
Université Libre de Bruxelles
Faculté des Sciences Appliquées
CODE - Computers and Decision Engineering
IRIDIA - Institut de Recherches Interdisciplinaires

et de Développements en Intelligence Artificielle

A network of ceiling cameras performs
distributed path planning to guide a ground robot

Andreagiovanni REINA

Promoteur:

Prof. Marco DORIGO

Rapport d’avancement de recherche
Année Académique 2011/2012

ii

Abstract

We introduce zePPeLIN, a distributed system designed to address the chal-
lenges of path planning in large, cluttered, and dynamic environments. The
objective is to define the sequence of instructions to move a ground object from
an initial to a final configuration in the environment. zePPeLIN is based on
a set of wirelessly networked devices, each equipped with a camera, deployed
in environment. Cameras are placed at the ceiling. While each camera only
covers a limited environment portion, the camera set fully covers the environ-
ment through the union of the field of views. By local message exchanging,
the cameras cooperatively compute the path for the object, which gets mov-
ing instructions from each camera when it enters camera’s field of view. Path
planning is performed in a fully distributed way, based on potential diffusion
over local Voronoi skeletons. The task is made challenging by intrinsic errors
in the overlapping in cameras’ field of views. We study the performance of
the system vs. these errors, as well as its scalability for size and density of
the camera network. We also propose a few heuristics to improve performance
and computational and communication efficiency. We report about extensive
simulation experiments and validation using real devices.

iii

iv

Acknowledgement

First of all, I would like to thank my supervisor Prof. Marco Dorigo. I am
very grateful for the opportunity he gave me to work at his prestigious Swarm
Intelligence Laboratory.

I would also like to thank Dr. Gianni Di Caro and Prof. Luca Gambardella
for their close collaboration and their valuable help. Part of this work has been
conducted under their supervision at the Artificial Intelligence Institute IDSIA
in Switzerland.

The research leading to the results presented in this paper has received fund-
ing from the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC grant agreement n◦ 246939.

v

Contents

1 Introduction 3

2 Path planning scenario and camera network model 7

3 Path planning on a single environment map 9

4 The distributed path planner 13
4.1 Heuristics . 17

4.1.1 Heuristics to avoid local minima . 17
4.1.2 Heuristics to improve efficiency . 21

4.2 Adaptation to changes in the environment 22
4.2.1 Fault tolerance . 22

5 Results of simulation experiments 25
5.1 Robustness to relative position errors . 26
5.2 Scalability to environment size . 31
5.3 Scalability of resources . 32

6 Real robot experiments 35

7 Related work 39

8 Conclusions and future work 43

1

2 CONTENTS

Chapter 1

Introduction

In this work we present a distributed system for path planning. Path planning refers to the
calculation of the path that an object has to follow for moving from a starting point to a
given destination/configuration. This is a fundamental problem in mobile robotics, where
the moving object can be the robot itself, a part of it (e.g., its robotic arms), or an object
being carried by one or more robots. The calculation of a plan consists of the definition
of the precise sequence of roto-translations for moving the object without hitting obstacles
or other robots. A large number of different versions, algorithms, and solutions to this
problem have been proposed in the last three decades (e.g., see [13, 5, 14] for overviews).
In this work we focus on the version which is also informally referred to as the Piano
mover’s problem. In this case, the controllable degrees of freedom of the moving object
are equal to the total degrees of freedom, meaning that the moving object (the piano) has
not dynamic constraints on the motion (holonomic motion). The Piano mover’s problem
assumes that the agent who plans the path has as input the map of the environment
and the object’s model. However, in many practical cases, an input map including the
precise deployment of furniture and the status of other typical dynamic obstacles (e.g., a
closed door, or the presence of an occluding human crowd) is not immediately available.
Therefore, in these cases, an up-to-date map needs to be gathered on the spot prior to path
planning. However, in the case of planning over large areas, this poses a clear problem,
since in practice a collection of sub-maps, each referring to a portion of the environment,
needs to be gathered on the fly and possibly merged with each other in order to perform
a consistent and optimized path planning over the entire area.

To tackle this class of problems and, in particular, for planning the path of a holonomic
object of any shape over a large and cluttered area, we propose zePPeLIN (Path PLannIng
Network), an approach based on the sensorization of the environment. A set of networked
smart cameras is deployed on the ceiling of the area where the object moves in order
to visually cover the full area on the ground. Camera deployment can be performed in
any convenient way. In the following, without losing generality, we assume the use of a
swarm of flying robots, each equipped with a camera and a wireless communication system
(see the description of the robot camera model in the next chapter). Exploiting the top
view, the camera system builds the map of the environment and the model of the moving
object. Each camera of the network plans the local part of the path which is relative to
its field of view. Then, it communicates with its neighbor cameras to locally merge the
sub-paths and to cooperatively generate a global path for the ground moving object. That
is, the zePPeLIN system plans the precise sequence of roto-translations that the moving
object on the ground has to perform in order to reach its given final configuration. During

3

4 CHAPTER 1. INTRODUCTION

path execution, each robot camera visually localizes the moving object and sends to it the
required motion information as it moves into the wireless range of the robot camera itself.
In this way, the use of the zePPeLIN networked camera system allows to effectively perform
path calculations over large areas and can deal with dynamic changes in the environment
by exploiting its parallel and distributed nature. Moreover, the system can be used to
make path calculations for multiple ground-moving objects/robots at the same time.

All these advantages have however a cost: the problem is made particularly challeng-
ing by the fact that each camera has a limited field of view, so that a camera can only
see a limited portion of the environment, and the fields of views of neighbor cameras are
partially overlapping, with inherent uncertainties in terms of mutual alignment and size
of overlapping areas (a graphical illustration of this is shown in Figure 4.1, explained in
Chapter 4). The final global path is composed by partial paths which are locally cal-
culated and linked together in the overlapping areas. Wrong alignment and overlapping
information can lead the system to fail finding feasible paths. In fact, since each camera
only calculates a partial path, if the information concerning the relative positioning of the
overlapping area is erroneous, the linking of the local paths leads to imprecise, potentially
unfeasible connections. During the phase of actual path navigation, some sub-path discon-
nections can be dealt by locally calculating repairing paths, which feasibly reconnect the
sub-paths at the expenses of some additional path length (see the discussion on navigation
in Chapter 6). However, in a cluttered environment disconnected sub-paths may not have
a feasible repairing path. In this case the calculated path is infeasible for navigation, re-
sulting in a global failure. Therefore, an important contribution of this work is the study
of the robustness of the distributed path planning process to these errors, that are intrinsic
to any distributed vision-based (or map-based) approach. Another contribution concerns
the scalability of the system in terms of number of cameras and area size in the presence
of these same errors. To study these issues, we performed an extensive set of experiments
both in simulation and using real cameras and moving robots. In order to improve the
efficiency and the accuracy of the distributed path planning process we also propose a set
of heuristics and we study their impact on performance. Moreover, we consider ways to
reduce the impact of camera alignment errors based on statistical reasoning.

In contrast to a centralized solution, where a single leading camera merges the visual
information from all cameras, the proposed zePPeLIN approach only relies on local and
partial information. The entire process is fully distributed, and the communication between
cameras is only local. Such architectural choices are motivated by the objective of obtaining
a system which is scalable, robust to individual camera failures, and requires minimal
communication overhead. In fact, with a centralized approach, the system suffers from
the problem of the single point of failure and in order to scale to large environments it
has to cope with efficiency issues and communication bandwidth bottleneck. While these
issues could be partially overcome with the use of effective ad-hoc routing algorithms for
communications, the zePPeLIN solution is still expected to be more general, portable, and
efficient. It is also important to remark that an alternative approach based on the ground
robot building by itself the current obstacle map of the environment and performing self-
localization (e.g., a typical SLAM approach) and path planning, while potentially more
precise, would require a much longer computation and execution times than our approach
(especially in the case of large areas), and would be more prone to path errors (e.g., while
performing SLAM or moving through an area, the obstacle situation in nearby areas could
have changed).

While in this introduction and in the rest of the paper we speak and makes use of

5

vision-based sensors to build local maps of the ground environment, we point out that
the zePPeLIN distributed path planning algorithm that we propose can be used with any
system of networked devices capable of locally mapping the environment. For instance, a
networked system of kinect-equipped or laser-equipped nodes could be equally used in the
zePPeLIN framework, producing equivalent (if not better) performance of a camera-based
system.

The rest of the article is organized as follow. In Chapter 2, we define the problem
and the reference model used for the robotic ceiling cameras. In Chapter 3, we describe
the state of the art methodology that we used to implement the distributed planner. In
Chapter 4, we describe the distributed path planner. In Section 4.1, we propose a set of
heuristics for improving the performances of the system, that is, the quality of the solution
and the efficiency of the process. Section 4.2 shows how the proposed system can deal
with dynamic environments using local adaptation to changes of obstacle positions and
camera failures. We present the results of the simulation experiments in Chapter 5. The
experiments are designed to study the performances of the system on the main aspects
of interest: robustness, efficiency and scalability. Moreover, we study how the various
proposed heuristics affect the performances of the system. In Chapter 6, we describe the
real robot experiments that we designed and implemented for validating the simulation
results. In Chapter 7, we list other works which address similar problems with a distributed
or multi-agent approach. Finally, in Chapter 8 we conclude the paper with final remarks
and the promising direction that will be investigated in future works.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Path planning scenario and camera
network model

In zePPeLIN, we consider the following settings for the distributed path planning of a
holonomic object on the ground. At the beginning, a network of robotic ceiling cameras
is deployed in the environment where the object moves. As pointed out in the previous
chapter, at this aim we assume the use of a swarm of flying robots each equipped with
a camera. Each robot camera faces the floor, in order to acquire a top view of the local
environment underneath. The deployment is such that, altogether, the robot cameras cover
with their visual field the ground environment including the start and the target position
of the object. Robots are equipped with an on-board wireless communication system. The
deployment is performed such that the robots are locally in range with each other and
the fields of view of two neighbor robot cameras overlap. The size of the overlapping area
must be greater of or equal to the dimension of the moving object. This constraint is to
allow the cameras to connect sub-paths during the distributed path planning process by
exchanging the local coordinates of the moving object. Once found their position in the
environment, robotic cameras attach to the ceiling and keep a static position for the whole
planning process. In this way, they can save energy while keeping monitoring the area.
Since the focus of this work is on planning, we do not study how the camera formation
can be obtained. However, in literature a number of algorithms that perform this kind of
spacial deployment in the environment can be found, and any of them could be used for
this purpose (e.g., [26]).

