: it speeds up

3 http://iridia.ulb.ac.be/supp/IridiaSupp2016-001/index.html

http://iridia.ulb.ac.be/supp/IridiaSupp2016-001/index.html


4.3 results 61

(A) dA = 2 m, Pρ = 0.1, Pσ = 0.7 (B) dA = 2 m, Pρ = 0.7, Pσ = 0.7

(C) dA = 2.5 m, Pρ = 0.7, Pσ = 0.1 (D) dA = 2.5 m, Pρ = 0.7, Pσ = 0.7

Figure 7: Comparison of the microscopic and macroscopic dynamics for different
decision problems and control probabilities. The macroscopic dynamics are dis-
played through the phase portrait (grey arrows show the trajectories, filled circles
are equilibrium points—dark blue: stable; light green: unstable). The bold ma-
genta arrow represents the trajectory starting from a fully uncommitted population
(ΨA = ΨB = 0). The microscopic dynamics are displayed as a scatterplot represent-
ing the final distribution of 500 independent runs (red empty circles). The insets
show the decision pattern for a quorum Q = 0.75, indicating the percentage of runs
that resulted in an above-quorum fraction of agents committed to either alternative.

the decision process, and avoids deadlocks at indecision (Pais et al., 2013).
In particular, for equally-distant target areas, the dynamics with low values
of Pσ are slower and the system is often found to be still at indecision after
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5 · 103 s. As shown by the inset of Figure 7(C), in this time frame only about
half of the runs reached the decision quorum for one or the other option. As
soon as we increase Pσ, the system always converges to a large majority of
agents committed to either one of the two alternatives (see Figure 7(D)).

bifurcation To further validate the existence of a precise quantitative
micro-macro link, we tested whether the macro and the micro systems un-
dergo the same phase transition at the same predicted value σ∗ (see Sec-
tion 4.1.2). For an unbiased decision problem (i.e., dA = dB), transition rates
for any of the two options are equal, and in such a completely symmetric
situation the system risks getting stuck at indecision. As discussed in Sec-
tion 4.1.2, there exists a value of sigma, σ∗, for which the system breaks
the symmetry and converges to either one of the two options. Using the
estimated transition rates for dA = dB = 1.5 m and Pρ = 1, we computed
the estimated critical value σ̂∗ = 3.96261 · 10−5. Note that the estimated
macroscopic transition rate σ̂ is linearly related to the individual-level cross-
inhibition probability Pσ, as shown in Figure 6(C), especially for small values
of Pσ:

σ̂ = K(dA, dB)Pσ, (7)

where K(dA, dB) is a constant value that embeds spatial factors related to
the distance of both target areas, as well as the constant probability PL of
engaging in an interaction when agents are interactive (see Table 1). Since
we have control only on the parameter Pσ, we discount K(dA, dB) from σ̂∗.
The pitchfork bifurcation is predicted by the macroscopic model at the value
Pσ∗ = σ̂∗/K(dA, dB) = 1.4089 · 10−2 (see Figure 8(A)). We have therefore
performed a bifurcation analysis with the multiagent simulation, varying Pσ

in the range [0, 0.1[ (with a 0.005 step increment). For each condition, we
performed 500 runs lasting 2 · 104 s, a sufficient time to ensure convergence.
Figure 8(A) illustrates the final distribution of ΨA as a density histogram,
which results in a very good agreement with the macroscopic bifurcation
diagram. Figure 8(B) shows similar results for a different parameterisation:
dA = dB = 2.5 m and Pρ = 1.

finite-size effects A limitation of the macroscopic model (1) is the
infinite-size approximation, which turns into the impossibility to precisely
analyse the system behaviour for varying group size N. To deal with this, we
numerically study the finite-size effects through Monte Carlo simulations of
a macroscopic finite-size model exploiting the Gillespie algorithm (Gillespie,
1976), a widely-used method to study the behaviour of continuous-time,
well-mixed, memoryless processes. Figure 9 shows that also for small val-
ues of N the finite-size dynamics are in agreement with the infinite size ODE
system (1). However, for small size N, the macroscopic system is subject to
larger random fluctuations which result in more frequent wrong decisions
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(A) (B)

Figure 8: Phase transition predicted by the macroscopic model (lines) and result-
ing from microscopic multiagent simulations (colour shades) for two unbiased
decision problems: (A) dA = dB = 1.5 m and (B) dA = dB = 2.5 m. We show
the proportion of agents committed to option A, ΨA, varying the control probabil-
ity Pσ. The macroscopic bifurcation diagram illustrates stable states as dark (blue)
solid lines and unstable state as light (green) dashed lines. The distribution of ΨA
obtained from multiagent simulations is illustrated through a density histogram in
which more frequent values are represented as darker (red) boxes.

especially in decision problems with a small difference between options (see
the inset histogram in Figure 9).

To better quantify the accuracy of the micro-macro link including finite-
size effects, we introduce the exit probability, a measure that indicates the
percentage of runs that terminate with a proportion of agents committed
for the best (or equally best) option greater than a quorum Q = 0.75. Fig-
ure 10 shows the estimated exit probability for varying group size for both
multiagent and Gillespie simulations. Also in this case, we recognise a good
agreement between macroscopic dynamics and multiagent simulation re-
sults. Multiagent simulations have a slightly higher exit probability than
predicted by the macroscopic model. This is to be accounted to the larger
time delay in reporting discoveries of farthest targets, which slightly bias the
decision problem towards the closest option. Such effects cannot be grasped
by the macroscopic dynamics starting from a fully-uncommitted population,
but could be accounted for by an appropriately measured bias in the start-
ing conditions (e.g., starting with a small population fraction committed
to the closest target). In future studies, by introducing such a bias in the
macroscopic finite-size models, better predictions could be achieved.
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(A) N = 50 (B) N = 100

(C) N = 500

Figure 9: Comparison of the macro-
scopic and microscopic dynamics in-
cluding macroscopic simulations of
finite-size effects. The experiment pa-
rameterisation is dA = 2 m, dB = 2.5 m,
Pρ = Pσ = 1. The populations distri-
bution for 2000 independent runs are
displayed as red empty circles for mul-
tiagent simulations, and as green di-
amonds for the Gillespie simulations.
The inset shows the percentage of runs
in which a decision was made for one
or the other option (quorum Q = 0.75).

4.3.2 Physics-based swarm robotics simulations

The swarm robotics implementation aims to investigate the effect of embod-
iment on the macroscopic dynamics. In Section 4.2.3 we have discussed
several solutions introduced to reduce interferences and deal with physical
interactions among robots and between robots and environment. We have
therefore run several simulations using the ARGoS framework (Pinciroli
et al., 2012) to study the microscopic dynamics. Also in this case, we study
several decision problems fixing the distance of target B to dB = 2.5 m and
systematically varying the distance of target A, dA ∈ {1.5, 2, 2.5, 3, 3.5}m.
Simulations are performed with groups of N = 50 robots.
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Figure 10: Exit probability as a function of the swarm size N for multiagent (black
solid lines) and Gillespie simulations (red dashed line). In these experiments, the
distance of target B is fixed, dB = 2.5 m, while the distance of target A varies,
dA ∈ {1.5, 2, 2.5, 3, 3.5}m.

estimation of the macroscopic transition rates For each experi-
mental condition, we estimated the macroscopic transition rates through
survival analysis, following the same methodology used for multiagent sim-
ulations and detailed in Appendix A (see Figure 11). The estimated discov-
ery (γ̂) and abandonment (α̂) rates vary with target distance in a similar
way to the multiagent simulations, as shown in Figure 11(A). Abandonment
increases with distance while discovery exponentially decays at a decay rate
λ = 1.27 (see also the figure’s inset). Abandonment rates are also in a good
quantitative agreement with the multiagent simulations, while discovery
rates present larger values. This is a result of the difference in the correlated
random walk by agents and robots, the former having a smaller correlation
in the motion direction due to the ability of instantaneous turning.

The estimated recruitment (ρ̂i) and cross-inhibition (σ̂i) rates depend on
the distance di, as well as on the control probabilities Pρ and Pσ respec-
tively, as shown by Figures 11(B) and (C). While recruitment correctly de-
cays with distance, similarly to the multiagent implementation, we notice
that the cross-inhibition rate slightly increases with distance. This is mainly
the result of physical interferences among robots committed to the same op-
tion, which are less frequent for longer paths because the density of robots
over the path is reduced, therefore leading to higher transition rates. Indeed,
notwithstanding the ad-hoc motion pattern for path exploitation discussed
in Section 4.2.3, physical interferences cannot be completely neutralised, the
stronger their effect the higher the robot density, resulting in a penalty for
motion on shorter paths.
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Figure 11: Macroscopic transition rates
estimated from the robotics simula-
tions. See also the caption of Figure 6

for details.

final distribution Exploiting the estimated macroscopic transition
rates, we can analyse the micro-macro link also for the robotics simulations.
We have therefore matched the macroscopic dynamics with the final pop-
ulation distribution from 500 independent runs of the robotics simulations.
Figure 12 shows four selected conditions (corresponding to the same de-
cision problems and control parameters used in Figure 7). The complete
set of results for every decision problem we investigated is available in Fig-
ures S6-S10 in the online supplementary material4. Also in this case, the
agreement between macroscopic dynamics and microscopic simulations is
remarkable. With respect to multiagent simulations, we note a larger scat-
ter of data points, which is due to larger random fluctuations related to

4 http://iridia.ulb.ac.be/supp/IridiaSupp2016-001/index.html

http://iridia.ulb.ac.be/supp/IridiaSupp2016-001/index.html


4.3 results 67

(A) dA = 2 m, Pρ = 0.1, Pσ = 0.7 (B) dA = 2 m, Pρ = 0.7, Pσ = 0.7

(C) dA = 2.5 m, Pρ = 0.7, Pσ = 0.1 (D) dA = 2.5 m, Pρ = 0.7, Pσ = 0.7

Figure 12: Comparison of the microscopic and macroscopic dynamics for differ-
ent decision problems and control probabilities. See the caption of Figure 7 for
details.

the physical embodiment of robots, as well as to finite-size effects given the
relatively low group size. Apart from this, the microscopic implementation
accurately matches the macroscopic dynamics. We also recognise that the de-
cision process is not compromised by a cross-inhibition rate increasing with
distance. Indeed, the additional negative feedback is counterbalanced by
the positive feedback given by recruitment, which allows to achieve rather
accurate decisions.
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4.4 discussion

In this chapter, we have demonstrated how to obtain a quantitative rela-
tionship between a desired macroscopic model of decentralised decision
making borrowed from studies of nest-site selection in honeybees (Seeley
et al., 2012) and a shortest path discovery/selection problem within both
multiagent and robotics simulations. This work is particularly relevant in
the perspective of formalising a design pattern for decentralised decisions
based on the mechanisms observed in honeybees. The high level guidelines
presented in Section 4.1 have been verified in an example that is particularly
challenging due to the spatial component which is not taken into account in
the macroscopic model. The relationship between microscopic parameters
and macroscopic transition rates was obtained directly from the experimen-
tal data, showing that in many cases an approximately linear relation holds,
with few exceptions that can be ascribed to the effects of spatiality and em-
bodiment. Additionally, specific solutions have been proposed to deal with
both spatiality and embodiment which will be included in the formalisation
of the design pattern for the general case.