We assume that the robotic cameras are equipped with a relative positioning system,
which allows a robot camera to estimate, with some uncertainty, the relative position (in
terms of angle and distance) of neighbor cameras. This information is used to estimate
the overlapping area between the fields of view of neighbor cameras and, in turn, to locally
connect the sub-paths calculated by each camera (see Chapter 4). Unfortunately, an error
in the estimate of the relative position of two robot cameras results in an erroneous estima-
tion of their overlapping fields of view, which can potentially have disastrous effects on the
quality and feasibility of the calculated paths (see Figure 4.1). In this work, we study how
the error in mutual positioning affects the performance of the system, also in relationship
to the number of robot cameras participating to the planning process. We consider this
uncertainty as being an intrinsic issue of any vision-based distributed path planning, and,
as such, we consider it as an internal parameter of the problem. That is, we do not propose
ways to reduce it, for instance by means of sophisticated position calibration techniques;
rather we empirically study to which extent this parameter impacts on the feasibility and

7

8 CHAPTER 2. PATH PLANNING SCENARIO AND CAMERA NETWORK MODEL

the quality of the planned paths. In the simulation experiments of Chapter 5 the error
on relative position and orientation is independently generated for each camera from two
independent zero-mean Gaussian distributions with configurable standard deviation. In
this way, we model error estimates in a rather general and, at the same time, realistic way,
avoiding to make assumptions that would be specific to the hardware in use.

As reference model for the robotic ceiling camera, we consider quad-rotor based flying
robots. In particular, we consider the eye-bot [24], a quad-rotor flying robot equipped
with a pan-and-tilt camera that allows it to monitor what happens on the ground. The
robots are also equipped with a Wi-Fi communication system and with a infrared range
and bearing system (IrRB) [25], which is used for calculating the relative position of other
eye-bots and also provide a low-bandwidth line-of-sight data communication channel. We
limit the set of neighbors of an eye-bot —i.e., the communication range— to the set of
neighbors detected by the IrRB system (i.e., 5 meters). An eye-bot can passively attach to
the ceiling using a magnet, when a ferrous ceiling is present. In this case, the position of the
robot camera is statically fixed and the robot can save energy, guaranteeing a relatively long
operation time. Moreover, as typical quad-rotors can easily do, the eye-bot can also hoover
on the spot it has selected. In this way the system can be effectively used also in outdoor
environments (and in principle, to save energy, a robot can alternate between hoovering
in the air and resting on the ground when the moving object is not in its neighborhood).
Clearly, in this case the relative positioning error would fluctuate because of stability issues,
introducing more errors that, however, could be smoothed out through repeated relative
position exchanging using the IrRB system.

Since the focus of this work is on distributed path planning calculation, we make
simplifying assumptions for some of the aspects of the scenario that are not strictly related
to plan calculations. In particular, we assume that the start and target configurations are
given as input. Moreover, we assume that the moving object can be moved by a system
that can interpret instructions given by the zePPeLIN system (e.g., through a wireless
system or a speaker). For instance, it can be a single ground robot, a set of assembled
ground robots, or even humans (e.g., carrying a piano). In the real robot experiments of
Chapter 6, the moving object that follows the camera instructions is a two-robot system
connected together in a rigid structure, and we consider an indoor scenario where the
robots can keep static positions at the ceiling.

Chapter 3

Path planning on a single
environment map

The zePPeLIN system is based on the use of the partially overlapping vision maps of
the environment gathered by the different robot cameras. Each robot camera performs
path planning calculations on its own local map, and it tries to optimally connect its
path with that of the neighbor cameras through local message exchanges. Therefore, at
first, each robot camera performs a “centralized” path planning calculation based on its
local map, which includes also the overlapping areas with its neighbors. We designed and
implemented this centralized planner by extending current state-of-the-art deterministic
2D path planning algorithms [13, 5, 14]. The developed centralized planner is also used
in the simulation experiments of Chapter 5 as baseline to assess the performance of the
zePPeLIN distributed approach. In this case, the planner takes as input, as a single image,
the entire view of the area where the object can move. The techniques, methods, and
algorithms that we used for implementing the centralized path planner are described in
the rest of this chapter.

Environment model. The environment where the object moves, the ground, is modeled
as a plane discretized in a uniform 2D grid of squared cells: the occupancy map. Each cell
of the occupancy map is labeled as free cell or occluded cell. The former are the cells that
are free from obstacles, meaning that the path of the moving object can pass through the
area of the free cells. The set of the free cells is termed the free space. The occluded cells
are the cells occupied, or partially occupied, by an obstacle. Having a top view of the
environment, the classification of the cells in free or occupied is performed through a 2D
isometric projection of the obstacles on the ground. This way of proceeding might result in
the definition of a subset of the actual free space, since the projection of some “table-like”
object results in an occluded area, while in practice there could be space for passing under
it (depending on the 3D geometry of the moving object).

Potential field. The centralized path planning method we use is based on a classical
work in the field [13]. More specifically, we use the numerical potential field technique.
First, a virtual potential field is computed over the occupancy map, subsequently the path
of the moving object is calculated descending the gradient of the potential field. The
potential field defines a force that attracts the object towards the destination, and at the
same time repels the object away from obstacles. In our algorithm, the potential is a scalar
function that defines the attraction/repulsion intensity for each cell. The function has a

9

10 CHAPTER 3. PATH PLANNING ON A SINGLE ENVIRONMENT MAP

global minimum at the destination point, and maximum value on the obstacles. In all other
cells the function decreases towards the destination, such that the planner can direct the
object to the goal following the direction indicated by gradient descent. A 3D illustration
of the potential field is provided in Figure 3.1a. The potential field is computed in three
phases, described below: (i) calculation of the skeleton, (ii) diffusion of the potential field
over the skeleton and (iii) diffusion over the remaining free cells.

Voronoi skeleton. The skeleton corresponds to the Voronoi diagram on the 2D
occupancy map [28] (i.e., the set of points where the distance to the two closest
objects is the same [5]). Since the planner operates on a discrete map, the skeleton
is the subset of the free cells where the number of cells from the two closest occluded
cells is the same. As final skeleton calculation step, the destination cell is connected
to the skeleton by a shortest line path (i.e., the set of cells laying on the shortest
line from the destination cell to the skeleton’s closest cell).

Diffusion over the skeleton. Once the skeleton is computed over the entire
map, a potential field value is assigned to each cell of the skeleton. This operation
is based on a diffusion process. The diffusion starts from the destination cell, to
which a zero value of potential is assigned. A zero value means that there is no
potential force when the object lays on the destination cell. Then, the potential
value is assigned to the neighbor cells of the set of the last cells to which a value
has been assigned (after the first step, only the destination cell belongs to this set).
The new potential value assigned to the neighbor cells is the potential value of the
previous cells incremented by one. The process is iterated until the potential is
diffused over all the cells of the skeleton.

Diffusion over the free space. After the skeleton cells have been assigned a
potential value, the potential field is computed over the remaining free cells. The
diffusion process is similar to the previous one. However, in this case the diffusion
begins from the skeleton cells. In the case the importance of the skeleton needs to be
enhanced —i.e., the desired path must overlap the skeleton— in the first diffusion
step the increment of the potential value can be greater than one. In our algorithm
we used 3 as incrementing value from the skeleton. For the subsequent diffusion
steps, the incrementing value is fixed to 1. The process iterates until the potential
field is diffused over all the free space connected to the destination. The value of
the occluded cells is fixed to the maximum value. This means that a high repulsive
force is applied to the cells occupied by obstacles (see Figure 3.1a for a graphical
illustration of the process).

Path calculation. The last phase of the planning algorithm consists in the actual calcu-
lation of the path. It is computed following the gradient in the descending direction. The
process begins from the starting position of the object and follows the decreasing value
of the potential field. The potential field descent is computed using the least-cost finding
A∗ algorithm [11]. In order to apply A∗, the 2D map is seen as a graph where the cells
represent the nodes and there is an edge between two nodes when two cells are adjacent
(i.e., we use Minkowski’s Taxicab Geometry [29]). The A∗ algorithm finds the least-cost
path from the given initial cell to the destination cell. It uses a distance-plus-cost heuristic

11

(a) (b)

Figure 3.1: Graphical representation of the potential field (a) and the moving object (b).
The environment is discretized in a 2D matrix of cells. The height and the saturation of
the cells represent the potential field value. Obstacles are represented by high brown cells,
and the skeleton by the dark green graph. The moving object (the L-shaped green area)
is represented by a set of control points (blue squares) and a set of collision points (purple
squares).

function f(x) which is computed on every cell x visited by the algorithm:

f(x) = g(x) + h(x) (3.1)

where g(x) is the path cost function and h(x) is the estimate function. The former represents
the distance from the starting cell to the current cell x. The latter is a heuristic estimate
of the steps from the cell x to the destination. This value is the value of the potential field.

Control points. We consider a moving object that can have any arbitrary shape and
whose size is greater than the cell size. Therefore, it can occupy more than one cell. We
use control points [5] to deal with this situation. The object is described by a set of control
points, an example is shown in Figure 3.1b. At each instant the object is in a precise
configuration, which corresponds to the spatial position and orientation of the object. A
configuration c consist of the coordinates of the control points, and the g(c) and h(c)
values of Equation (3.1). The value of g(c) is the cost of all the unit movements from
the start configuration to c. A unit movement can be either a translation or a rotation.
The translation is of one cell in one of the cardinal directions (N, E, S, W, equivalent to
up, right, down, left) and has cost equal to 0.5. A rotation of θ degrees can have place
centered on any of the control points, or on the center of mass of the control points, with
θ a configurable parameter. The cost of a unit rotation is proportional to the number of
traversed cells (in particular, it is the average number of cells traversed by all the control
points). Therefore, an object with N control points has [4 + 2 ∗ (N + 1)] possible unit
movements and neighbor configurations. The h(c) function is defined as the average over
the potential value of all the control points. To describe a configuration, an additional
set of points is used, the collision points. These points lay on all the cells occupied by
the moving object’s perimeter (see Figure 3.1b). These points are not used for calculating
the function h(c), but are used instead for checking collisions with obstacles. In the case a

12 CHAPTER 3. PATH PLANNING ON A SINGLE ENVIRONMENT MAP

configuration has one (or more) collision points colliding with an obstacle, the configuration
is not considered by the algorithm, being infeasible.

Chapter 4

The distributed path planner

The centralized planner described in the previous chapter is the basic building block of
the zePPeLIN distributed path planner: it is used by each individual camera for planning
limited to its local map. The distributed planner takes into consideration the whole set of
local plans and define ways for their effective merging and coordination. The distributed
algorithm is based on local sensing (the camera’s limited field of view), local communication
between neighbor cameras, and partial knowledge of the overall status of the planning
process (no omniscient leader or centralized controller exists).

The distributed algorithm presented in this chapter only executes path calculation, and
it terminates when a valid path is found. The implementation of the path, that is, the
actual navigation in the environment of the moving object is described in Chapter 6.

The zePPeLIN distributed path planning algorithm is composed of three phases, which
are described in detail below: (i) Neighbor mapping, (ii) Potential field diffusion, (iii)Path
calculation. Figure 4.4 shows the zePPeLIN pseudo-code algorithm that is executed at a
generic camera nodes; it includes both the local path planning and the navigation process.