For instance, the distinction between interactive and latent states can be
generalised to any scenario in which—due to spatiality or other constraints—
agent-agent interactions are not always possible, so that a necessity to differ-
entiate between activity states arises. The lesson learned from the present
case study is the importance of implementing spontaneous transitions be-
tween the activity states with comparable dynamics across different popu-
lations of committed and uncommitted agents. This should ensure that the
interactive agents are an overall unbiased representation of the entire popu-
lation. What needs to be further investigated is the amount of bias that can
be introduced before disrupting the micro-macro link.

Another important implementation choice consists in linking the possi-
bilities of interaction to the dynamics of activity change. In this respect, the
lesson learned is the importance of having similar dynamics between inter-
action rates and activity changes, in order to maintain unbiased proportions
within the interactive population. Also in this case, it would be important
to ascertain whether alternative implementation patterns exist in order to
speed-up the decision process beyond the constraints imposed by activity
dynamics.

Finally, it is worth noticing that spatial factors are well managed also
thanks to well designed motion patterns and transitions between states of
the PFSM individual-level model. The lesson learned is that a proper design
of the individual behaviour should lead to memoryless processes whenever
possible. In this way, the microscopic implementation can be easily linked
to the macroscopic description. When spatiality provides some form of bias,
it is important to design the individual behaviour to neutralize such a bias
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(e.g., returning to the home location after an abandonment is mandatory to
avoid a bias in the discovery of the abandoned alternative). Neutralising
spatiality effects may have costs (e.g., it slows down discovery of potential
alternatives), but these are costs that need to be paid to obtain a quantitative
micro-macro link.

The problem studied in this chapter and the solution proposed have
some specificities that do not allow to generalise toward every decentralised
decision-making problem. However, this case study can help in understand-
ing the effects of spatiality on the decision dynamics. In this study, the qual-
ity of the alternatives is not directly available to the agents and decisions are
bound to biases related to spatial factors (i.e., differential latencies related
to different options, see also Montes et al., 2010; Scheidler et al., 2015). As
a consequence, not all possible macroscopic dynamics can be obtained, be-
cause the macroscopic transition rates can only be modulated by the chosen
control parameters but not completely controlled. Different dynamics could
be achieved in case each agent can individually estimate (with noise) the
quality of the available option to contribute to the collective choice (as is
shown in the case study of Section 6.3).

In the next chapter, we formalise the suggestions given in this study into
a design-pattern for decentralised decision making in the best-of-n problem.
The macroscopic and microscopic models for binary decisions are extended
to the general case of n alternatives (i.e., the best-of-n problem). More formal
guidelines and methods to deal with spatiality issues—or, more generally,
with the existence of latent states—are provided, together with a formal
relationship between microscopic control parameters and macroscopic tran-
sition rates. As a consequence, it becomes possible to select the relevant
parameterisation of the system at the macroscopic description level, and
immediately derive the corresponding parameterisation of the individual
behaviour that leads to the desired collective outcome. This leads to a com-
plete micro-macro link for best-of-n, decentralised decision making allowing
both top-down design and bottom-up verification and analysis.





All models are false, but some are useful.

—George Box

5

A D E S I G N PAT T E R N F O R D E C E N T R A L I S E D D E C I S I O N
M A K I N G

Following the definition presented in Chapter 3, we report here a detailed
description of five (out of six) attributes of the design pattern for best-of-n,
decentralised decision making. The sixth attribute (the set of case studies)
is described in Chapter 6. While the case studies are part of the design
pattern, we present them in a separate chapter because of their long text. We
believe that organising the design pattern in two separate chapters eases the
reading. The formalisation of the design pattern’s solution, that is presented
in Section 5.5, is based on the results presented in Chapter 4.

5.1 name

Collective decisions through cross-inhibition (CDCI).

5.2 problem

The recurring problem tackled by this design pattern is the best-of-n deci-
sion problem, that is, the choice of the best option, or any of the equal-best
options, among a finite, possibly unknown number n of different alterna-
tives. Each option i ∈ {1, . . . , n} is characterised by the quality vi ∈ [vm, vM].
The decision-making process therefore requires:

• the identification of (possibly all) the available options;

• the estimation of the quality vi of each identified option i;

• the selection of the best one, or of any of the equal-best options
i? ∈ arg maxi∈{1,...,n} vi.

We study decision making for a decentralised system composed of N au-
tonomous agents ag, g ∈ {1, . . . , N}. Each agent is either committed to one
of the available options (C(ag) = Ci, i ∈ {1, · · · , n}, where Ci indicates com-
mitment to option i), or uncommitted (C(ag) = CU, where CU indicates
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uncommitment). At the macroscopic level, a decision is taken as soon as the
entire population (or a large fraction Ψq) becomes committed to one of the
options.

The best-of-n decision problem is a challenging problem especially when
the number and quality of the available alternatives is not known apriori.
Additional complexity might result from uncertain environmental condi-
tions that determine a noisy estimation of the option quality. In other words,
the inaccurate quality estimation requires repeated evaluations to increase
the decision accuracy. This is a time-consuming process that naturally leads
to a speed-accuracy tradeoff (Chittka et al., 2009).

In a decentralised system, each agent may discover and evaluate only a
small subset of the available options. However, the system as a whole has
to converge on the best option (or any of the equal-best options). Addition-
ally, agents are assumed not to have global knowledge of the system state
(e.g., population size, distribution of agents across populations, number of
available options).

5.3 context

The CDCI supports the implementation of decentralised decision making
for a multiagent system in which each agent is autonomous and features
the following minimal set of abilities:

• it can individually recognise available options;

• it can individually estimate the options quality;

• it can communicate with peers using small amounts of information;

• it can recognise peers committed to a different option.

Agents neither need to be able to memorise more than one option at a time,
nor to explicitly compare different options. The estimated quality v̂i of a
selected option is used only to modulate the individual behaviour (e.g., by
altering the probability of performing a certain action). Given these precon-
ditions, a viable solution to achieve a collective decision is the implementa-
tion of a truly decentralised algorithm.

5.4 design rationale

Models of decentralised decision making have been studied in different do-
mains, from ethology to social dynamics. In this design pattern, we pro-
pose a methodology starting from a model of nest-site selection in honeybee
swarms (Seeley et al., 2012). In honeybee swarms, after spring reproduction,
several thousands bees leave their hive and create a cluster in the neighbour-
hood lasting a few days. During this time, the oldest bees in the swarm
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search for new nest sites and, once they discover one, they commit to it.
On the one hand, committed bees have a tendency to spontaneously aban-
don their commitment. On the other hand, by interacting with other bees
through the waggle-dance, committed bees recruit uncommitted nest-mates
to the site they have discovered. The waggle-dance duration is proportional
to the quality of the advertised nest, and this induces a positive feedback
that increases the number of bees committed to the best quality nests. Even-
tually, a quorum is reached for a single site, which is chosen as the new
nest site. Recently, it has been discovered that bees committed to different
options cross-inhibit each other through stop signals (Seeley et al., 2012). A
bee committed to a site that receives several stop signals abandons its com-
mitment and becomes uncommitted. This mechanism allows the swarm
to break decision deadlocks in case of equal-best options. In this way, the
swarm reduces the decision time, thus exposure to dangers such as preda-
tion or adverse weather conditions.

The decision-making process is based on individual actions and peer-
to-peer interactions (i.e., discovery, abandonment, recruitment and cross-
inhibition), and lets the swarm quickly converge towards the highest qual-
ity option without the need of quality comparisons. It also allows to break
deadlocks between same quality options, as well as to modulate the decision
dynamics on the basis of the quality of the discovered options (Pais et al.,
2013). These advantageous characteristics and low requirements in terms
of agent capabilities allow designers to apply the design pattern in a large
number of different application contexts.

5.5 solution

The decentralised decision-making process of honeybees is modelled as a
continuous-time Markov process (Seeley et al., 2012). Starting from this
model, through a mean-field approximation, a deterministic macroscopic
model is derived as a system of two coupled ODEs for a binary decision
problem. Here, we extend the models to the best-of-n problem and com-
plement the multi-level description by introducing the master equation, and
the PFSM that describes the individual agent behaviour.

5.5.1 Macroscopic description: infinite-size, deterministic, time/state-space continuous

Let us consider a population of N agents (with N → ∞). At the macroscopic
level, we model the population fractions of committed agents Ψi = Ni/N
(with Ni the number of agents committed to option i) and the fraction of
uncommitted agents ΨU = NU/N (with NU the number of uncommitted
agents). Agents change their commitment state through four different pro-
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cesses: discovery (γ), abandonment (α), recruitment (ρ) and cross-inhibition
(σ).

We extend the model for binary decisions proposed in (Seeley et al., 2012)
(reported also in Chapter 4 in Equation (1)) to the best-of-n decision problem.
The model describes the mean system behaviour as a system of n coupled
ODEs and an algebraic equation for mass conservation:{

dΨi
dt = γiΨU − αiΨi + ρiΨiΨU −∑j 6=i σjΨiΨj

ΨU = 1−∑i Ψi
, i ∈ {1, . . . , n} (8)

Each differential equation in (8) describes the variation of the fraction of
agents in each population. The fraction of agents committed to option i
increases through discovery (at a rate γi) and through recruitment propor-
tional to the population committed to i (at a rate ρiΨi). Conversely, the
fraction decreases through abandonment (at a rate αi) or through cross-
inhibition proportional to the contrasting populations (at a rate ∑j 6=i σjΨj,).
All model parameters represent rates at which agents change their commit-
ment state. Therefore, we assume all model parameters to be non-negative:

αi, γi, ρi, σi ≥ 0 , i ∈ {1, . . . , n}. (9)

For a decision-making problem based on the quality of the available options,
all model parameters could be linked to the option quality vi:

αi = fα(vi), γi = fγ(vi), ρi = fρ(vi), σi = fσ(vi), (10)

where each function describes a specific relationship between transition rate
and option quality (see (Pais et al., 2013) for an example).