Neighbor mapping. During this first phase, each camera estimates the overlapping area
of its field of view with that of its neighbors. A robot camera n calculates the overlapping
area between its field of view and the one of the its neighbor m in the following way (and
repeats the same process for all its neighbors). First, n collects two pieces of information: (i)
the relative position and orientation of m (measured using the range and bearing system);
(ii) the size of m’s field of view, received from m via wireless communication.

Then, with these two pieces of information it is able to calculate on its local 2D map
the projection of the field of view of m.1 Using the projection of the field of view of m, n
calculates the overlapping area, the open edges and the shared edges. The open edges are
the edges of n’s field of view that lay inside the m’s field of view. The closed edges are the
edges of m’s field of view that lay in n’s field of view. A graphical representation of this
process is showed in Figure 4.1.

Potential field diffusion. Calculation of the potential field is the second phase of the
distributed path planning process. It is based on a diffusion process. Since each camera only
sees a limited part of the environment, and the whole environment map is segmented across
the networked camera system, robot cameras need to engage in a cooperative diffusion of
the potential field. The process is fully distributed: starting from the cameras at the

1As a simplifying assumption, we consider that all camera robots are placed at the same height, avoiding,
in this way, issues related to fields of view of different size.

13

14 CHAPTER 4. THE DISTRIBUTED PATH PLANNER

Figure 4.1: Illustration of how two neighbor camera nodes m and n define their overlapping
region and assign shared and open edges. δ is the relative position (in x, y coordinates)
of the robot camera node m in the reference system of n, α is the relative orientation
of m with respect to the orientation of n. Using the δ and α estimates, node n builds
a projection of the field of view of node m. In this way, node n defines the overlapping
region (striped region), the shared edges (solid bold lines), and the open edges (dashed bold
lines). δ and α are affected by the ε and ξ errors respectively. As discussed in Chapter 1,
this results in an erroneous estimation of the overlapping area, which can potentially have
negative effects on the calculated path.

goal location, each camera first computes the potential over its local map, then, it sends
the potential field values of its shared edges to its neighbors, in order to allow them to
continue with the potential field diffusion. From an operational point of view, the process
is implemented as follows.

Each camera calculates the local skeleton, which corresponds to the Voronoi diagram on
its 2D occupancy map (see Chapter 3). The environment’s skeleton resulting from the sum
of all local skeletons differs from the one which would be calculated in a centralized way
using a single global map (Figure 4.2). Differences are due to the fact that, during skeleton
calculation, the frontiers of a (local) map need to be considered as obstacles. Therefore,
at the corners of each map the local skeleton shows bifurcations that do not find their
counterpart in the centralized skeleton. Differences in skeleton turn into differences in the
resulting path. This effect can be clearly observed from the results of the experiments with
perfect alignment between cameras (see Chapter 5): the paths planned with the distributed
process and the paths planned by the centralized planner have different length. An example
of the paths generated by the global, single map planner and by zePPeLIN’s distributed
planner is shown in Figure 4.3.

(a) (b)

Figure 4.2: Comparison of the skeletons.

15

Once the skeleton is generated, cameras cooperatively diffuse the potential, where the
value of the potential field of each cell represents the number of steps from the destination
to the current cell. The cameras that have the goal configuration in their field of view start
the process. They first diffuse the potential field on their local map. The diffusion starting
point is the center of mass of the control points of the goal configuration. Once the diffusion
in the local map is completed, they send to the neighbors the value of the potential field on
the shared edges. In this way, a robot camera that receives this information can continue
the diffusion starting from the values of the received edge cells. On reception, a camera
copies the received values in the cells of its local map, and then executes the diffusion
process on its local map starting from these received points. Each camera updates the
potential value of a cell only if the new potential value is lower than the best value it
had calculated so far (i.e., a lower number of cells toward the destination is found). This
process is iteratively executed in a distributed way among all the cameras in the network.

Cameras that have the final destination configuration in their field of view behave in
a slightly different way compared to the others. In fact, they need to precisely calculate
the path that defines both the final position and orientation of the object. For this, the
use of the information regarding the center of mass of the control points is not sufficient
to guarantee the correct final orientation. Therefore, these camera calculate C different
potential fields, one for each of the C control points. Each potential field is then diffused
using as final destination point one of the control points. During path calculation, these
cameras compute the h(c) value averaging the potential field value of all the control points.
However, differently from the other cameras, for each control point the value which is
used is that of the corresponding potential field. In this way, during the third phase (see
below), the cameras having the final destination in their view map can define the set of
roto-translations of the object taking in consideration also its desired final orientation.
Since only these cameras need to use multiple potential fields, this way of proceeding does
not have a major impact in terms of computation and communications, yet it is able to
guarantee the correctness of the path.

In this same respect, it is important to remark that, in order to minimize communica-
tion overhead, with the aim of favoring scalability, portability, and of minimizing energy
consumption, cameras communicate among them only the value of the skeleton cells laying
on the shared edges. In this way, communication messages only contain the values of a few
cells, resulting in a low number of small packets of just a few bytes.

Figure 4.3: Final paths calculated by the global planner (Left) and by the zePPeLIN system
(Right) in the same environment.

16 CHAPTER 4. THE DISTRIBUTED PATH PLANNER

Path calculation. The third phase of the process consists in the actual calculation of
the path, i.e., the definition of the sequence of roto-translations that connect the start and
the final configurations. Each camera calculates the part of the path which is relative to
its local map, and then sends a message to one of its neighbors for letting it continue the
planning. The process is implemented in the following way.

As in the previous phase, the camera that sees the moving object (that is, the start
configuration), hereafter indicated with s, begins the third phase. Camera s calculates on
its local map the partial path of the object, ending on an open edge. Then, s randomly
selects one of the neighbors with which it shares the open edge. Since each camera knows
the projections of its neighbors’ field of views (see Neighbor mapping of Phase 1), s can
translate the coordinates of the moving object from its frame of reference to the neigh-
bor’s frame of reference. Finally, s sends these object coordinates to the neighbor, which
then begins the local planning using as starting configuration the object positioned at the
received coordinates.

The process iterates among all cameras until one of the cameras calculates the partial
path that reaches the final configuration. When this happens, this camera broadcasts to
all its neighbors a success message, which is flooded in a multi-hop fashion to all the other
cameras in the network. In this case, the camera network has cooperatively found a path
that connects the start and the end configuration positions. The information about the
complete path is not stored in any specific camera, but instead it is fully distributed in the
network: each camera has the knowledge of only the partial path relative to its field of view.
Once the path has been defined, the camera s triggers path execution by communicating
to the object the local information which is necessary to begin the actual path navigation.

During the phase of path calculation, the camera can be in two possible states. In
one state, it performs the actual calculation of the partial path in its field of view, in the
the other state it is waiting for a message from neighbor cameras. There are 4 possible
messages that a camera m can receive from its neighbor n, which are listed below together
with the actions that the reception of one of these messages triggers:

• Start Path: This message contains the coordinates of the control points of the mov-
ing object in m’s frame of reference. After receiving from a neighbor n a Start Path
message, m starts the path calculation using the received coordinates as start con-
figuration. These coordinates represent the final configuration of the partial path as
calculated by n.

• Local Failure: This message is sent in response to a Start Path message when one
of the following two possible situations occurs: n has not found a valid path in its
field of view, or the start configuration that has been included in the Start Path
message is not-valid. A configuration c is defined as not-valid when one or more of
the following conditions hold: c lays over an obstacle, c has already been evaluated
by n during a previous path calculation, c can be connected to a previous partial
path calculated by n. The first operation that a camera n does after receiving a
Start Path message precisely consists in checking whether one of these conditions is
satisfied. In case the configuration c is not valid, then n replies to m with a Local
Failure message. After receiving this message, m sends a new Start Path message
to a different neighbor laying on the same open edge on which the configuration c is
positioned. If no alternative neighbors are present, camera m resumes the local path
calculation from the status where it was before sending the configuration c.
Through this process, when a camera does not find a local path, the system imple-

4.1. HEURISTICS 17

ments a backtracking strategy: the control is given back to the previous node which
searches for alternative solutions.

• Goal Found: This message notifies the successful completion of the path planning
process. The camera that calculates the final part of the path (reaching the final
configuration) locally broadcasts to all its neighbors the Goal Found message, which
is then flooded into the camera network through multi-hop message relay.

• Global Failure: This message notifies a camera of a system-level failure for the path
planning process. The system issues a global failure when all the configurations have
been explored but the robot camera network is not able to find, in a distributed fash-
ion, any path that can feasibly connect the assigned start and end configurations.
This means that a feasible solution does not exist given the characteristics of the
calculated potential field and the selected search parameters (e.g., cell discretization,
minimal rotation angle). A Global Failure message is generated first by the start
camera, according to the following process. When a camera explores all the configu-
rations in its field of view but has found no path that reaches the goal or exits from
an open edge, the camera asserts a local failure, as described above, and sends to the
previous camera in the path a Local Failure message. Since its first selection for path
continuation was aborted, also this camera can now possibly incur in an analogous
local failure while trying to find an alternative path continuation. This potential
sequence of local failures can let the system backtrack from camera to camera along
the path built so far, until it reaches the first camera of the sequence, the one that
started the planning phase and that sees the start position. At this point no further
backtracking is possible. Therefore, if also the start camera locally fails it means
that the entire planning process has failed. In this case the Global Failure message
is generated by the start camera and flooded in a multi-hop fashion throughout the
camera network.

4.1 Heuristics

In the following two sections we describe a set of heuristics that we designed to address the
issue of getting trapped in local minima during the path search process, as well as issues
related to the computational and communication efficiency of the system, with the aim of
improving its overall scalability.

4.1.1 Heuristics to avoid local minima

During potential diffusion, the single-map path planner presented in Chapter 3 can poten-
tially get trapped in local minima. This is due to the fact that potential diffusion does
not explicitly consider the dimensions of the moving object, while path calculation does
it. Therefore, when the shortest route towards the final configuration includes a narrow
passage, the potential field can diffuse through the passage and assign low potential val-
ues to the corresponding area. During the path calculation phase, the search algorithm
explores the solution space expanding the search tree towards the areas with assigned low
values for the potential field. In this way, the exploration process gets naturally attracted
to the direction of the narrow passage and tries to establish a path through it. However,
while the skeleton and the potential field were able to pass through the narrow passage, the

18 CHAPTER 4. THE DISTRIBUTED PATH PLANNER

Algorithm 4.0.1 Local path planning and navigation algorithm executed at a camera node

1: M ← CalculateOccupancyMap() /* Detect obstacles and build local map */
2: for all n ∈ Neighbors do
3: CommunicateMyFoV Size(n)
4: fovn ← GetNeighborFoV Size(n)
5: δn ← DetectNeighborPosition(n)
6: αn ← DetectNeighborOrientation(n)
7: o← OverlappingArea(n, δn, αn, fovn)
8: end for
9: CalulateSkeleton(M)

10: if (isV isible(Destination)) then /* Camera with final configuration in the FoV */
11: DiffusePotential(M,Destination) /* Potential field diffusion with Destination as starting point */
12: SendPotentialF ieldMessageToNeighbors(M,N) /* Send the potential field on the shared edges

*/
13: end if
14: while potnew ← NewPotentialF ieldMessagesReceived() do /* Received updated potential field values

potnew from the neighbors */
15: Diffuse potential(M,potnew) /* Potential field diffusion with potnew as starting points */
16: SendPotentialF ieldMessageToNeighbors(M,N)
17: end while
18: while true do
19: WaitForMessageFromNeighbors()
20: i← ReadMessage(ni) /* ni is the sender of message i */
21: switch (i)
22: case StartMessage:
23: si ← ReadMessageContent(i) /* si = starting configuration received with message i

*/
24: if (isV alidStart(si)) then
25: if (P ← CalculateLocalPath(si,M, o)) then /* The algorithm has found a local path P

*/
26: if (P [lastPosition] = Destination) then
27: LocalBroadcastGoalFound(N)
28: go to: 56
29: else
30: sj , nj ← IdentifyNextNeighborInPath(P,N) /* sj = last position of the path P converted

in the reference system of neighbor nj */
31: SendStartPathMessage(sj , nj)
32: end if
33: PATHS ← StoreLocalPathInfo(P, ni, nj , openset) /* openset = current status of the search */
34: else
35: if (isTheStartPositionV isible() AND isEmpty(PATHS)) then
36: LocalBroadcastGlobalFailure(N)
37: exit
38: else
39: SendLocalFailureMessage(ni)
40: end if
41: end if
42: else
43: SendLocalFailureMessage(ni)
44: end if
45: case LocalFailure:
46: openset← RestoreP lanningStatus(PATHS[lastPosition])
47: go to: 25
48: case GoalFound:
49: RelayMessage(i, N)
50: go to: 56
51: case GlobalFailure:
52: RelayMessage(i, N)
53: exit
54: end switch
55: end while
56: k ← 1
57: if (isTheStartPositionV isible()) then
58: go to: 62
59: end if
60: while NavigationCompleted do
61: WaitForContinueNavigationMessage()
62: NavigateTheRobot(PATHS[k])
63: SendLocalNavigationCoontrolMessages(PATHS[k].next)
64: k ← k + 1
65: end while

Figure 4.4: zePPeLIN pseudo-code: path planning process at a generic camera node.

4.1. HEURISTICS 19

(a)

(b) (c)

(d) (e)

Figure 4.5: Comparison of paths. (a) Global planner. (b) zePPeLIN planner without
heuristics. (c) Planner using skeleton pruning (with the parameter wsp set to as the smallest
dimension of the object). (d) Planner using narrow passage detection. (e) Planner using
all the heuristics.

moving object has a shape and a dimension which might prevent its crossing. If this is the
case, the process gets stuck exploring an area that has low potential values but which is,
at the same time, too narrow for letting the moving object pass through. In other terms,
the search process gets trapped in a local minimum. The algorithm deals with this issue
by locally backtracking and exploring different alternative paths.

20 CHAPTER 4. THE DISTRIBUTED PATH PLANNER

However, getting stuck in local minima and backtracking can have a significant negative
impact on computational efficiency. Therefore, we propose two heuristics for minimizing
the probability that this happens: skeleton pruning and narrow passage detection. The
two heuristics can be implemented independently of each other and act in different phases
of the process. The illustration of the effect of the two heuristics, compared to the path
resulting without the application of the heuristics, is shown in Figure 4.5.

Skeleton pruning. The aim of this heuristic is to prune the skeleton during potential
field diffusion in order to block passages narrower than a predefined width wsp. In the
experiments, we set wsp to the width of the smallest dimension of the moving object.
However, since width is not the only parameter defining whether an object can cross a
passage or not (e.g., it depends also on the object’s morphology), the heuristic does not
guarantee the removal of all local minima (see Figure 4.6). On the other hand, setting wsp
higher than the smallest object dimension, or, more in general, too high, might result in
the pruning of the majority of (or all) feasible paths.

Figure 4.6: Width is not the only parameter defining whether an object can cross a passage
or not. In the two figures, the narrow passages of the two similar scenarios have the same
width. However the object with L shape can pass through the passage of the right figure,
while cannot for the one of the left figure.

Narrow passage detection. This heuristic is executed during path calculation, when a
camera detects a local minimum due to the presence of a too narrow passage. A narrow
passage is detected when the following set of criteria is verified. Let x be the last visited
configuration and b the visited configuration with the lowest value of h(.). The heuristic
checks the following conditions:

• [h(x) > (h(b) + 10)]: the search algorithm is exploring configurations with h value
of one order of magnitude higher than the lowest visited. This means that the
search algorithm is not exploring configurations that reduce the distance from the
destination.

• [∀cx /∈ skeleton] All the control points cx of the configuration x occupy cells that
are not skeleton cells. Normally, the algorithm tends to calculate paths that follow
the skeleton. If the last visited configuration x is not on the skeleton, it is sign of
anomaly (i.e., a possible local minimum).

• [dist(x, b) > size(O)] dist(x, b) is the Euclidean distance between x and b, and
size(O) is the size of the largest dimension of the moving object O. This check
aims to detect if the search algorithm has started to perform backtracking, or in

4.1. HEURISTICS 21

other words, if the algorithm is exploring different alternative paths that are distant
from configuration b, which the closest to the destination till now.

• [∃cbI /∈ freeSpace] Exists a control point cbI of the configuration bI that collides with
obstacles (it is not in the freeSpace). Configuration bI is calculated starting from b
and performing a 1-step translation in the direction of potential descent, i.e. in the
direction to where the potential decreases. This means that the algorithm stopped
to visit configurations with lower h value because an obstacle occludes the way.

When all the above criteria are verified, the camera has detected a narrow passage. At this
point, the camera places a virtual obstacle over the cells belonging to the passage. The
center centernp of the passage is identified as the cell of bI with lowest potential value.
The algorithm places a virtual obstacle on centernp and on all the cells in the range of
size(O)/2 cells from centernp. Then, it triggers a new distributed potential field diffusion
step that avoids in this way the passage, and, therefore, of being trapped in the associated
local minimum.

4.1.2 Heuristics to improve efficiency

The following two heuristics, blocked cells and loop avoidance, aim, respectively, to reduce
communications and improve path quality.

Blocked cells. The goal of this heuristic is to reduce communications between neighbors
and to improve the speed of path calculation. When a robot camera n is not able to find
a local solution (i.e., it has visited all possible configurations that are reachable from the
starting point but no feasible solution exists), it sends a Local Failure message to the
previous camera m in the path (see Chapter 4). Camera m then resumes path calculation
from the last state reached before sending its path information to n. When m resumes
its local path calculation, the search algorithm will explore new different configurations,
selecting the best ones with respect to the value of g(x). It is however possible that these
new selected configurations are close in position to the configuration that was sent before,
and which caused the generation of the Local failure message from n. That is, the algorithm
might try to connect m’s local path to the same neighbor camera n, sending each time
a Start Message with attached a slightly different configuration. If n has no feasible exit
configurations, this repeated process will result in the continual generation of Local failures
at n, and in the consequent waste of time and generation of multiple messages between the
two camera nodes.

The Blocked cells heuristic, aims to avoid these situations. The cameram that receives a
Local Failure message from neighbor n labels the cells relative to the communicated (failed)
configuration as blocked cells. In its future attempts, m does not try to send further Start
Path messages with configurations laying on the blocked cells. In this way, after the first
few trials, camera m can rapidly focus on totally different new areas, possibly considering
different neighbors to proceed with path construction. The adoption of the heuristic has
the drawback that feasible paths might get removed from the search process following a
local failure.

Loop avoidance. If (n1, n2, . . . , nk) is the sequence of cameras associated to the com-
puted path, and n = ni = nj , for any 1 ≤ i, j ≤ k, i 6= j, a loop is said to be present in the
path if the two configurations entering n at steps i and j can be connected together within

22 CHAPTER 4. THE DISTRIBUTED PATH PLANNER

n’s local area. In this case, the sub-path between ni and nj can be safely removed. From
an operational point of view this is performed in the following way. Given a path, a camera
n checks whether a loop is present or not by controlling its local components of the path.
If a loop is detected, n sends a loop message to its previous camera m in the path. After
receiving the loop message, m deletes its local path and forwards the loop message to its
preceding camera. The process is iterated until the loop message reaches again camera n,
such that the loop is completely removed from the path. In order to avoid the re-creation
of the loop, n perturbs its local potential field in the area where the previous local path
ended. Then n resumes the path planning process.

4.2 Adaptation to changes in the environment

An important advantage of our distributed system is that it can locally and quickly detect
and adapt to a change in the environment that might happen at any place and any time
(e.g., a change in obstacles’ position, or the appearing/disappearing of an obstacle). For
instance, a planning system based on maps built by the moving object/robot itself (e.g.,
using SLAM techniques) cannot effectively cope with these situations since the sensory
range is locally limited. On the other hand, a centralized system, even in presence of
a small change, would correct the Voronoi skeleton, repeat the potential field diffusion
and restart the path planning, which is a set of operations that altogether might require
considerable resources and time. In contrast, in our distributed architecture, the system
can effectively reduce re-initialization costs and time by replanning only a limited part of
the path, through a process of local adaptation to changes.

In the case of detection of a change that blocks the current path, the camera n that
controls the area where the change has happened tries to locally plan an alternative path by
generating a new local potential field, with the constraint of maintaining fixed the original
entrance and exit configurations. If the camera n succeeds in finding an alternative path, it
does not inform its neighbors of the local change, and uses the new local path. Otherwise,
n notifies the destination node (through multi-hop wireless communication) to trigger a
new potential field diffusion process. The destination node decides either to repair the path
(from n to the destination) or to recalculate the entire path (using as start configuration
the current position of the navigating object). The decision for either alternative is taken
in relation to the position of n in the sequence of nodes along the path. E.g., a local repair
is issued when n is close to the final destination. In this case, if the repair process happens
while the object is already performing path navigation, it can continue the navigation
towards n, and when it will arrive at n a new path continuation toward the final destination
will be already available.

4.2.1 Fault tolerance

Another possible change that can occur in the environment consists in the failure of one or
more cameras (e.g., electrical failure, battery depletion). The zePPeLIN’s fully distributed
architecture can guarantee good levels of fault tolerance. In fact, in case a robot camera
included in the path fails and stops to work, neighbor cameras can rapidly detect the
problem (cameras keep sending each other short keep-alive messages) and trigger a repair
process similar to the one described in the previous section. In this way, the network is
able to find a new feasible path, if one exists, even in case of multiple camera failures.
This capability is also observed in the experiments of Section 5.3, where for large errors in

4.2. ADAPTATION TO CHANGES IN THE ENVIRONMENT 23

relative camera positioning, systems with higher density of cameras (i.e., greater number
of cameras in the same environment) show a a better ability to find feasible solutions
compared to systems with lower densities. This is is due to the fact that when some
cameras fail in practice (due to the large error), other cameras can take their place in the
process.