This model describes the average proportion of agents in each population
for a system with an infinite number of agents. It is deterministic and contin-
uous in time and in the state space. The model can be exploited to determine
the macroscopic behaviour corresponding to a given parameterisation, and
to provide constraints to the possible parameterisations in order to obtain
a desired system behaviour. This ultimately translates in constraints in the
design of the relationship between option quality vi and transition rates γi,
αi, ρi, and σi.

5.5.2 Macroscopic description: finite-size, stochastic, time continuous, state-space dis-
crete

The ODE system introduced in Eq. (8) can be derived as a mean-field ap-
proximation for N → ∞ of a finite-size Markov process (Seeley et al., 2012).
We can represent this process in the generalised case of best-of-n decisions
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through chemical reactions representing agents changing their commitment
state, either spontaneously or by interacting with other agents:

CU
Qγi−−→ Ci

Ci
Qαi−−→ CU

CU + Ci
Qρi−−→ 2Ci

Ci + Cj

Qσj−−→ CU + Cj, i 6= j,

(11)

where the Qλi , λ ∈ {α, γ, ρ, σ} represent reaction constants (Gillespie, 1976).
Starting from the above description, it is possible to derive the master
equation, which describes the time evolution of the system as a stochas-
tic, discrete-state process. More precisely, the master equation describes the
time evolution of the probability mass function related to each possible state
in which the system can be found:

d
dt

P(N, t) =
4n

∑
k=1

[βk − P(N, t)Qk], ∀N (12)

where N = 〈NU, N1, . . . , Nn〉 corresponds to the system state, k is an index
for each of the 4n possible transitions, and the term βk is the probability that
the system is one transition k “away” from state N at time t, and undergoes
the transition k in (t, t + dt). The quantities Qk are defined as follows:

Q1 = NUQγ1 Q2 = N1Qα1

Q3 = NU N1Qρ1 Q4 = ∑j 6=1 N1NjQσj

. . .

. . .

. . .
Q4n−3 = NUQγn Q4n−2 = NnQαn

Q4n−1 = NU NnQρn Q4n = ∑j 6=n NnNjQσn

(13)

For instance, in the binary case with options A and B, the term NU NAQρA dt
represents the probability that a recruitment transition for option A occurs
in the time interval dt, changing the system state from 〈NU, NA, NB〉 to
〈NU − 1, NA + 1, NB〉.

The transition rates of the ODE model of equation (8) have direct corre-
spondence with the transition probabilities of the master equation (12). For
the generic transition rate λ, the conversion formula is:

Qλi = λiN1−na ,
λ∈ {γ, α, ρ, σ}
i∈ {1, · · · , n} (14)

where na is the number of populations involved in the transition. The fac-
tor N1−na is consequence of the fact that the transition rates are used in
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differential equations that contain population fractions, while the transition
probabilities are used in combination with the total number of agents in the
population. For transitions involving a single population, i.e., discovery and
abandonment, we have na = 1 and therefore we obtain a direct correspon-
dence between transition rates and probabilities per unit time:

Qγi = γi, Qαi = αi (15)

Conversely, for recruitment and cross-inhibition (i.e., transitions that corre-
spond to interactions between populations), na = 2 and therefore

Qρi = ρiN−1, Qσi = σiN−1 (16)

These relations provide a mean to link the two macroscopic descriptions of
the process, allowing to study the matching of the finite-size system dynam-
ics to the mean-field ones.

At this description level, the model accounts for the stochastic fluctua-
tions of the system due to finite-size effects (i.e., the influence of a finite
system size N). Given the complexity of analytically solving the master
equation (12), we analyse it through numerical simulation via the Gillespie
algorithm (Gillespie, 1976). As we show in the case studies of Chapter 6,
the numerical analysis reveals how the system behaviour departs from the
predictions of the mean-field approximation. This model allows us to study
the effects of the relationship between quality v and transition probabilities
Qλ, and therefore to take decisions about the desired macroscopic dynamics
at design time.

5.5.3 Microscopic description: agent-based, stochastic, time/state-space discrete

The average agent behaviour is modelled as a PFSM (see panel (A) in Fig-
ure 13) with n + 1 states {CU, C1, . . . , Cn} which represent the agent com-
mitment state, and by 4n transition probabilities (four transitions for each
option i), which determine the state change (either spontaneous or upon
interaction with agents of a different population). Differently from the pre-
vious models, here the system changes state at discrete time steps of length
τ. The 4n probabilities determine the individual behaviour and may be
modulated according to the option quality vi.

Upon discovery of option i, agents make a transition from state CU to
state Ci with probability Pγ(vi) (on average). Similarly, upon abandonment
of option i, agents make a transition from state Ci to state CU with probabil-
ity Pα(vi). Discovery and abandonment are spontaneous transitions, that is,
the probability depends solely on the option quality vi (as estimated by the
agent itself). Conversely, the remaining transitions depend also on the size
of the different sub-populations, which can be estimated upon interaction
with other agents (see below). Recruitment to option i is modelled by a tran-
sition from state CU to state Ci with probability PΨiPρ(vi), where the first
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Figure 13: Probabilistic finite state machines (PFSMs) describing the micro-
scopic behaviour of an agent on average. Here, the notation Pλi , λ ∈ {γ, α, ρ, σ},
i ∈ {1, . . . , n} is a shorthand for Pλ(vi). (A) PFSM describing the basic commit-
ment dynamics for n possible options. Spontaneous transitions are represented
by solid lines, while interactive transitions are represented by dashed lines. (B)
PFSM describing the coupled commitment and activity dynamics. Latent states
are indicated in grey, and dash-dotted lines represent changes between latent and
interactive states.

factor accounts for the probability of interacting with agents already com-
mitted to option i given the current population size, and the second factor
accounts for a quality-dependent probability of triggering the state change.
Similarly, cross-inhibition is modelled by a transition from state Ci to state
CU with probability ∑j 6=i PΨjPσ(vj). Here, the overall transition probability
aggregates the probability of interaction with any agent committed to op-
tion j 6= i. Also in this case, the first factor accounts for the population size
and the second factor accounts for a quality-dependent transition probabil-
ity. The cross-inhibition of an agent committed to option i is influenced by
the population size and by the quality of the contrasting options.

As already mentioned, at this level we describe the agent behaviour in av-
erage, which might not correspond to the actual implementation. In fact, the
transition probabilities between commitment states might be implemented
differently for each agent, as we will show in the following sections. The
transition probabilities Pλ(vi), λ ∈ {γ, α, ρ, σ} presented above correspond
to the average case, and they can be related to the probabilities per unit
time of executing a transition at the macroscopic level, so that the following
relations hold:

Pγ(vi) = Qγi τ = γiτ
Pα(vi) = Qαi τ = αiτ
PΨiPρ(vi) = Qρi Niτ = ρiτNiN−1

PΨiPσ(vi) = Qσi Niτ = σiτNiN−1

(17)
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where τ is the discrete time step of the PFSM. Under the assumption of a
well-mixed system, the probability of interaction with an agent committed
to option i corresponds to the fraction Ψi, that is:

PΨi =
Ni

N
(18)

Considering also Eq. (10), we can derive a general quality-dependent rela-
tionship for the transition probability:

λi = fλ(vi) → Pλ(vi) = fλ(vi)τ,
λ∈ {γ, α, ρ, σ}
i∈ {1, . . . , n} (19)

To obtain a desired macroscopic behaviour, one can opportunely define the
average transition probabilities as a function of the quality vi. Conversely,
given the relationship between quality and individual probabilities, it is pos-
sible to easily derive the macroscopic dynamics.

5.5.4 Implementation guidelines

To proceed to the implementation of the agent behaviour, several design
choices are required to determine how agents change state depending on
either the population size or the option quality. The challenge is given by
the fact that agents do not have access to global information—e.g., popu-
lation size, number of available options—as described in the CDCI design
pattern context. In such conditions, it is necessary to make design choices
about the strategy for executing the state transitions of the PFSM to guaran-
tee a one-to-one correspondence between the microscopic and macroscopic
description levels.

5.5.4.1 Population size dependent probabilities

The computation of the probability PΨi requires a decentralised estimation
of the population size given that, in the considered decentralised system,
neither Ni nor N are available to the individual agent. Each agent compen-
sates this lack of knowledge by estimating a probability PΨi through inter-
actions with neighbours. A possible solution consists in letting each agent
take a sample of the total population. This means that before taking action,
the agent has to collect enough information about the size of the different
populations by sampling the state of neighbour agents:

PΨi =
|Ãi|
|Ã|

, (20)

where Ã is the set of sampled agents, and Ãi ⊆ Ã is the set of sampled
agents in state Ci. Depending on the pattern of interactions and on the sam-
ple size |Ã|, the quality of the estimation varies. Therefore, it is necessary
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to carefully design the sampling size in order to guarantee a certain level of
accuracy.

Another possibility is to let each agent draw a random agent aĝ from its
local neighbourhood, check its commitment state and compute the probabil-
ity PΨi as:

PΨi =

{
1, if C(aĝ) = Ci
0, if C(aĝ) 6= Ci

, i ∈ {1, · · · , n} (21)

Assuming a well-mixed system, the frequency of picking an agent commit-
ted to option i is given exactly by Eq. (18), which corresponds to the desired
behaviour on average. This second strategy is more parsimonious, as it re-
quires fewer agent-agent interactions and no additional computations, and
is therefore the choice that maximises speed.

5.5.4.2 Homogeneous versus heterogeneous implementation

For what concerns the other transition probabilities (Pγ, Pα, Pρ, Pσ), we
propose two strategies based on either homogeneous or heterogeneous sys-
tem implementation. In the homogeneous case, all agents share the same
transition probability, leading to a direct correspondence between the actual
and the average agent behaviour:

Pλ,g(vi) = Pλ(vi),
g∈ {1, . . . , N}
λ∈ {γ, α, ρ, σ}
i∈ {1, . . . , n}

(22)

From (19), we can derive a first constraint to respect for a correct system
implementation, following from the need that each probability must be less
than 1:

Pλ,g(vi) ≤ 1 → fλ(vi) ≤
1
τ

(23)

In the heterogeneous case, each agent ag computes independently its own
transition probability Pλ,g(vi), and the system behaviour results from the
aggregation of the individual responses. At the macroscopic level, the tran-
sition probability per unit time (or conversely the transition rate) depends
on the probability that any agent in a given population makes the corre-
sponding transition. This depends on both the way in which the individual
agent makes a transition, and on the heterogeneity of the system. In order
to relate the macroscopic parameters to the individual probabilities and the
option quality vi, we propose to implement the transition probabilities with
a simple response threshold scheme. The agent ag makes a transition with a
fixed probability if the (estimated) option quality exceeds a given response
threshold δg:

Pλ,g(vi) =

{
Pλ↑ if vi > δg
Pλ↓ if vi ≤ δg

, (24)
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where Pλ↑ and Pλ↓ are tuneable parameters, and the value δg is drawn for
each agent ag from a probability distribution Dλ over the range [vm, vM].
With this implementation, it is possible to establish a relationship between
microscopic and macroscopic parameters through the cumulative distribu-
tion function of Dλ, FDλ

:

FDλ
=
Pλ −Pλ↓
Pλ↑ −Pλ↓

(25)

For FDλ
to be a cumulative distribution function (CDF), it is required that

the relationship between quality and macroscopic transition rate expressed
in Eq. (10) be monotonic in v—either increasing or decreasing. As a conse-
quence, the step function (24) can be determined by:

Pλ↑ = Pλ(vM) = fλ(vM)τ
Pλ↓ = Pλ(vm) = fλ(vm)τ

, (26)

which together with Eq. (19) provides the micro-macro link for the heteroge-
neous case.