24 CHAPTER 4. THE DISTRIBUTED PATH PLANNER

Chapter 5

Results of simulation experiments

We studied the properties of the system through an extensive set of simulation experi-
ments. The experiments have been designed with the objective of studying the following
characteristics of the system: (i) the robustness to the alignment errors (i.e., wrong esti-
mations of the neighbor’s relative position and orientation), (ii) the effect of the heuristics
on performance, (iii) the scalability in larger environments (keeping the density of cameras
constant), and (iv) the scalability for increasing density of cameras (keeping the environ-
ment size constant), which corresponds to scalability of resources.

Performance metrics. The two main performance metrics we used for system evalua-
tion are the success ratio and the relative path length.

The success ratio is the percentage of successful runs over the total number of executed
runs. The success of a run is determined with a post-evaluation of the resulting final path.
As we described in the previous chapters, due to alignment errors the final path might be
composed of disconnected sub-paths (Figure 4.1). The evaluation of the path consists in
locally connecting the sub-paths to each other and in verifying its feasibility. This is done
running the planning algorithm with the starting and final configurations being respectively
the last and the first configurations of two consecutive sub-paths. This evaluation permits
to verify whether a solution has disconnected sub-paths that can be feasibly reconnected
during the navigation phase or not. If this is not the case, the disconnection results in an
infeasible path, and therefore in a global failure. The reconnection attempt is performed
in a confined subregion, which is bounded by the field of view of the two cameras that
have calculated the two sub-paths, and by a circular region with radius proportional to
the amount of the alignment error (higher error, higher radius). This spatial constriction
aims to find a local reconnection path which only includes a few roto-translations (i.e.,
a very short sub-path), but not the definition of a completely new and alternative path
which connects the two disconnected sub-paths with a large sequence of movements and a
long trajectory.According to this validation procedure, a path calculated by zePPeLIN is
classified as success, invalid, or failure. Success means that the system has found a solution
and all the sub-paths can be feasibly connected. Invalid means that the system has found a
solution but the sub-paths cannot be connected. Failure means that the system has failed
to find a potentially valid solution.

While the success rate in producing feasible paths is the first metric to assess the
effectiveness of the zePPeLIN system, the length of the feasible paths also needs to be
considered to assess its performance. Therefore, we considered as additional metric the
ratio between the length of the calculated path (including reconnection paths) and the

25

26 CHAPTER 5. RESULTS OF SIMULATION EXPERIMENTS

length of the shortest path. The shortest path is calculated on the global map by a
centralized planner without any Voronoi skeleton. That is, the algorithm does not try to
stay as far as possible from the obstacles. In this case, we do not care of calculating a safe
path which keeps a safe distance from the obstacles; rather the objective is to have the
shortest possible path to be used as baseline reference. In the result plots showing relative
path lengths we indicate also the length of the path calculated by the centralized global
planner with an algorithm identical to the one used in the distributed planner (i.e., using
the Voronoi skeleton), but using a single global map.

General experimental setup. The experiments in simulation have been run with a
dedicated multi-process simulator developed for this study. The input for one simula-
tion experiment is a set of three files including: environment description, camera network
formation, and parametric properties. The environment description contains the set of
obstacles on the ground with their positions and dimensions. The camera network for-
mation file contains the list of all camera sensors, their positions, and their IP address.
Parametric properties refer to the values of all the parameters that characterize the system
(e.g., the discretization step, the unitary rotation step, the active heuristics, the standard
deviation of the error in positional measurements, the communication range). A startup
process reads the environment description and generates the image of the ground environ-
ment. Then, it reads the camera network file and launches an independent process for
each camera passing as input: the portion of the ground image relative to the camera field
of view, and the set of neighbors (relative position and IP address). The set of neighbors
is calculated in relation to the position of the camera and its range of communication.
The environment description also includes the start and final configurations of the moving
object. All individual camera processes communicate with each other and collaboratively
plan the path.

The experiments have been run on a machine with 2 AMD Opteron 6128 (8 cores each,
2 GHz, 2x 12 MB L2/L3 cache) and 16 GB RAM. The discretization of the environment for
the purpose of defining unit movements amounts to 15 cells per meter, that is, cells with
size of 6.7 cm. As unitary rotation we used θ = 15◦. The moving object has an “L” shape
with two segments of same length equal to 50 cm. In the planning process, the object is
modeled by three control points as shown in Figure 3.1b. The simulation experiments are
based on automatically generated maps, which differ in the placement of the obstacles. The
maps are generated by placing every square meter a rectangular obstacle with probability
0.5. Obstacle placement is performed by randomly selecting its position, orientation, and
size (sampled between 20 cm and 1 m). The start and the final configurations are kept
fixed for all the maps, respectively in the top-left corner and in the bottom-right corner.

In all the result plots, the performance of the system is evaluated against different
levels of error. Since the error is stochastically generated, we execute multiple runs for
every error level in order to improve the statistical significance of the results. For each
error level we run 10 to 20 runs, depending on the experiment.

5.1 Robustness to relative position errors

In this section we present the results of simulation experiments designed to study the
variation of the performance as a function of different levels of alignment error. We model
the errors on relative position and orientation between cameras as two independent zero-
mean Gaussian distributions with configurable standard deviation. In the experiments, we

5.1. ROBUSTNESS TO RELATIVE POSITION ERRORS 27

vary the standard deviation of the error on one measure, while keeping the error for the
other measure fixed to zero. In Figures 5.1 and 5.2, plots (a) and (b) shows the results
for increasing angle errors, with the position error set to zero. The results for the reverse
setup are shown in plots (c) and (d).

Experimental setup. For the experiments of Figures 5.1 and 5.2 we used 18 different
maps of size 12×7 m2 covered by a sensor network of 25 cameras, which have been deployed
in the environment in a grid formation of 5×5. Each camera has a field of view of 3×2 m2

of the ground, and the network has a topology such that each camera’s field of view has a
rectangular overlapping area with the neighbor’s field of view of width equal to 75 cm.

0.
70

0.
80

0.
90

1.
00

Orientation error [degrees]

S
uc

ce
ss

 r
at

e

0 2 5 10

●

●

●

●

● No heuristics
With Heuristics

(a)

0.
70

0.
80

0.
90

1.
00

Orientation error [degrees]

S
uc

ce
ss

 r
at

e

0 2 5 10

●

●

●

●

● Blocked Cells
Loop Avoidance
Skeleton Pruning
Narrow Passage Detection

(b)

0.
70

0.
80

0.
90

1.
00

Position error [m]

S
uc

ce
ss

 r
at

e

0.00 0.05 0.10 0.15 0.20

●

●
●

●

●

● No heuristics
With Heuristics

(c)

0.
70

0.
80

0.
90

1.
00

Position error [m]

S
uc

ce
ss

 r
at

e

0.00 0.05 0.10 0.15 0.20

●

●

●

● ●

● Blocked Cells
Loop Avoidance
Skeleton Pruning
Narrow Passage Detection

(d)

Figure 5.1: Success rate of the system with respect to alignment errors: comparison of
different planners. (a) Planners with and without heuristics varying the error in the relative
orientation. (b) Planners with the 4 heuristics active independently varying the error in
the relative orientation. (c) Planners with and without heuristics varying the error in the
relative position. (d) Planners with the 4 heuristics active independently varying the error
in the relative position.

28 CHAPTER 5. RESULTS OF SIMULATION EXPERIMENTS

Results for robustness. Figure 5.1 shows that the success rate decreases with the
increase of the alignment error. This is due to the fact that erroneous information of the
overlapping area prevents the connection of partial paths during the planning phase.

Figure 5.2 shows the results for the relative path length metric. Also in this case the
performances decreases for high level of alignment error: the length of the final path is
longer, thus less efficient (in terms of time and energy consumption). This is partially due
to the connection paths, since the final path is the sum of the calculated sub-paths and
the connection paths. When the error is high, the possible disconnection between paths is
larger and consequently also the connection paths are longer. This increases the length of
the final path.

1.
2

1.
4

1.
6

1.
8

Orientation error [degrees]

R
el

at
iv

e
pa

th
 le

ng
th

0 2 5 10

●

●

N H

●
●●

●

N H
●

● ●

N H

●

●

●

●

●

●

N H

G

●

●

●

N − No heuristics
H − With Heuristics
G − Global Planner

(a)

1.
2

1.
4

1.
6

1.
8

Orientation error [degrees]

R
el

at
iv

e
pa

th
 le

ng
th

0 2 5 10

●

●

●

BLSN

●

●

●●

●

●

●

●

●

●

BLSN

●

●

●

●

●
●

●

●

BLSN
●

●

●

●
●

● ●

BLSN

G

●

●

●

●

B − Blocked Cells
L − Loop Avoidance
S − Skeleton Pruning
N − Narrow Passage Detection

(b)

1.
2

1.
4

1.
6

1.
8

Position error [m]

R
el

at
iv

e
pa

th
 le

ng
th

0.00 0.05 0.10 0.15 0.20

●

●

N H

●

●
●●

N H

●●

●

●
N H

●

●
●

N H ●N H

G

●

●

●

N − No heuristics
H − With Heuristics
G − Global Planner

(c)

1.
2

1.
4

1.
6

1.
8

Position error [m]

R
el

at
iv

e
pa

th
 le

ng
th

0.00 0.05 0.10 0.15 0.20

●

●

●

BLSN

●

●

●

●

●

●

●

●

●BLSN
●

●

●●

●

●

●
●

●

BLSN
●

●

●
●

●

BLSN
●

● ●
●
●

●

BLSN

G

●

●

●

●

B − Blocked Cells
L − Loop Avoidance
S − Skeleton Pruning
N − Narrow Passage Detection

(d)

Figure 5.2: Relative path length for various levels of alignment error: comparison of dif-
ferent planners. (a) Planners with and without heuristics varying the error in the relative
orientation. (b) Planners with the 4 heuristics active independently varying the error in
the relative orientation. (c) Planners with and without heuristics varying the error in the
relative position. (d) Planners with the 4 heuristics active independently varying the error
in the relative position.

5.1. ROBUSTNESS TO RELATIVE POSITION ERRORS 29

Results for the impact of the heuristics. In Figures 5.1 and 5.2 we plot the results
for the different planners we propose. More specifically, we show the results of the planner
with and without heuristics (on the left side) and the planners with each of the heuristic
active independently (on the right side). The planner indicated in the figure as the ’planner
with heuristics’ included three heuristics: blocked cells, narrow passage detection, and loop
avoidance. We excluded skeleton pruning because of its low success ratio performance.

A first consideration is the positive effect of the heuristics on the quality of the solutions.
The planner with heuristics is able to calculate on average shorter paths than the planner
without heuristics (Figure 5.2a and 5.2c).