Such a micro-macro link holds when each agent ag re-samples the thresh-
old δg from Dλ at every decision step. From an implementation perspective,
however, re-sampling is not a parsimonious design choice, neither it is bi-
ologically plausible. Instead, fixed thresholds would be a more suitable
solution: they would simplify the design and are also biologically plausi-
ble (e.g., response thresholds determined genetically or acquired through
learning, Jeanson and Weidenmüller, 2013). However, fixed thresholds lead
to a quasi-deterministic behaviour of the agents in face of a given option
quality, as they are unable to modulate their behaviour according to the
perceived quality. The decision problem would therefore lead to “frozen”
sub-populations, and the microscopic dynamics would diverge from the
macroscopic predictions. By studying the behaviour of different parame-
terisation, we recognised that an approximation with fixed thresholds is
still valid for recruitment and cross-inhibition, because re-sampling is en-
sured by changing partner in each different interaction (as shown in case
study I-A). Instead, the micro-macro link is hampered by the usage of fixed
thresholds for spontaneous transitions, unless the macroscopic dynamics are
dominated by recruitment and cross-inhibition (as shown in case study 1-B).
Therefore, a principled choice about the usage of fixed thresholds can be
made on the basis of the desired macroscopic parameterisation. Should the
system be governed principally by spontaneous transitions, the fixed thresh-
old scheme would not be suitable. Otherwise, it represents a viable solution,
which is also biologically plausible (Robinson et al., 2011). Finally, note that
homogeneous and heterogeneous strategies can be mixed together, so that
the agent behaviour can be homogeneous with respect to some transition
probabilities, and heterogeneous with respect to others.
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5.5.4.3 Latent and interactive agents

As a further implementation guideline, we discuss here the case in which
agents cannot interact every τ seconds. This is a very common condition
in practical application scenarios, because of spatial/topological factors that
determine the interaction pattern, or because interactions are constrained by
limitations of the computing power or by the communication channel. To
model such conditions, we introduce the possibility for agents to be either la-
tent or interactive. When an agent is latent, it cannot communicate or receive
messages from neighbours, but is still capable of changing its commitment
state following spontaneous transitions. In the interactive state, agents are
capable of communicating with other agents, and therefore can change com-
mitment state accordingly. We refer to changes in the latent/interactive state
as activity dynamics, as opposed to the commitment dynamics resulting into
changes of the commitment state. We model the activity dynamics by consid-
ering that an agent becomes latent with probability PL and returns interac-
tive with probability PI (see the PFSM in Figure 13(C)). Equivalently, agents
may remain in the interactive or latent state for exponentially distributed
time intervals, respectively with mean time τI = 1/PL and τL = 1/PI .
Under these conditions, the distribution of agents between interactive and
latent states reaches asymptotically the fractions ηI = PI/(PI + PL) and
ηL = PL/(PI + PL).

By coupling together activity and commitment dynamics, we obtain a mi-
croscopic description with 2(n+ 1) states. Here, agents can be uncommitted
and latent (state CL

U), uncommitted and interactive (state CI
U), committed to

option i ∈ {1, . . . , n} and latent (state CL
i ), or committed to i and interactive

(state CI
i ). Transitions between these states can be arranged in different ways,

constrained by the need to correctly represent both the commitment and the
activity dynamics. Recruitment and cross-inhibition are available only when
agents are interactive, and the final state can be either interactive or latent,
depending on the application. Conversely, discovery and abandonment may
be available in any state, and the actual choice depends on the application
needs. An example PFSM is provided in panel (B) of Figure 13, and corre-
sponds to the microscopic description for the search and exploitation task
described in the case study II of Section 6.3. Here, the transition probabili-
ties between different activity states must be appropriately tuned to reduce
to the overall activity dynamics described by the PFSM of Figure 13(C). In
the given example, the following relations hold:

PL,i = PL −∑j 6=i PΨjPσj

PL,U = PL −∑i PΨiPρi

, i ∈ {1, . . . , n}, (27)

which ensure that the overall transition probability from interactive to latent
states sums up to PL. Note that in the PFSM of Figure 13(B), there is al-
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ways just one possible transition from a latent to an interactive state, with
probability PI .

In order to maintain a micro-macro link despite the existence of latent
agents, the population of interactive agents must always be an unbiased
sample of the entire population. More precisely, given the fraction ΨI (ΨL)
of agents in the interactive state I (latent state L), we require that:

ΨI
i

ΨI ≈
ΨL

i
ΨL ≈ Ψi, i ∈ {1, . . . , n}, (28)

where ΨI
i and ΨL

i represent the fractions of agents that are found in state CI
i

and CL
i within the entire population. In fact, if changes in the commitment

state within the interactive sub-population (fraction ΨI) are much faster than
changes in the activity state (i.e., agents switching between states I and L),
the distribution of commitment states among interactive agents would mis-
represent the global population distribution, and therefore the microscopic
and macroscopic dynamics would diverge. As a consequence, we require
that the transitions in the activity state must be faster than transitions in
the commitment state, for instance by constraining the decision to change
commitment state to each transition from latent to interactive, as done in the
search and exploitation task presented in Section 6.3.

The correspondence between microscopic and macroscopic parameters
depends on the way in which microscopic transitions are implemented. Be-
cause some transitions are available only to interactive (latent) agents, the
corresponding macroscopic rate must be reduced by ηI (ηL), which repre-
sent the fraction of the population that can actually change commitment
state. Conversely, given a desired macroscopic transition rate, the average
probabilities per agent must be increased by 1/ηI (1/ηL). For the example of
Figure 13(B), recruitment and cross-inhibition transitions are available only
when agents are interactive; therefore, Eq. (19) should be written as follows:

λi = fλ(vi) → Pλ(vi) =
fλ(vi)τ

ηI
,

λ∈ {ρ, σ}
i∈ {1, . . . , n} (29)

On the other hand, discovery and abandonment are only available to la-
tent agents, and therefore the average probability per agent must take into
account the proportion of agents in the latent state:

λi = fλ(vi) → Pλ(vi) =
fλ(vi)τ

ηL
,

λ∈ {γ, α}
i∈ {1, . . . , n} (30)

5.5.4.4 Minimum speed of the process

The time step τ at which the agent updates its commitment state deter-
mines the process speed. In order to obtain a precise correspondence be-
tween macroscopic transition rates and microscopic transition probabilities,
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the value of τ must be conveniently sized. To calculate an upper bound for
τ, we consider the coexistence of transitions exiting from a same state of
the PFSM, and we require that the total probability of leaving the state be
lower than one. For instance, an agent that directly follows the behaviour
described by the PFSM of Figure 13(A) has n recruitment and n discovery
transitions all exiting from state CU. This means that the overall probability
from all outgoing transitions must not exceed one:

n

∑
i=1
Pγ(vi) + PΨiPρ(vi) ≤ 1 (31)

Similarly, a constraint is given by the overall outgoing probability from the
commitment state Ci:

Pα(vi) +
n

∑
j 6=i
PΨjPσ(vj) ≤ 1 (32)

Recall however that the PFSM of Figure 13(A) is the representation of the
average agent, which differs from the actual implementation. The imple-
mentation guidelines described above prescribe that at most one interactive
transition is available at a time. Additionally, we can assume that at most
one spontaneous transition may become available at a time, given that in
most application scenarios the evaluation of available alternatives is per-
formed sequentially by individual agents. Overall, to compute the upper
bound, we consider only one interactive and one spontaneous transitions at
a time. A safe upper bound of τ is guaranteed by considering the extreme
case in which PΨi = 1 and vi maximizes Pλ(vi) (with λ ∈ {γ, α, ρ, σ}):{

maxvi Pρ(vi) + maxvi Pγ(vi) ≤ 1
maxvi Pα(vi) + maxvi Pσ(vi) ≤ 1 , (33)

which, together with (19), can be rewritten as follows:{
τ ≤

(
maxvi fρ(vi) + maxvi fγ(vi)

)−1

τ ≤ (maxvi fα(vi) + maxvi fσ(vi))
−1 (34)

The constraint for the upper limit of the agent’s time-step τ reduces to the
minimum value of Eq. (34). Note that in Eq. (34), we specify a constraint
on the multiagent system speed as a function of only macroscopic tran-
sition rates independently of the implementation strategy of the individ-
ual agent behaviour (whether homogenous, heterogenous or mixed). This
upper-bound can be further refined considering the actual implementation,
and the possible existence of latent and interactive states.

5.5.4.5 Dealing with episodic discovery

Discovery is the process that allows to report the existence of an option to
the swarm. In many practical application scenarios, discovery is an episodic
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event, that is, a given option is recognised by the agents only occasionally
due to the limited individual agent capabilities. This can be related either
to temporal or spatial constraints (e.g., discovery of options is correlated
with the position in space of the agent, see the search and exploitation task
presented in the case study II of Section 6.3). When no option is avail-
able, the agent cannot make a discovery transition. This has a bearing on
the macroscopic dynamics resulting from the agent behaviour, because the
macroscopic rate depends on the probability that an agent actually encoun-
ters the option i. If we refer to this probability as Ei, then we can rewrite
Eq. (19) as follows:

γi = fγ(vi) → Pγ(vi) =
fγ(vi)τ

Ei
(35)

Knowing how agents discover potential options is necessary to correctly link
the microscopic and the macroscopic dynamics. In many practical scenar-
ios, Ei can be estimated a priori to support the choice of the microscopic
parameterisation.

5.5.4.6 Skeleton of the agent behaviour

Here, we present a generic structure of the individual agent behaviour, fol-
lowing the design strategies discussed above. The algorithm, reported in
Figure 14, is rather general and, in a real application, each function needs to
be implemented to meet the constraints and requirement of the specific ap-
plication. Despite its simplicity, this algorithm contains all the instructions
required by an agent to implement the CDCI. We assume that the main
loop is repeated every τ seconds, where τ satisfies the requirements given
above in Eq. (33). We also assume that each agent ag, g ∈ {1, . . . , N}, is
characterised by its commitment state C ∈ {CU, Ci}, i ∈ {1, . . . , n}, which
identifies the option i to which it is committed to.

When an agent is uncommitted, C = CU, it explores the solution space
to collect information about the available alternatives, and the discovered
options are stored in the set I (see line 3). In real application scenarios,
the cardinality of I may vary in [0, n], because not every option can be
discovered at a time. Upon discovery, the quality of the available options is
estimated and stored in the set V (see line 4). However, agents need only
to memorize the option they are committed to. Therefore, when the agent
is committed for a specific option i, I contains only that option and V the
corresponding quality. No other information needs to be stored by the agent
(see lines 6-7).

Additionally, agents interact with each other in order to implement re-
cruitment and cross-inhibition. In this respect, an agent samples the pop-
ulation to obtain the set N of neighbours which allows to compute the
probability PΨi (see line 9). As mentioned in Section 5.5.4.1, two strategies
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1: loop
2: if (C == CU) then /* the agent is uncommitted */
3: I ← GetAvailableOptions()/* discovery of available options */
4: V ← GetQualityEstimates(I)/* estimate option quality */
5: else /* the agent is committed to some option */
6: I ← {C}
7: V ← {V}
8: end if
9: N ← InteractWithNeighbours()/* get neighbours’ state for recruitment/inhibition */

10: C ← UpdateCommitmentState(C, I ,V ,N )/* change commitment state */
11: V ← GetQuality(C)/* store option quality */
12: end loop

Figure 14: Pseudo-code of the individual agent behaviour for the CDCI design
pattern. We assume that the loop presented in this algorithm is executed every τ

seconds.

are possible: (i) sampling for the current size of the different populations of
committed agents, which implies to get information from a relatively large
number of neighbours, or (ii) choosing a single neighbour to compute PΨ.
In the latter case, the probability PΨ assumes a binary value, either 0 or 1,
which is equivalent to activate or deactivate the respective transition. In this
case, the agent can follow only a single recruitment/cross-inhibition tran-
sition per control loop. However, at the macroscopic level no difference is
observable.

Finally, the new commitment state is computed at line 10 on the basis
of the current commitment state C. The sets I , V and N are exploited
to activate potential transitions between the commitment states. When an
agent gets committed to a given option, it stores the corresponding quality
V for subsequent iterations (see line 11).





In theory, theory and practice are the same.
In practice, they are not.

—Albert Einstein

6

C A S E S T U D I E S

Following the solution described in Chapter 5, we present here two case
studies that showcase the usage of the proposed design pattern. Case
study I, in Section 6.2, concerns decentralised decisions making by static
agents interacting on a fully-connected network, and is divided in two parts,
I-A and I-B. Case study II, presented in Section 6.3, concerns decentralised
decisions by mobile agents in the context of a search and exploitation task.
To ease the discussion and simplify the visualisation, we present here a bi-
nary decision problem (options A and B with quality vA and vB), and we
report additional results for the best-of-n scenario only for the case study I-B.

To quantify the agreement between macroscopic models and microscopic
implementation, we look at the system performance through a set of metrics
detailed in Section 6.1, and we compare the process dynamics at different
abstraction levels.

6.1 metrics

Different metrics are used in the literature to evaluate the results of a col-
lective decision-making process, which are linked to the correctness of the
response, the coherence of the decisions within the group, as well as the
speed of the process. Whenever time is required to gather sufficient in-
formation, decision making gives rise to speed-accuracy tradeoffs—a very
common phenomenon in biological systems (Chittka et al., 2009). Accuracy
measures the correctness of the decision and, in decentralised systems, can
be defined as the proportion of the group that is committed to the best op-
tion, or to any of the equal-best options. Conversely, coherence measures the
ability of the group to be committed to the same option, notwithstanding
its quality (Franks et al., 2013). Therefore, one can simultaneously have low
accuracy and high coherence, for instance if 10% of the group choses a high-
quality option and the remaining 90% goes for a low-quality one. A high
coherence of the group is important, as it can minimise the costs for conflict-
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ing choices by individuals. As maintaining coherence is a time-consuming
process that requires to spread information widely within the group, speed-
coherence tradeoffs (also named speed-cohesion tradeoffs) may also appear
(Franks et al., 2013). In the context of engineering artificial systems, it is
important to quantify both the aspects of decision accuracy and group co-
herence, and constrast them with the time required to arrive at a decision.

To this purpose, we first introduce the resolution R, which refers to
the ability to discriminate between different-quality options, and is mea-
sured by the normalised quality difference between two options A and B:
R = |vA− vB|/ max(vA, vB). Fixing a target resolution determines in which
portion of the problem space the system accuracy is a relevant metric. In
fact, any chosen solution that is below the given resolution threshold is cor-
rect, instead, when the difference between option’s quality is above the res-
olution threshold, the designer requires that the superior option is selected.
Note that resolution is normalised so that the minimum quality difference
that can be detected is proportional to the quality magnitude, in analogy to
many biological decision-making processes following Weber’s law.

Then, we consider the effectivity E as the ability of the group to take a
decision within the maximum execution time T. Effectivity is measured as
the fraction of runs that reach the quorum Ψq within the given time limit.
Effectivity is related to the coherence of decision making, as it measures
the ability to take a decision (i.e., reach the predefined quorum) within the
maximum allotted time, notwithstanding the quality of the chosen option.
By requiring a minimum effectivity threshold, the designer can require that
the system reaches a coherent state within a maximum time T.

Having defined resolution and effectivity, we introduce the main perfor-
mance metrics we take into account. The success rate S corresponds to the
fraction of effective runs resulting in a correct decision—i.e., the quorum is
reached for the best option, or any of the equal-best options—when starting
from a fully-uncommitted population. The success rate is similar to the exit
probability in stochastic processes, and is related to the accuracy of decision
making, because the quality of the chosen option is taken into account. Note
that, by looking at the effective runs only—e.g., runs with effectivity larger
than the given threshold—we limit ourselves only to high-coherence results.

The convergence time C is the average time required to reach the quorum
Ψq computed over all effective runs, and is similar to the exit time of stochas-
tic processes. This metric actually corresponds to the speed of the decision-
making process, and can be exploited together with the success rate to select
the most convenient solution that optimises the speed-accuracy/coherence
tradeoff.
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6.2 case study i : collective decisions in a fully-connected

multiagent system

The first case study illustrates the implementation of decentralised decision
making for a multiagent system in which each agent can potentially inter-
act with any other agent. We implemented a synchronous simulation for
a multiagent system with a fully-connected communication network that
directly derives from the design pattern implementation guidelines. At sim-
ulation start, each agent ag estimates the quality v̂i of all available options
i ∈ {1, . . . , n}, and on that basis computes its own transition probabilities
Pλ,g(v̂i), with λ ∈ {γ, α, ρ, σ}. In the homogeneous case, these are computed
in the same way for each agent according to the desired parameterisation,
as prescribed by Eq. (19). In the heterogeneous case, each agent ag draws
a random threshold δg from the random distribution Dλ and computes the
transition probabilities as prescribed by Eq. (24).

The simulation proceeds in discrete time steps of length τ. At each time
step t, every agent updates its state following the PFSM of Figure 13(A). All
spontaneous transitions are always available. Conversely, interactive tran-
sitions depend on the interaction with a randomly selected partner, who
shares its own commitment state and probabilities of recruitment and cross-
inhibition. Given the well-mixed property ensured by the fully-connected
topology, the population-dependent probabilities PΨi are estimated by ran-
domly choosing a different agent aĝ as partner at each time step and check-
ing its state: transitions are activated if the selected partner is committed to
some option i (see Section 5.5.4.1 for details). In this case, the probability of
recruitment Pρ,ĝ and of cross-inhibition Pσ,ĝ are received from the selected
partner, otherwise they are null. In this way, the agent ag has complete
information to update its commitment state.

We present two parameterisations as case study I-A and I-B.

6.2.1 Case study I-A

In case study I-A, we study consensus decisions, that is, we design a system
in which the desired outcome is complete convergence of the group towards
the choice of one or the other option. To this end, we set the decision quorum
Ψq = 1 and we require that a decision is taken within T = 400 s. Here, we
also assume that option quality varies in v ∈ [0, 1].

The first step towards implementation is the definition of the macroscopic
parameterisation and its relationship with the option quality. The analy-
sis of the macroscopic dynamics from Eq. (8) reveals that consensus can be
achieved only when abandonment is null (αA = αB = 0). We arbitrarily
choose a constant cross-inhibition rate σA = σB = σ̄, which is sufficient for
determining a collective decision (Pais et al., 2013). The value σ̄ can be tuned
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to determine the time scale of the process: the higher the rate, the quicker
the convergence dynamics. Here, we choose σ̄ = 1. In these conditions,
the model predicts two equilibrium points corresponding to consensus deci-
sion for either of the two options, but their stability may vary depending on
the relative strength of discovery and recruitment. Assuming vA ≥ vB, the
model (8) predicts that the equilibrium at consensus for A is always stable,
while consensus for B is stable only when γA < γB + ρB (see Appendix B for
a the detailed stability analysis). Thanks to this result, an informed choice
can be made about the macroscopic parameterisation and the relation with
option quality: γi = fγ(vi), ρi = fρ(vi), i ∈ {A, B}. In particular, assuming
a target resolution R = 0.15, we can minimise the chances of a wrong deci-
sion by designing the system to have a single stable equilibrium for the best
option in any decision problem characterised by above-resolution quality
differences. We select linear functions that link macroscopic transition rates
to the quality:

fγ(vi) = k vi, fρ(vi) = h vi (36)

where k and h are tuneable parameters. Next, we compute the constraint
on the above functions to satisfy our design choice: k > h (1− R)/R (see
Appendix B for the details about the parameterisation choice). Finally, we
choose values that comply with the prescribed bounds: h = 0.1 and k = 0.6.

The second step towards implementation is the analysis of the system
performance in the complete decision space for varying system size N. This
can be studied numerically by approximating the finite-size macroscopic
dynamics using the Gillespie algorithm (Gillespie, 1976). Finally, the mul-
tiagent system can be deployed following the prescriptions of the design
pattern and choosing a convenient implementation strategy. In the homo-
geneous case, all agents determine Pγ and Pρ in the same way according to
Eq. (19) and (36). Conversely, in the heterogeneous case transition probabili-
ties are determined by the step function of Eq. (24), and vary from agent to
agent with thresholds randomly sampled from the distribution determined
by Eq. (25), (26) and (36). In this case study, we use fixed thresholds and we
therefore limit the heterogeneous implementation to the recruitment proba-
bility Pρ, while we keep the discovery probability Pγ homogeneous across
agents. Finally, we let agents update their state every τ = 0.2 s following the
design pattern guidelines (see Section 5.5.4.4).