However, this beneficial effect has the disadvantage of a reduction of the success rate
(Figure 5.1). With the increase of the error level, the success rate decreases more rapidly
for the planner with heuristics than for that without heuristics. As described in Section 4.1,
when the planner gets stuck in a local minimum, it executes a backtracking strategy which
is resource demanding. The planning process in a local minima free scenario does not get
stuck and rapidly finds a solution. The heuristics reduce the effect of local minima and
improve the efficiency of the process (time and messages) and of the solution (path length).
However as drawback they reduce the solution space and feasible paths might get removed
from the search process. The effect of each heuristic is discussed in separate paragraphs in
the following.

The skeleton pruning heuristic aims to remove the local minima. It acts during the
phase of skeleton generation: it closes all the passages narrower than the object size.
However, the object has an L shape and it can thus overcome narrow passages with tight
maneuvers between the obstacles. Therefore, in some environments this heuristic closes
valid paths towards the destination. In this way, it does not let the algorithm to find
any valid solution. For this reason, the skeleton pruning heuristic noticeably reduces the
success rate (Figure 5.1b and 5.1d). As an advantage, this heuristics lets the planner
operate in a scenario free of local minima, so that the process can rapidly converge to the
solution without getting trapped. The effect is a more efficient planning process which
avoids backtracking, and produces shorter paths (Figure 5.2b and 5.2d), has a quicker
execution (Table 5.1), and generates a lower number of messages (Table 5.2).

The narrow passage detection heuristic is designed to remove local minima and their
negative effects. It acts during the path calculation phase, and aims to block a passage only
when the planner has realized that it is effectively not feasible. This heuristic improves
efficacy, in terms of path quality (Figure 5.2b and 5.2d) and efficiency, regarding execution
time (Table 5.1), producing at the same time less reduction of the success ratio compared
to skeleton pruning, the other heuristic for local minima. A side effect of this heuristic is
the higher number of messages it generates (Table 5.2). This is due to the fact that, when
a camera detects a local minimum, it triggers a new potential field diffusion phase for the
whole network.

The blocked cells heuristics aims to reduce the exchange of messages between neighbors.
Table 5.2 shows that the heuristic succeeds in this purpose. However, similarly to the other
heuristics, it has a lower success rate.

The loop avoidance heuristic aims to remove loops in the final resulting paths (see
Section 4.1). That is, it aims to improve the quality of the resulting paths. Its effect
is visible in the plots of Figure 5.2b and 5.2d: the when the loop avoidance heuristics is
active, the system can calculate the paths with the shortest length.

30 CHAPTER 5. RESULTS OF SIMULATION EXPERIMENTS

Pos. Err. Orient. Err. Normal BC LA SkP NPD All Heur.

0 0 6.79 8.08 6.91 2.91 2.89 2.52
0 2 6.49 9.95 5.81 3.27 4.79 4.33
0 5 9.61 14.29 7.47 2.74 6.23 5.34
0 10 12.3 15.96 7.89 4.08 8.92 9.23

0.05 0 6.27 7.04 4.95 1.86 4.97 4.5
0.1 0 6.61 9.85 5.84 1.94 5.9 7.25
0.15 0 15.91 12.37 11.66 4.73 9.45 15.29
0.2 0 10.45 16.63 11.6 3.08 6.63 11.42

Table 5.1: Normal: without heuristics. BC: Blocked cells. LA : Loop avoidance. SkP:
Skeleton pruning. NPD: Narrow passage detection. All Heuristics: BC + LA + NPD. This
table shows the execution time (in seconds) of the planners with and without heuristics
with various levels of error. The value is the median of the distribution.

Position Error Orientation Error Normal BC LA SkP NPD All Heur.

0 0 88.38 85.36 85.48 83.16 97.18 86.52
0 2 86.36 85 85.22 84.82 160.58 87.64
0 5 86.86 85.04 85.28 85.44 131.28 89.44
0 10 88.52 85.26 86.08 85.88 164.9 167.36

0.05 0 86.88 85.54 85.72 85.08 90.84 89.88
0.1 0 87.44 86.02 86.3 85.5 138.76 171.06
0.15 0 91.28 86 87.12 87.5 168.08 171
0.2 0 89.92 86.16 87.08 86.8 145.68 174.54

Table 5.2: Number of messages per camera for the planners with and without heuristics
with various levels of error. The reported value is the median of the distribution. Normal:
without heuristics; BC: Blocked cells; LA : Loop avoidance; SkP: Skeleton pruning; NPD:
Narrow passage detection; All Heuristics: BC + LA + NPD.

5.2. SCALABILITY TO ENVIRONMENT SIZE 31

5.2 Scalability to environment size

In this section we present the results of simulation experiments designed to study how the
system scales its performance when environment size increases. We consider environments
whose size is respectively two and three times larger than the size of a baseline environment.

Experimental setup. The experiments have been run considering 30 different maps
with the following sizes: 10 maps of 12×7 m2 (=84 m2), 10 maps of 12×14 m2 (=168 m2),
and 10 maps 12×21 m2 (=252 m2). Since environment size increases, also the camera
network has to be increased correspondingly to cover the entire area. In order to keep
a minimum overlapping area of the fields of view of 75 cm, the network scales to 5×11
cameras for the environments of double size, and to 5×17 cameras for the triple size cases.

Results for efficacy and efficiency. Figure 5.3 shows the success ratio and the relative
path length for different environment sizes. Both the effectiveness (success ratio) and the
efficiency (relative path length) remain constant for larger environments. These results are
indicator of scalability for increasing environment size. Success rate values oscillate in a
range between 100% and 93%. The plots in Figure 5.3a and 5.3b are jagged due to the
strong heterogeneity of the scenarios and the random generation of errors. However, it is
worth to notice, that the percentage of success remains over 93% also for high levels of
error.

Boxplots in Figure 5.3c and 5.3d show the results in terms of relative path length. Also
for this metric the results confirm the scalability of the approach. While for environments
of 84 m2 and 252 m2 the relative path length values are very similar, for environment of
168 m2 the values are slightly higher (about 5%-10% more) and with higher variance. As
discussed above, this difference is due to the strong heterogeneity of the scenarios, which
are randomly generated.

Figure 5.4 shows the efficiency of the system in terms of communication overhead. We
study how the number of messages varies scaling up the environment and the network. In
order to perform a fair comparison of the efficiency performance in the different environ-
ments, the reported values are normalized with respect to the average number of neighbors,
which varies for the different topologies. In fact, the cameras on the edges of the network
have a lower number of neighbors than the cameras in the middle. In our scenario, the
cameras on the corner have 2 neighbors, the cameras on the edge have 3, and the cameras
in the middle have 4. To make the measure as independent as possible from this side effect,
the reported values for the number of communicated messages are calculated as follow:

Messages =
1

kN

N∑
n

pn, (5.1)

where pn is the number of messages received by camera n, N is the total number of
cameras, and k is the average number of neighbors in the network (for example in the case
of a network 5×5, k = 3.2).

The number of messages increases with the network size. The cameras communicate
the most of the messages during the phase of potential field diffusion. This is due to
the architecture of the system which waits for a fixed number of equal messages. When
a camera receives from its neighbors the same potential field message for more than 21
times, the potential is considered as definitive, and the camera terminates the diffusion
phase. When the network size increases, the diffusion process takes more time, and as

32 CHAPTER 5. RESULTS OF SIMULATION EXPERIMENTS

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Orientation error [degrees]

S
uc

ce
ss

 r
at

e

0 2 5 10

●

●

●

●

● Normal
200% Size
300% Size

(a)

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Position error [m]

S
uc

ce
ss

 r
at

e

0.00 0.05 0.10 0.15 0.20

●

●

●

●

●

● Normal
200% Size
300% Size

(b)

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

Orientation error [degrees]

R
el

at
iv

e
pa

th
 le

ng
th

0 2 5 10

●

●

ND T

●

●●●

●

●●
●●

●

●●

●

●●

●

●

ND T

●

●

●

●●●●

ND T

●

●

●

●

●
●

ND T

●

●

●

N − Normal
D − 200% Size
T − 300% Size

(c)

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

Position error [m]

R
el

at
iv

e
pa

th
 le

ng
th

0.00 0.05 0.10 0.15 0.20

●

●

N D T

●
●

●

●

●
●●

N D T

●●

●

●
●

●

●N D T

●

●

●

●

●

●

N D T

●

●●

●

●

●

N D T

●

●

●

N − Normal
D − 200% Size
T − 300% Size

(d)

Figure 5.3: Scalability for environments with increasing size. (a) Success rate varying the
error in the relative orientation. (b) Success rate varying the error in the relative position.
(c) Relative path length varying the error in the relative orientation. (d) Relative path
length varying the error in the relative position.

a consequence the number of messages (often repeated) increases. In our design, the
bandwidth for messages was not an hard constraints, thus the message repetition solution
has been implemented for simplicity. However, in case it is needed, communication during
the diffusion phase can be optimized avoiding to communicate repeatedly the same message
and designing the phase transition with another parameter (e.g., a temporal threshold from
the last received message). In fact, the number of messages communicated during the other
phases is very limited and remains constant for all the studied scenarios in a number ranging
from 3 to 10 messages per camera.

5.3 Scalability of resources

The set of experiments of this section shows how the performance of the system varies when
increasing the number of cameras, while maintaining constant the size of the environment.

5.3. SCALABILITY OF RESOURCES 33

20
30

40
50

60
70

80

Orientation error [degrees]

M
es

sa
ge

s
/ c

am
er

a

0 2 5 10

●

●

●

●

●

ND T

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

ND T

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

ND T

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ND T

●

●

●

N − Normal
D − 200% Size
T − 300% Size

(a)

20
30

40
50

60
70

80

Position error [m]

M
es

sa
ge

s
/ c

am
er

a

0.00 0.05 0.10 0.15 0.20

●

●

●

●

●

N D T

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

N D T

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●●

●

●

●

●

●

●

●

●

N D T

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●●
●

N D T

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

N D T

●

●

●

N − Normal
D − 200% Size
T − 300% Size

(b)

Figure 5.4: Scalability for environment of larger size: efficiency measures. (a) Messages
per camera varying the error in the relative orientation. (b) Messages per camera varying
the error in the relative position.

Experimental setup. The experiment setup is the same as in Section 5.1. We ran
experiments over 10 maps, and for every map we increased the density of the camera
network. The initial network is composed of a grid of 5×5 cameras, which is the minimum
number to fully cover the entire environment. We then increased the density by adding, in
a first test case 25 cameras (+100% = double density), and in a second test case 50 cameras
(+200% = triple density). In both cases, the cameras were assigned with randomly selected
position and orientation. For each of the three setups we ran experiments varying the level
of error on position and orientation and executing 10 runs for each error level. This means
that every point in the plots of Figure 5.5 corresponds to the average of 10 · 10 = 100 runs.