The performance of the multiagent system for both homogenous and het-
erogeneous implementations is compared to the macroscopic Gillespie sim-
ulations for varying system size N (see Figure 15(A)). An excellent match
between microscopic and macroscopic dynamics can be observed for ev-
ery system size, for both the success rate S and the convergence time C.
When the difference in quality between the two options is above the resolu-
tion R = 0.15, the correct decision is taken in at least 90% of the cases (i.e.,
S = 0.9, as evidenced by the isolines in the bottom-right part of Figure 15(A)
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laying within the grey shaded area) for every system size but N = 10. In-
deed, small groups suffer from stochastic fluctuations, reflected by a sub-
stantially lower success rate with respect to larger groups. Conversely, the
speed of the process is lower for larger groups, as indicated by the isolines
for Ĉ = 50 s in the top-left part of Figure 15(A). To quantify the scaling prop-
erties with respect to the system size, we analysed the convergence time for
each decision problem as a function of N. We found a generalised adherence
with a power law behaviour C = b Na, with exponent a ≈ 0.2 as shown in
Figure 15(B) for macroscopic Gillespie simulations, and Figure 16 for multi-
agent simulations. The coefficient b also varies with the decision problem:
the lower the option quality difference, the higher the coefficient. Looking
at Figure 15(B) and 16, we observe that C scales similarly across different
decision problems, with the exception of problems characterised by similar
qualities (i.e., vA ≈ vB) that require in general more time for convergence.
Finally, we show in Figure 17 an example of the convergence dynamics for
a specific decision problem (e.g., vA = 0.9, vB = 0.6), which highlights the
close correspondence between ODEs, Gillespie and multiagent simulations.

6.2.2 Case study I-B

Case study I-B is concerned with the general case of value-sensitive decision
making (Pais et al., 2013), and discusses the implementation in case of less
restricting conditions with respect to the previous case study. We consider
a quality range v ∈ [1, 10], we fix the quorum for the collective decision
to Ψq = 0.8 and we limit the total execution time to T = 40 s. Here, we
also demonstrate a fully heterogeneous implementation of the multiagent
system.

To obtain value-sensitive decision making (Pais et al., 2013), discovery
and recruitment rates are assumed to be linearly proportional to the option
quality vi (i.e., γi = ρi = vi, i ∈ {A, B}), the abandonment rate is inversely
proportional to quality (i.e., αi = 1/vi), while the cross-inhibition rate is
constant (σi = σ̄), which we fix to σ̄ = 10. Given the macroscopic param-
eterisation, we follow the same methodology described above to analyse
the finite-size effects produced by the system size N, and we design the
multiagent system following both the homogeneous and the heterogeneous
strategies (see Section 5.5.4.2). In the latter case, we use fixed thresholds for
all transition probabilities and discuss the error introduced with respect to
the macroscopic dynamics. According to the design pattern prescriptions,
agents are updated every τ = 20 ms (see Section 5.5.4.4).

Figure 15(C) shows the match between the macroscopic Gillespie simula-
tions and the multiagent implementation with both the homogeneous and
the heterogeneous strategy, for varying system size N (see also Figure 17 for
an example of convergence dynamics). The correspondence between macro-
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scopic model and microscopic implementation is remarkable also in this
case. Even with the rough approximation of fixed thresholds for the hetero-
geneous case, we note a good match of the micro-macro dynamics, although
not perfect especially for the convergence time C at low qualities. The results
show that the studied parameterisation allows to reliably take decisions for
above-resolution decision problems already with N = 100, as indicated by
the success rate S in the bottom-right part of Figure 15(C). Conversely, the
convergence time C is very similar across different system sizes. Also in
this case, we analysed the scaling behaviour of the convergence time, and
found adherence with a power law behaviour C = b Na, but with a very low
exponent a (see Figure 15(D) for Gillespie simulations and Figure 16 for mul-
tiagent simulations). With the proposed parameterisation, C becomes nearly
independent of the system size N in large parts of the problem space. The
coefficient b is rather low too, indicating fast decisions especially for large
differences in quality. This is a result of the higher transition rates chosen
for the macroscopic model, which are reflected by a smaller timestep τ in
the multiagent implementation as prescribed by the design pattern. Finally,
we studied the micro-macro link in a best-of-n scenario. The results pre-
sented in Figure 18 reveal a very good correspondence between multiagent
and Gillespie simulations, therefore validating the methodology beyond the
binary decision problems presented above.
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Figure 15: Collective decisions in a fully-connected multiagent system: compar-
ison between the micro and the macro dynamics and scaling properties. (A),(C)
Comparison between the stochastic finite-size macroscopic model (black lines) and the multiagent im-
plementation with both the homogeneous strategy (red lines) and the heterogenous strategy (green
lines). Results are displayed for varying system size N. For each possible configuration (vA, vB), 500

independent runs are performed. We show results for configurations with effectivity E > 0.7. The
plot is divided in two parts: in the bottom-right triangle, we consider the success rate S for each
configuration (vA, vB), where vA ≥ vB. For each group size N, we show the isolines at S = 0.9. The
gray triangle indicates quality value pairs below the target resolution R = 0.15 (i.e., configurations
in which the two options are considered equivalent). In the top-left half of the plot, we consider the
convergence time C for each configuration (vA, vB), where vB ≥ vA (i.e., the symmetric problems
with respect to the bottom-right plot). For each group size N, we show the isolines at C = Ĉ. (B),(D)
Scaling of the convergence time C with the system size N. For each configuration (vA, vB), we fit
the curve C = b Na and we show the heat-map for the fitted coefficient a (see the bottom-right tri-
angle showing the coefficient value for each configuration (vA, vB), vA ≥ vB) and b (see the top-left
triangle showing the coefficient value for symmetric configurations (vA, vB), vB ≥ vA) across the de-
cision space. Also in this case we show only configurations where E > 0.7 for all N, and the white
space indicates configurations with low effectivity. (A),(B) Results for case-study 1A with vi ∈ [0, 1],
γi = 0.6vi, αi = 0, ρi = 0.1vi, σi = 1 and i ∈ {A, B}, Ĉ = 50 s. (C),(D) Results for case-study 1B with
vi ∈ [1, 10], γi = ρi = vi, αi = 1/vi, σi = 10 and i ∈ {A, B}, Ĉ = 1 s.
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Figure 16: Scaling of the convergence time C with the system size N. For each
configuration (vA, vB), vA > vB—and the symmetric case (vA, vB), vB > vA—we fit
the curve C = b Na and we show the heat-map for the fitted coefficient a (bottom-
right) and b (top-left) across the decision space (see Figure 15 for details). Also in
this case we show only configurations where E > 0.7. (A,B) Results for case study
I-A with vi ∈ [0, 1], γi = 0.6vi, αi = 0, ρi = 0.1vi, σi = 1 and i ∈ {A, B} for the
homogenous (A) and the heterogeneous (B) implementation. (C,D) Results for case
study I-B with vi ∈ [1, 10], γi = ρi = vi, αi = 1/vi, σi = 10 and i ∈ {A, B} for the
homogenous (C) and the heterogeneous (D) implementation.
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Figure 17: Mean trajectory of the population fractions ΨA, ΨB, ΨU over time from
the initial condition (ΨA = 0, ΨB = 0, ΨU = 1). Comparison at various levels of ab-
stractions: mean field model (solid lines), macroscopic, finite-size master equation
(circles), and multiagent simulations (triangles). Simulations results are averaged
over 100 independent runs. Errorbars are smaller than the symbols size, and are not
displayed. (Top) Parameterisation of case study I-A with homogenous multiagent
implementation and vA = 0.9, vB = 0.6. (Bottom) Parameterisation of case study
I-B with heterogenous multiagent implementation and vA = 9, vB = 6.
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Figure 18: Micro-macro link with varying number of options for case study I-
B. We compare the macroscopic dynamics predicted by the mean-filed model, the
finite-size macroscopic dynamics simulated by the Gillespie algorithm and the mi-
croscopic dynamics resulting from homogeneous multiagent simulations (N = 500
agents). We fix the best option (A) to the maximum quality vA = 1, and all other
options to the same, lower quality vi. The plot shows the fraction of the popula-
tion committed to option A at the end of the simulation, plotted against the lower
option quality vi. Solid lines show the macroscopic prediction of the ODE system.
The box-and-whiskers plots represent the statistics from Gillespie and multiagent
simulations. Boxes represent the inter-quartile range of the data (2000 runs), while
the horizontal lines inside the boxes mark the median values. The whiskers extend
to the most extreme data points within 1.5 times the inter-quartile range. Outliers
are not shown. A very good match can be appreciated between microscopic and
macroscopic dynamics, therefore validating the design pattern for best-of-n scenar-
ios.
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6.3 case study ii : collective decisions in a search and ex-
ploitation problem

Here, we present a case study that includes as main features spatiality and
local interactions between agents. The experimental scenario is similar to
the swarm robotics study of Chapter 4. Point-size agents move in a 2D en-
vironment characterised by three areas—a home and two target areas—and
must select the best quality target. Uncommitted agents explore the environ-
ment to discover new options. Committed agents recruit and cross-inhibit
other agents and periodically re-estimate the quality of the option they are
committed to. Differently from Chapter 4, here quality is independent of
distance. However, spatiality may influence the decision dynamics (e.g., the
rate of discovery is higher for closer targets), and only an accurate design of
the agent behaviour can lead to the systematic choice of the best available
option.

problem definition Agents are point-size particles capable to move in
a 2D environment. Movement is simulated through kinematic equations on
the basis of the current agent speed ν and orientation θ. The environment
is an infinite plane and does not contain any wall or obstacle. No collision
or physical interference among agents is taken into account, and agents are
free to move in any location of the 2D plane. The environment contains
three circular areas with radius r = 0.3 m: home, target A and target B.
Target areas are located at a variable distance di ∈ [1.5 m, 3.5 m], i ∈ {A, B},
from the home area. Each target area is further characterised by a quality
vi ∈ [0.1, 1]; each agent can individually estimate the target area quality
when is inside the area.

Agents move at a constant speed ν = 0.01 m/s and communicate with
their neighbours within an interaction range dI = 0.6 m. Every τ = 1s,
agents update both their state and their motion direction θ as detailed below.

interactive and latent agents As a consequence of local communica-
tions and of the distance between target areas, agents committed to different
targets and uncommitted agents cannot always interact with each other. To
ensure a well-mixed system, we limit interactions only when agents are
within the home area. Agents remain in the home area for a time interval
τI exponentially distributed with average 1/PL. When a timeout expires,
agents become latent and leave the home area. Agents remain latent for a
time interval τL exponentially distributed with average 1/PI . The motion
pattern is conceived to ensure that agents are within the home area once
they become interactive again (see below). To ensure that on average 10% of
the agents are interactive within the home area, we set PL = 9PI .
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motion pattern The agent motion direction θ is determined by the cur-
rent agent state. While moving, odometry sensors are exploited to track
the position of known areas. In this case study, we model noiseless sensors.
In a more realistic implementation, agent-to-agent communication can be
exploited to compensate for odometry noise (Gutiérrez et al., 2010).

An uncommitted agent ag (C(ag) = CU) explores the environment in
search of target areas: when latent, it chooses a random direction and leaves
home moving in a straight line. Upon finding target area i, the agent makes
an estimate of the quality v̂i and gets committed with probability Pγ,g(v̂i)
(which is computed according to the homogeneous or heterogeneous im-
plementation strategy). Then, it stores the target area estimated quality
and location—which is kept updated through odometry—and returns back
home. If an uncommitted agent has explored the environment for τL/2 s
without encountering any target area, it returns home to ensure that it be-
comes interactive when already within the home area.

An agent ag committed to option i (C(ag) = Ci), while interactive, ran-
domly moves within the home area to communicate with neighbours. When
latent, it leaves home to return to the chosen target area i and re-estimate
its quality v̂i. The agent returns home after τL/2 s to become interactive
within the home area. While latent, the committed agent abandons com-
mitment with probability Pα,g(v̂i) and returns home. This probability is also
computed according to either the homogeneous or the heterogeneous imple-
mentation strategy.

interaction pattern When interactive, all agents located in the home
area can exchange short communication messages with a randomly chosen
neighbour. These messages contain information on the agent state, which is
used to estimate the population-dependent probabilities (see Section 5.5.4.1
for more details).

When committed to option i, agent ag also communicates the stored lo-
cation of the target area and its own probability of recruitment Pρ,g(v̂i) and
cross-inhibition Pσ,g(v̂i), computed either with the homogeneous or the het-
erogeneous implementation strategy. Recruitment takes place if the partner
is uncommitted, otherwise cross-inhibition takes place only if the distance
between the target area locations internally stored by the interacting agents
is larger than the target area radius r. In this way, cross-inhibition takes
place only between agents committed to different options, as prescribed by
the design pattern.

When the population is divided between interactive and latent agents,
the design pattern prescribes that the dynamics of activity change must be
faster than changes in the commitment state. To achieve this, we let agents
interact only upon becoming latent. By doing so, we guarantee that the
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fraction of interactive agents committed to option i is always an unbiased
representation of the global fraction Ψi (see Section 5.5.4.3).

investigated parameterisation We choose a macroscopic parameteri-
sation similar to the one of case study I-B, but option quality vi varies in
[0.1, 1] and also the cross-inhibition rate varies linearly with quality (i.e.,
σi = vi). Besides depending on option quality, discovery is episodic (see
Section 5.5.4.5), being determined by the diffusive motion pattern of uncom-
mitted agents that start searching from home. We model the macroscopic
discovery rate to be proportional to the quality vi and to decay with the
target distance di as follows:

γi =
vi µe−ξdi

di
(37)

where ξ and µ are parameters estimated from preliminary experiments (µ ≈
0.12 and ξ ≈ 0.24), although geometrical approximations could be used as
well.

Besides discovery, spatiality influences also the interaction patterns
among agents, given that interactions are possible only with agents in the
local neighbourhood. To ensure a well-mixed system and comply with the
design pattern requirements, we limit interactions within the home area and
we force agents to periodically return home. As described above, the design
pattern prescribes to have fixed probabilities to become interactive (e.g., re-
turn home with probability PI) or latent (e.g., leave home with probability
PL). Therefore, we designed the individual behaviour after the microscopic
description of Figure 13(B) following both the homogeneous and the hetero-
geneous strategy, and we set PI = 0.001 and PL = 9 PI to ensure a fraction
ηI = 0.1 of interactive agents on average.

The design choices detailed above allow us to determine the microscopic
parameterisation starting from the desired macroscopic transition rates (see
Figure 19 for a comparison between the rates determined by design and
those estimated from multiagent simulations). We have tested the micro-
macro link varying both option quality and target area distance, to observe
how the implementation deals with the inclusion of spatial factors and
interactive-latent dynamics. Indeed, the macroscopic model does not con-
sider such factors, exception made for the model of discovery of Eq. (37). In
particular, we are interested in making consistent choices notwithstanding
the target area distance. Figure 20A shows one such case for a homogeneous
system in which the better option is also the farthest. The macroscopic
model predicts convergence on the best-quality option (B in this case, see
the trajectory starting from ΨU = 1), and the simulations are centred at the
predicted stable point. Good agreement between macroscopic Gillespie sim-
ulations and multiagent implementation is observable also for the success
rate S (see Figure 20A inset). For same quality options, the target area dis-
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Figure 19: Comparison of the macroscopic transition rates resulting from design
choices (solid lines) and estimated from the implemented multiagent system
(points). The case for distance dA = dB = 2.5 m is shown. Estimates have been
obtained through survival analysis computing the Nelson-Haelen estimator for the
permanence time of agents in each state (Nelson, 1969). Survival analysis pro-
vides powerful non-parametric methods to estimate how the probability of events
changes over time directly from the experimental data. See also Appendix A for
details.

tance biases the choice towards the closer target area (see Figure S11 for the
homogeneous case and Figure S12 for the heterogeneous case in the online
supplementary material1). When both distance and option quality are equal
(i.e., a completely symmetric condition), the system converges toward the
one or the other option with equal probability, as shown in Figure 20B for
the homogeneous case. Here too, the adherence between microscopic and
macroscopic dynamics is remarkable. All these tests have been performed
with N = 500 agents. Good agreement is observed also for different system
sizes, as shown in Figure S13 in the online supplementary material1.

1 http://iridia.ulb.ac.be/supp/IridiaSupp2016-001/index.html

http://iridia.ulb.ac.be/supp/IridiaSupp2016-001/index.html
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Figure 20: Collective decisions in a search and exploration problem: comparison
between the micro and the macro dynamics. The state space of the system is
presented as a ternary plot characterised by ΨU + ΨA + ΨB = 1, so that vertices
correspond to fully-uncommitted or fully-committed populations. Macroscopic dy-
namics are indicated by trajectories and equilibrium points from the ODE model
of Eq. (8), parameterised according to the specific configuration. The bold yellow
trajectory indicates the behaviour starting from a fully-uncommitted population
(ΨU = 1). Stable equilibrium points are indicated as blue empty circles, while un-
stable points are indicated as green empty diamonds. The density map in the back-
ground represents the results of homogeneous multiagent simulations (1000 runs).
The inset shows the success rate S for macroscopic Gillespie simulations (white
bars) and multiagent simulations (homogeneous in light gray and heterogeneous
in dark grey). (A) Micro-macro link for a decision problem in which the best option
is also the farthest one (vA = 0.7 < vB = 1 and dA = 1.5 m < dB = 2.5 m). The
magnify-glass effect allows to appreciate the close correspondence between the sta-
ble point predicted by the macroscopic model and the results from the multiagent
simulations. (B) Micro-macro link for a completely symmetric decision problem
(vA = vB = 1 and dA = dB = 2.5 m).





An expert is a person who has made all the mistakes
that can be made in a very narrow field.

—Niels Bohr

7

C O N C L U S I O N S

The design pattern methodology we propose provides a complete frame-
work that allows moving from the choice of the macroscopic parameterisa-
tion down to the implementation of the individual behaviour. Each step
is supported by the principled understanding of the causal relationship be-
tween microscopic choices and macroscopic effects. We have substantiated
the methodology with case studies that, despite being idealised, contain all
the ingredients to be taken as reference for practical applications. In this
respect, the inclusion of latent states for individual agents is particularly im-
portant, as it allows to preserve the micro-macro link also when interactions
are sporadic or when spatiality interferes with the well-mixed assumption.
Indeed, departures from the macroscopic predictions are expected in case
of heterogeneous interaction topologies, as it happens in other ordering pro-
cesses such as the naming game (Baronchelli et al., 2006; Trianni et al., 2016b)
or the voter model (Sood and Redner, 2005). In this case, the micro-macro
link could be preserved through the inclusion of heterogeneous mean-field
approximations, which can correct the departure from the assumed well-
mixed condition at the macroscopic level (Moretti et al., 2012). Future work
should also take into account the macroscopic effects of interactions over
adaptive and multi-layer networks, in order to (i) take into consideration the
variability of the topology of interactions with time (Groß and Blasius, 2008)
and (ii) allow for the existence of different layers of connectivity among
agents, each pertaining to specific context-related properties (Boccaletti et al.,
2014).

In the near future, we plan to implement the proposed design pattern
in a collective decision-making scenario involving a swarm of hundreds of
robots (in particular, we plan to use the kilobot platform, Rubenstein et al.,
2014). Preliminary results confirm the viability of these experiments. We
believe that the significance of the proposed design pattern is not limited
to swarm robotics but extends to other swarm systems, such as cognitive
radios or cyber-physical systems. In fact, in (Trianni et al., 2016a), the CDCI
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design pattern has been implemented to allow fair bandwidth allocation of
TV White Space (TVWS) spectrum in decentralised networks. While this
study has been conducted only in simulation, it has the potential to become
a real-world application of the design pattern proposed in this thesis. De-
spite the generality of the proposed method, we do not think that every
swarm system may benefit from it. For instance, blockchain systems aim
to collective consensus (thus, collective decision making) and may appear
as a potential application domain of the CDCI design pattern. However, a
blockchain works with the very strong assumption that any agent may act
maliciously to tamper with the correct system functioning (Nakamoto, 2008).
Our design pattern cannot be employed in such systems because does not
take into consideration the case of malicious agents but assumes that all the
agents are cooperative.