0.
70

0.
80

0.
90

1.
00

Orientation error [degrees]

S
uc

ce
ss

 r
at

e

0 10 20 30

●

●

●

●

● 25 cameras
50 cameras
75 cameras

(a)

0.
70

0.
80

0.
90

1.
00

Position error [m]

S
uc

ce
ss

 r
at

e

0.0 0.2 0.3 0.4

●

●

●

●

● 25 cameras
50 cameras
75 cameras

(b)

Figure 5.5: Scalability for higher number of cameras keeping the environment size constant.
(a) Success rate varying the error in relative orientation. (a) Success rate varying the error
in relative position.

34 CHAPTER 5. RESULTS OF SIMULATION EXPERIMENTS

Results. For high levels of error, the performance of zePPeLIN decreases: Figure 5.5
shows the success rate as a function of alignment errors. These errors, in some cases,
prevent connections between sub-paths in the overlapping area; therefore for high levels of
errors the process more often fails to find a valid path. This negative effect can be reduced
by increasing the number of cameras in the sensor network (Figure 5.5). With the standard
sensor network formation 5× 5, the overlapping area has a width of 75 cm and the moving
object has a length of 50 cm. This formation has a limited margin of error, which allows
the system to cope effectively only with low levels of error (success rate over 95% (first dot
of plots in Figure 5.5). A more dense network has wider overlapping areas, which is aspect
that allows the system to effectively plan valid paths more often and even for high levels
of errors.

The system improves its performances in response to an increase of the resources in
the system (i.e., the number of cameras in the sensor network). In zePPeLIN, the increase
of resources is eased by a distributed, scalable and flexible architecture, which is designed
to allow the user to add new cameras without any need to modify, update or setup the
algorithm.

Chapter 6

Real robot experiments

We completed the experimental evaluation of zePPeLIN with a set of experiments with
real cameras and ground robots. In these experiments, zePPeLIN executes all planning
and navigation phases: it detects moving robot position, it calculates the path from the
current position to the given destination, and provides the instruction to navigate the
ground robots in the environment. The setup adopted for the real world experiments and
the results are described in the rest of the chapter.

The environment. The ground robot moves in an area of 33 m2 where the gray floor
is occluded by red obstacles. This color configuration has been selected for easing the
obstacle detection since it is not the main focus of the work. A sample image of the arena
is shown in Figure 6.1 (Left).

Figure 6.1: Scenario for real robot experiments. (Left) An example arena. The moving
object has to move in the arena avoiding collision with the red obstacles. (Right) The
moving object that follows camera instructions, which is implemented as a set of 2 e-puck
robots interconnected by a rigid structure.

The camera network. The robotic camera network is implemented with a set of 4
cameras, fixed at the ceiling, pointing to the ground and connected to different computers.
Each camera is controlled by an independent process, which cooperates and communicates
wireless with the other processes via UPD sockets. The cameras are placed at an height of
3 m and have a field of view of 4.56×3.06 meters with an image resolution of 640×480. In
our experimental setup we used normal cameras, that cannot autonomously estimate their
relative position with respect to the neighbor cameras. For overcoming this issue, for each
camera an input configuration file specifies the IP addresses and the relative positions of

35

36 CHAPTER 6. REAL ROBOT EXPERIMENTS

its neighbors. The cameras are deployed in a rectangular formation, such as each camera
has an overlapping field of view with two neighbor cameras. All the cameras have the
same orientation, relative distances of 3 m (with the neighbor on the x axis) and 2.38 m
(with the neighbor on the y axis), and a communication range limited to 3.5 m. The error
on the measures of the relative distances and orientation is of the order of 0.1 m and 10◦

respectively.

The moving robot. The holonomic object moving on the ground is implemented as
a set of two non-holonomic robots, the e-puck [17], interconnected by a rigid structure
(see Figure 6.1, right). Each robot can freely rotate on place, while straight direction
movements are constrained by the rigid structure and must be executed in coordination
between the two robot. In this way, the two robots form an object with a relatively large
shape, which is able to rotate and move in any direction. As discussed in Chapter 3, the
path planning algorithm models a moving object by using control points. In this case, the
control points corresponds to the center of the two e-pucks. Each of the two e-pucks has
a colored patch applied on its top, in order to allow the cameras to track their positions
and orientations.

The path planning process. Each camera is controlled by an independent process.
Trough a graphical interface, the user connects to a desired camera and specifies the final
position and orientation of the object. The camera system autonomously detects the
obstacles and the current position of the moving robot in the environment. With this
information, the system calculates the path from the start to the final configuration in a
distributed way, where each camera operates only on its local field of view. The resulting
path is the ordered sequence of local configurations (i.e., an ordered sequence of roto-
translations), where each camera holds the sequence relative to its field of view.

The navigation in the environment. Once the path is defined, the system starts
the navigation phase. The navigation control process cs connected to the camera s that
has the moving robot in its field of view starts the navigation phase. Using the camera,
process cs tracks the current position of the two e-pucks and sends them via Bluetooth
two independent messages with the information of the relative movement to be performed,
that can be either a rotation in place or a translation. Each e-puck, when it completes the
required movement, sends a notification message back to cs. Iteratively, using the current
position of the two robots and the next configuration to be reached, as specified by the
locally planned path, the control process calculates and sends the relative movement that
each robot has to perform next. In this way the camera-robot system operates in a closed
loop, such that it is able to correct possible path implementation errors.

When process cs navigates the robots to the last position of the its local path ps, it
communicates with the navigation control process cn of the next camera n in the path in
order to let it take control and continue robot navigation. It might happen that the e-puck
system completely enters the field of view of n before the execution of path ps is completed
(e.g., because of little errors in navigation, or because of a relatively large overlapping
between the fields of view). When this happens, since process cn has better information
than cs regarding its local environment, it is appropriate that n takes control. Therefore,
n tries to plan a local path pconn which connects the current position of the robots to the
closest point of the calculated path pn. If a connection is found, it means that n can locally
navigate the robots to a configuration in pn and continue the navigation on pn as expected.

37

In this case, the process n sends a messages to process cs requesting the control. On the
reception of this message, cs interrupts the navigation and hands the control to cn.

The process described for cameras s and n is then iterated between all cameras involved
in the planned path, until the moving robots reach the desired destination. A few sample
videos showing path calculation and path navigation are available at the supplementary
page1. The videos are shown three times faster than reality. In the videos, when a camera
passes the navigation control to the next camera, a connection path is calculated, which
is drawn in yellow. A camera icon shows which camera is taking control. Every time the
control is passed from one camera to the next one the two robots rotate in place before
starting to move. This is due to the following reason. In order to make the tracking process
simple and scalable, the same color patch is put on the top of the two e-pucks, such that
there is no need to create new custom patches if new robots are added to the multi-robot
structure. However, this way of proceeding has the drawback that the tracking system has
no way to to distinguish between the two e-pucks, which is needed because each e-puck
has to perform different movements and the control process has to send different messages
to each of them. Therefore, before starting to send instructions, the control process sends,
in sequence, a message to each one of the known addresses of the two e-pucks, asking to
perform a rotation in place. This allows the control process to associate each robot to its
wireless address.

(a) Structured environment. (b) Randomly displaced obstacles.

Figure 6.2: Composite screen-shot of the four fields of view of the four cameras in two
different experimental setups. The planned path (in red the control points and in white
the stylized object) is shown. In this example, the information of the final path is segmented
in three partial paths distributed among the cameras.

Experimental results. We performed experiments on 20 different maps: in 14 of them
the environment is relatively well structured, with the obstacles placed to form straight
walls (see Figure 6.2a for an example), while in the remaining 6 the obstacles are deployed
completely randomly (see Figure 6.2b for a sample scenario). In all the experiments, the
system has been able to calculate valid paths no longer than 150% of the optimal shortest
path, and 115% of the path calculated by the global planner. Figures 6.2a and 6.2b show
the composite screen-shot of the 4 fields of view. Planning time is relatively low, for

1The videos are available at http://iridia.ulb.ac.be/supp/IridiaSupp2012-013/index.html

38 CHAPTER 6. REAL ROBOT EXPERIMENTS

example the planning time for the paths shown in Figures 6.2a and 6.2b is respectively of
4.6 s 7.2 s.

From the mentioned sample videos, it is possible to appreciate that the robots imple-
menting the instructions received from the overhead camera are able to follow the calculated
path with good precision. The system is able to effectively correct local actuation errors
through the continuous tracking of the positions and recalculation of the next relative
movements to communicate.

Chapter 7

Related work

Path planning is a fundamental problem in mobile robotics and for this reason it has
been extensively studied, mainly considering centralized and single-robot approaches. An
overview of the established work in this respect can be found in [13, 5, 14]. However,
recently, there is increasing interest for distributed approaches in robotics, and this applies
also to path planning. Work on distributed path planning can be roughly grouped in four
main research threads: (i) on-board multi-robot path planning, (ii) path planning assisted
by a sensor network, (iii) swarm approaches, and (iv) parallelism of computation. Our
work belongs to the second thread. in the following we briefly discuss some of the most
prominent approaches for all the considered threads of research, with a particular emphasis
on the second one.

On-board multi-robot path planning studies [9, 2, 18, 21] propose distributed
planning and navigation algorithms for letting a group of robots moving in the environment
without colliding with the obstacles and with each other. Each work is usually based on
different assumptions and problem statements, which also makes relatively difficult to draw
proper comparisons among the different approaches. In [9, 18] the authors investigate how
the multi-robot system behaves varying the noise in sensor measurements. In [23] the goal
is to keep a predefined formation of the group of robots while moving towards a given
destination. In all these works the algorithm runs on-board of the robot, thus the path
is planned directly by the robot which then implements it. Robots need to know the
map of the environment. This information can be either given as input or the robots can
locally sense and explore the environment and generate a map on the fly (e.g., using a
SLAM technique). Both approaches are however not able to deal robustly with large and
dynamic environments, which, on the other hand, are the class of environments we target
with our system.

Path planning assisted by a sensor network has been considered in a number of
works in the last decade [16, 1, 15, 6, 3, 20, 30, 7]. In the considered scenarios, the moving
robot is not required to be equipped with sophisticated devices and powerful CPUs in
order to perceive the environment, build a representation of it (i.e., a map), and calculate
a motion plan. Instead, the robot is guided by a distributed sensor network deployed in
the environment. Compared to the single robot, the sensor network can exploit a better
and distributed point of view, can rely on a much wider coverage of the environment, and
can quickly react to changes in the environment or in the network (even if these happens
at locations distant from the current position of the moving robot). In these works based
on the use of an external sensor networks, the resulting path is commonly defined as the
sequence of sensors that the moving robot has to visit. Sensors act as routers and compute

39

40 CHAPTER 7. RELATED WORK

only the high level plan (i.e., the direction towards the next sensor). When entering the
communication range of a sensor, a robot gets the necessary instruction to proceed with
the plan. The robot is in charge of planning and implement the precise sequence of roto-
translations for moving toward the next router while maneuvering between the obstacles
and other moving robots. The planned path consists of a sequence of nodes. Obstacles in
the environment are usually not explicitly considered, assuming that there is always a valid
path between two neighbor sensors and the moving robot is able to effectively sense the
environment and compute local motion planning. The path planning problem is therefore
reduced to compute the shortest path on a graph, where the sensors are the nodes of the
graph and some notion of neighborhood (e.g., wireless range) defines that two nodes are
connected by an arc that can be navigated by the robots. In this same context, some
works have studied the path planning problem considering additional constraints such as:
avoidance of dangerous areas [15, 3], collision-free trajectories for multi-robot systems [16],
presence of different terrain surfaces (which results in different motion speeds) [30]. The
algorithm presented in [31] makes use of a sensor network with complex spatial sensing
capabilities. The authors of the paper propose the Distributed Probabilistic Roadmaps
algorithm where each sensor calculates a part of the path in the area in its sensing range
and joins its sub-path with the one of its neighbors in a shared area of overlapping sensing.
The resulting path is the sequence of the via-points that allow to avoid collisions with
obstacles and to safely reach the next sensor/router. This study presents strong similarities
with our work: the generated path is sufficiently detailed and takes in account the size and
the shape of the moving robot. However, the authors do not report any study on the
impact of measurement errors for the overlapping areas, which is one of the focus of our
work being this a sort of intrinsic aspect of distributed sensory and planning systems.