Besides engineering, our results can be relevant for better understand-
ing the behaviour of natural systems. With respect to honeybee nest-site
selection, our results provide testable hypotheses about the algorithm em-
ployed by individual bees in relation to the proposed macroscopic model
(Seeley et al., 2012; Pais et al., 2013). Our algorithm is simpler than other
individual-based approaches (Passino and Seeley, 2006; Janson et al., 2007),
as it abstracts several details that require assumptions difficult to be verified
experimentally. Similarly to previous studies, (Janson et al., 2007; Laometta-
chit et al., 2015), we have shown in case study II, in Section 6.3, that spatiality
affects the outcome of the collective decision biasing it towards closer sites.
In our implementation, this is mainly the result of the quicker discovery of
closer sites, while different latencies (e.g., shorter travel times) play a negli-
gible role, thanks to the fixed probability of becoming interactive required to
preserve the micro-macro link (as discussed in Section 5.5.4.3). Field experi-
ments should be made to verify the existence of a tradeoff between distance
and quality. Furthermore, the effects of finite-size groups in the decision
dynamics predicted by the stochastic macroscopic simulations adhere with
studies about group-size effects in natural conditions (Schaerf et al., 2013):
the larger the swarm the more accurate its decision. The scaling of deci-
sion time with group size that we have highlighted here represents another
interesting aspect to investigate with field experiments. The distinction be-
tween latent and interactive states is also biologically relevant and it has
been included in some honeybee nest-site selection models (Britton et al.,
2002). We show how this microscopic state distinction may impact on the
macroscopic dynamics. Finally, it would be interesting to study the extent
to which behavioural heterogeneities influence honeybee nest-site selection,
as genetic and molecular determinants of honeybee behaviour seem to play
an important role (Mattila and Seeley, 2007; Liang et al., 2012).

Behaviour heterogeneity in social systems is an important aspect not to
be overlooked, as it can lead to interesting collective dynamics that are
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not attainable in fully homogeneous systems (Martino and Marsili, 2006;
Helbing, 2012; Huang et al., 2015). In our study, the choice of response
thresholds for the heterogeneous implementation strategy is supported by
the large literature on inter-individual variability in social insects (Burns,
2005; Mailleux et al., 2006; Dussutour et al., 2008; Robinson et al., 2011;
Jeanson and Weidenmüller, 2013). Recent studies have recognised the im-
portance of including individual differences in behaviour—often referred to
as personality or behavioural syndrome (Jandt et al., 2014)—to better un-
derstand the collective dynamics (Wray and Seeley, 2011; Planas-Sitjà et al.,
2015). Here, we have highlighted the relationship between the distribution
of individual thresholds and the collective response function, so that macro-
scopic predictions could be matched against estimates of the real threshold
distribution (Weidenmüller, 2004). We have also shown that fixed response
thresholds well approximate the macroscopic dynamics especially for inter-
active processes like recruitment (Robinson et al., 2011). Associating fixed re-
sponse thresholds with variable probability and intensity of responses may
lead to more flexible and robust behaviour at the colony level (Jeanson and
Weidenmüller, 2013). Response thresholds are linked with adaptive mecha-
nisms for threshold adaptation (Theraulaz et al., 1998; Weidenmüller, 2004),
allowing to fine tune the macroscopic response to match the statistical regu-
larities that characterise the task. This adaptivity can result from evolution-
ary factors (Duarte et al., 2012) as well as from development and learning
(Jeanson and Weidenmüller, 2013). Integrating adaptive mechanisms in the
microscopic implementation could lead to improved performance (Franklin
et al., 2012; Westhus et al., 2013), and represents a natural extension of the
proposed design pattern.
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Spears, and A. F. Winfield, editors, Swarm Robotics, volume 4433 of LNCS,
pages 56–70. Springer, Berlin, Germany, 2007b.

S. Berman, A. Halász, M. A. Hsieh, and V. Kumar. Optimized Stochastic
Policies for Task Allocation in Swarms of Robots. IEEE Transactions on
Robotics, 25(4):927–937, 2009.

S. Bhattacharya, R. Ghrist, and V. Kumar. Multi-robot coverage and explo-
ration on riemannian manifolds with boundaries. The International Journal
of Robotics Research, 33(1):113–137, 2014.

S. Boccaletti, G. Bianconi, R. Criado, C. del Genio, J. Gómez-Gardeñes,
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A
S U RV I VA L A N A LY S I S

In Chapter 4, we estimate the transition rates of the macroscopic model
from the multiagent/swarm robotics simulations through survival analysis.
In this appendix, we shortly introduce this methodology and we present
the Nelson-Aalen estimator that we employ for our analysis. Finally, we
describe how to estimate the transition rates directly from experimental data.
We believe that showing the application of this statistical tool for the analysis
of a swarm robotics experiment may be of interest to the community.

survival analysis Survival analysis is a branch of statistics that offers
tools to estimate the change over time of the probability of an event from ex-
perimental data. Survival analysis has been initially introduced in medicine
to estimate the probability of survival (or death) of an organism under some
treatment. Subsequently, these tools generalised to the estimate of any tran-
sition probability between populations. Nowadays, survival analysis is em-
ployed in several fields, such as economics—e.g., to estimate the probability
of a stock market crash—or mechanical engineering—e.g., to estimate the
probability of engine failures. In this work, we apply survival analysis to
estimate the transition rates of the macroscopic model of decentralised deci-
sion making.

Other works have used this type of analysis to estimate the parameters
of multiagent systems behaviour. Jeanson et al. (2003) use survival analysis
to estimate the probability with which cockroaches change their behaviour.
Garnier et al. (2008) and Reina et al. (2014b) employed survival analysis to
compute transition rates of artificial agents behaviour.

hazard curve We consider the three populations {A, B, U} in accor-
dance with the agent’s commitment state described in Section 4.1. To com-
pute the rate at which agents switch (transit between) their commitment
state, we log the number of timesteps t interlaying between two commit-
ment switches (transitions) and the relative type of event causing the switch

125
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Figure 21: Estimation of the macroscopic transition rates from experimental data
through survival analysis in two exemplifying cases taken from the shortest path
discovery/selection case study of Chapter 4. (A) Cumulative discovery probability
over time for target area at distance d = 1.5 m. The slope of the resulting line cor-
responds to the discovery rate estimate. (B) Cross-inhibition rate σA estimates over
population fraction ΨA for target area distances dA = dB = 2.5 m and probability
Pσ = 0.1.

(e.g., discovery or recruitment). At the end of an experiment, we log the
timesteps t from the last commitment switch as censored event, which in-
dicates that after t timesteps no transition happened. We use the Nelson-
Aalen estimator (Nelson, 1969) to compute the hazard curve H(t) from the
collected experimental data. The hazard curve H(t) shows the cumulative
probability of events occurring until time t, and is computed as follows:

H(t) = ∑
ti≤t

di/ni, (38)

where di is the number of events recorded at ti, and ni is the number of
events occurring (or censored) at time t ≥ ti. In a memory-less system, the
probability of an event does not change over time, therefore the curve of
the cumulative probability as function of time corresponds to a line with a
slope equal to the constant event rate (i.e., the transition rate). Assuming
our system as memory-less, we compute the transition rate by linear fitting
the hazard curve with a line passing through the origin. Additionally, the
quality of the fitting can be used to verify the correctness of a memoryless
implementation.
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rate estimation The rate of spontaneous transitions, in this study dis-
covery and abandonment, can be directly estimated by computing the slope
of the hazard curve, as detailed above. For instance, Figure 21(A) shows
the hazard curve of the discovery rate computed from the multiagent exper-
iments of Chapter 4 with target area at distance d = 1.5 m. Differently, rate
estimates of transitions consequent to an interaction—in this work, recruit-
ment and cross-inhibition— include the probability of interaction with an
agent of the other population, which we call hereafter the interacting popu-
lation. This probability changes during the process as the interacting popu-
lation size changes, and must be taken into account to estimate a constant
transition rate independently from the interacting population size. There-
fore, we first compute one aggregate transition rate for every interacting
population size, and then we normalise the rates for the interacting popu-
lation fraction. For instance, from Equation (1), the cross-inhibition rate for
the population B is (−σAΨA), which includes the size of the interacting pop-
ulation A that delivers the inhibition signal. Through survival analysis, we
compute the aggregate rate (σAΨA) for varying values of ΨA in the range
]0, 1[. Then, by linear fitting, we discount from the aggregate rates the in-
teracting population fraction to obtain σA. Figure 21(B) shows a set of 50

aggregate rate estimates plotted as function of ΨA, the slope of the fitted
line corresponds to the estimate of σA.

To estimate the transition rates with constant population sizes, we run ad-
hoc experiments where the population sizes are fixed. In these experiments,
agents follow the normal behaviour and, in case of commitment state tran-
sitions, they only log the event but do not change commitment state. In this
way, we can quickly gather a large amount of data for every population size
and parameterisation.





B
S TA B I L I T Y A N A LY S I S A N D PA R A M E T E R I S AT I O N
C H O I C E F O R C A S E S T U D Y I - A

To determine the parameters of case study I-A, we analyse the macroscopic
ODE model. To meet the requirement of consensus decision, the model
must display equilibria for the points SA = {ΨA = 1, ΨB = 0} and SB =
{ΨA = 0, ΨB = 1}. The system has equilibria SA and SB for αA = αB = 0.
We choose σA = σB = 1, and we perform a stability analysis of the system
as a function of the parameters γi, ρi, i ∈ {A, B}. Given the domain space:

0 ≤ Ψi ≤ 1, i ∈ {A, B}
0 ≤ ΨU ≤ 1
ΨA + ΨB + ΨU = 1

, (39)

the analysis of the macroscopic ODE model reveals three possible equilib-
ria: SA, SB and SX. Equilibria SA and SB do not change position and are
always present for any parameterisation but change stability. In contrast,
equilibrium SX is always unstable and appears only when SA and SB are
both stable, as a function of the parameters γi and ρi. The stability analysis
gives:

SA is stable ⇔ γB < γA + ρA
SB is stable ⇔ γA < γB + ρB

(40)

The equilibria SA and SB change stability through transcritical bifurcations,
and when one of the consensus solutions is unstable, the other one is the
unique stable solution.

Given Eq. (40), we can parameterise the system to minimise the chance of
wrong decisions. We require that there exists only one stable solution for a
quality difference above a target resolution R:

|vA − vB|/ max(vA, vB) > R (41)

Let us assume vA > vB. On the one hand SA must be the only stable solution,
and therefore SB should be unstable, hence γA > γB + ρB. On the other
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hand, the constraint on the target resolution implies that vA − vB/vA > R.
We select linear functions that link macroscopic transition rates to quality:

γi = fγ(vi) = k vi ρi = fρ(vi) = h vi, i ∈ {A, B} (42)

where k and h are tuneable parameters. To satisfy our design choices, we
combine the above equations and solve the system:{

k vA > k vB + h vB
vA − vB > vAR → k > h (1− R)/R (43)

An identical relation can be obtained assuming vB > vA. We arbitrarily
select the target resolution R = 0.15, and we finally select a parameterisation
that complies with the prescribed bounds: h = 0.1 and k = 0.6.
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