Swarm robotics systems are characterized by large number of robots and the use
of local communications and self-organized cooperation. Works in literature exploit these
aspects to perform swarm-level path planning. In [22] the system assumes that a dedicated
sensor network is deployed in the environment which navigates the swarm, similarly as it
happens in the case of the works mentioned above based on the use of external sensor
networks. In [19] the algorithm exploits the same robots in the swarm for creating a chain
of static landmarks to navigate the other robots in the environment. In [10, 4, 8] the
system does not allocate (and fix) any specific resource for building a dedicated sensor
network, but the swarm itself is a mobile sensor network. Each robot while moving in the
environment acts as landmark communicating information for the localization of the local
neighbors and at the same time receives information from the neighbors. In all these works,
both the sensors and/or the robots do not calculate the precise path through a cluttered
environment, but act as high level routers which direct the moving robots to the next
sensor/robot communicating only the direction. The final path consists of the sequence of
sensors to be visited, which is very different from our work where the resulting path is the
precise sequence of roto-translations to be performed to move through a potentially highly
cluttered environment.

Parallelism of computation consists in distributing the planning computation on
different processors for increasing the overall computational speed of the system [12, 27].
In these works, differently from ours, the computing nodes have a global knowledge of the
environment, and the issue is how to optimize the division of computation. A different
approach to parallelism is taken in [21], where the authors cast a multi-robot system as
a distributed multi-computer, with each robot calculating a (possibly different) solution
based on a rapidly-exploring random tree technique which is shared with the other robots

41

according to communication conditions. Using this approach, the algorithm is meant to
exploit perfect communication and have gracefully performance decline otherwise.

42 CHAPTER 7. RELATED WORK

Chapter 8

Conclusions and future work

We have proposed zePPeLIN, a novel system for distributed path planning in large, clut-
tered, and dynamic areas. The system is based on a fully distributed architecture, in which
a swarm of flying robots is deployed in the environment and forms a distributed camera
network. Each robot camera only has a partial, top view of the ground environment where
the object needs to move from the initial to the final configuration. The system of robots
solves the path planning problem cooperatively, through local calculations of potential field
and Voronoi skeleton, and wireless message exchanges. A number of heuristics have been
proposed to enhance both system’s efficiency and effectiveness. The system has also a
built-in component to deal with dynamic changes (e.g., appearance/disappearance of an
obstacle, failure of a camera).

In simulation, we performed an extensive analysis of the performance and of the heuris-
tics, and we also validate the system through a series of experiments using real camera
devices and moving robots. Compared to systems with single cameras or centralized com-
putations, our fully distributed approach is more scalable, flexible, and robust. However,
it introduces efficiency issues and sensory errors. In particular, we studied the impact
on performance of the alignment errors between the fields of view of neighbor cameras; a
type of error which we consider as intrinsic to any distributed system of local, partially
overlapping, maps.

The experimental results show that, as expected, the system performance degrades
with the increase of the alignment error. However, only for very large errors, the drop in
performance becomes significant. Errors on distance and angle, results in slightly different
performance drops, with the error on the angle having a larger impact in this respect. The
impact of the heuristics on performance is, in general, of improving quality (path length)
and efficiency (computation time, communication overhead), but reducing, at the same
time the, the success rate in finding feasible paths. The system shows relatively good
scalability in terms of number and density of cameras.

Since in principle the zePPeLIN distributed algorithm can be used with any networked
system of devices, given that each device is capable to build a local map of the environment
in its ’field of view’ (e.g., a kinect), as a future work we intend to explore the use of different
devices instead of video cameras. Moreover, we intend to extend the system adding general
mechanisms to manage, and possibly reduce, the overlapping errors. Additional tests will
consider the inclusion of dynamic obstacles (e.g., including humans or moving robots) and
larger environments.

43

44 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] M. Batalin, M. Hattig, and G. Sukhatme. Mobile robot navigation using a sensor
network. In Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 636–642. IEEE Computer Society Press, Los Alamitos, CA,
April 2004.

[2] S. Bhattacharya, M. Likhachev, and V. Kumar. Multi-agent path planning with mul-
tiple tasks and distance constraints. In Proceedings of IEEE International Conference
on Robotics and Automation (ICRA). IEEE Computer Society Press, Los Alamitos,
CA, 3-8 May 2010.

[3] C. Buragohain, D. Agrawal, and S. Suri. Distributed navigation algorithms for sensor
networks. In Proceedings of IEEE INFOCOM. IEEE Computer Society Press, Los
Alamitos, CA, 2006.

[4] A. Campo, Á. Gutiérrez, S. Nouyan, C. Pinciroli, V. Longchamp, S. Garnier, and
M. Dorigo. Artificial pheromone for path selection by a foraging swarm of robots.
Biological Cybernetics, 103(5):339–352, 2010.

[5] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, and
S. Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementations.
MIT Press, Cambridge, MA, 2005.

[6] P. Corke, R. Peterson, and D. Rus. Localization and navigation assisted by cooper-
ating networked sensors and robots. The International Journal of Robotics Research,
24(9):771–786, 2005.

[7] F. Ducatelle, G. A. Di Caro, C. Pinciroli, and L. Gambardella. Self-organised coop-
eration between robotic swarms. Swarm Intelligence, 5(2):73–96, 2011.

[8] F. Ducatelle, G. A. Di Caro, C. Pinciroli, F. Mondada, and L. Gambardella. Com-
munication assisted navigation in robotic swarms: self-organization and cooperation.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 4981–4988. IEEE Computer Society Press, Los Alamitos, CA,
2011.

[9] A. Fridman, S. Weber, V. Kumar, and M. Kam. Distributed path planning for connec-
tivity under uncertainty by ant colony optimization. In Proceedings of the American
Control Conference, pages 1952 –1958. IEEE Computer Society Press, Los Alamitos,
CA, 2008.

[10] Á. Gutiérrez, A. Campo, F. Monasterio-Huelin, L. Magdalena, and M. Dorigo. Collec-
tive decision-making based on social odometry. Neural Computing and Applications,
19(6):807–823, 2010.

45

46 BIBLIOGRAPHY

[11] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics,
4(2):100–107, 1968.

[12] D. Henrich. Fast motion planning by parallel processing – Review. Journal of Intel-
ligent and Robotic Systems, 20:45–69, 1997.

[13] J.-C. Latombe. Robot Motion Planning. Kluwer Academic, 1991.

[14] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[15] Q. Li and D. Rus. Navigation protocols in sensor networks. ACM Transactions on
Sensor Networks, 1:3–35, 2005.

[16] R. Luna, A. Oyama, and K. E. Bekris. Network-guided multi-robot path planning
for resource-constrained planetary rovers. In Proceedings of the 10th International
Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS).
IEEE Computer Society Press, Los Alamitos, CA, 2010.

[17] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat, J.-
C. Zufferey, D. Floreano, and A. Martinoli. The e-puck, a robot designed for education
in engineering. In Proceedings of the 9th Conference on Autonomous Robot Systems
and Competitions, volume 1, pages 59–65. IPCB: Instituto Politecnico de Castelo
Branco, Portugal, 2009.

[18] Y. Mostofi. Decentralized communication-aware motion planning in mobile networks:
An information-gain approach. Journal of Intelligent and Robotic Systems, 56(1-
2):233–256, 2009.

[19] S. Nouyan, A. Campo, and M. Dorigo. Path formation in a robot swarm. Swarm
Intelligence, 2(1):1–23, 2008.

[20] K. O’Hara, V. Bigio, S. Whitt, D. Walker, and T. Balch. Evaluation of a large
scale pervasive embedded network for robot path planning. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA). IEEE Computer
Society Press, Los Alamitos, CA, 2006.

[21] M. Otte and N. Correll. Any-Com multi-robot path-planning: Multi-robot coordina-
tion under communication constraints. In Proceedings of the International Symposium
on Experimental Robotics. 2010.

[22] D. Payton, M. Daily, R. Estowski, M. Howard, and C. Lee. Pheromone robotics.
Autonomous Robots, 11(3):319–324, 2001.

[23] G. A. Pereira, A. K. Das, V. Kumar, and M. Campos. Decentralized motion planning
for multiple robots subject to sensing and communication constraints. In Proceedings
of the Second Multi-Robot Systems Workshop, pages 267–278. 2003.

[24] J. Roberts, T. Stirling, J.-C. Zufferey, and D. Floreano. Quadrotor using minimal
sensing for autonomous indoor flight. In Proceedings of the European Micro Air Vehicle
Conference and Flight Competition (EMAV). 2007.

BIBLIOGRAPHY 47

[25] J. Roberts, T. Stirling, J.-C. Zufferey, and D. Floreano. 2.5D infrared range and
bearing system for collective robotics. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE Computer Society Press,
Los Alamitos, CA, 2009.

[26] T. Stirling, S. Wischmann, and D. Floreano. Energy-efficient indoor search by swarms
of simulated flying robots without global information. Swarm Intelligence, 4(2):117–
143, 2010.

[27] B. Taati, M. Greenspan, and K. Gupta. A dynamic load-balancing parallel search
for enumerative robot path planning. Journal of Intelligent and Robotic Systems,
47:55–85, 2006.

[28] O. Takahashi and R.J. Shilling. Motion planning in a plane using generalized Voronoi
diagrams. IEEE Transactions on Robotics and Automation, 5(2):143–150, 1989.

[29] A. C. Thompson. Minkowski Geometry. Cambridge University Press, Dalhousie Uni-
versity, Nova Scotia, Canada, 1996.

[30] C. M. Vigorito. Distributed path planning for mobile robots using a swarm of in-
teracting reinforcement learners. In Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS). ACM, New York, NY, USA,
2007.

[31] Z. Yao and K. Gupta. Distributed roadmaps for robot navigation in sensor networks.
IEEE Transactions on Robotics, 27(5):997–1004, 2011.

