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Abstract

We study how a swarm of ground-based robots, with no knowledge of
the environment, can be guided to destination by a group of aerial robots.
We show that if the ground-based robots maintain group cohesion, it is
possible to create a closed-loop among aerial robots and ground-based
robots that results in robust navigation even in presence of high sensory
noise. We validate our results through extensive experiments in simulation
and provide a proof-of-concept experiment with real robots.

1 Introduction

Swarm robotics focuses on the study of coordination strategies for large groups
of relatively simple robots. Most of the research in this field concentrates on ho-
mogeneous groups of robots. However, recent work [4, 5, 8, 9] has demonstrated
the advantages of heterogeneous robot swarms. One of the most important
advantages is the possibility to leverage specialization, which can increase the
overall swarm efficiency [1] and makes it thus possible to optimize each robot
type for a specific purpose, lowering their complexity and cost.

In this paper, we focus on a navigation task whereby a swarm of ground-
based robots must reach a target location that they cannot sense, but that is
known by a networked swarm of aerial robots attached to the ceiling. Thus,
the latter must guide the ground-based robots to the target area—we refer
to this as assisted navigation. We propose two novel algorithms to achieve
closed-loop control. By closed-loop control, we mean that each aerial robot
continuously monitors the ground-based robots in range and sends guidance
instructions relative to the current positions of the ground-based robots. In
this way, an aerial robot can correct navigation errors as they occur. Hopping
from aerial robot to aerial robot, the ground-based robots eventually reach the
target.

In both algorithms, we rule out the possibility that an aerial robot calculates
individual instructions for each ground-based robot, as this would pose serious
scalability issues for large group sizes, and impose high computational power
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(a) The eye-bot (b) The foot-bot

Figure 1: The heterogeneous robotic platform.

requirements on the aerial robots. We equally avoid a leader-based approach,
whereby an aerial robot communicates with only one ground-based robot, as this
would hinder robustness. Instead, in both algorithms, an aerial robot considers
ground-based robots as a unique entity. In this way, an aerial robot needs
only to broadcast guidance instructions for the ground-based robot swarm as a
whole. Each ground-based robot, in turn, translates swarm-level guidance into
individual instructions.

The proposed algorithms rely on the fact that a common frame of reference
can be constructed between an aerial robot and the swarm of ground-based
robots. The common frame of reference is used by an aerial robot to commu-
nicate guidance instructions used by the ground-based robots to move. The
difference between the two algorithms is in the way the common frame of refer-
ence is realized. In the first algorithm, we assume that the frame of reference is
shared, i.e., persistent and known by all robots. Experiments show that cohesion
is not strictly necessary for the ground-based robots to reach their destination,
but it makes navigation robust to high sensory noise. Such high level of robust-
ness allowed us to devise the second algorithm, in which a common, undisputed
reference frame is not available (non-shared reference). Thus, the robots must
reconstruct an individual approximation of it from local sensory data. Results
show that, also in this case, cohesion among the ground-based robots is enough
to ensure highly robust navigation.

The paper is organized as follows. In Section 2, we describe the robotics
platform we used to implement and test our approach. In Sections 3 and 4, we
present and validate the two algorithms for closed-loop assisted navigation. In
Section 5, we review related work and conclude the paper indicating directions
for future work.
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2 The Robots

Our robot swarm is composed of aerial robots called eye-bots (Fig. 1(a)) and
ground-based robots called foot-bots (Fig. 1(b)). Eye-bots [13] are quad-rotor
equipped robots capable of flying and attaching to the ceiling. They are equipped
with a camera which allows them to monitor what happens on the ground. Foot-
bots [2] are mobile robots that maneuver with a combined system of track and
wheels. They are equipped with proximity sensors and a camera facing towards
the ceiling.

Communication between eye-bots and foot-bots can occur in two ways. The
first way is visual: both are equipped with an RGB LED ring enabling them
to convey information to robots within range. The second way is via a range
and bearing system [14] mounted on both types of robot. This system allows
the robots to broadcast and receive messages either from neighbors in the same
plane, or in a cone above the foot-bots or beneath the eye-bots. Furthermore, the
system allows for situated communication, meaning that recipients of a message
know both the content of the message and the spatial origin of the message
(with respect to their own frame of reference).

3 Assisted Navigation With Shared Reference

In classical control theory, a closed-loop is achieved when the difference among
the system output and the desired reference is fed back as input to the system
and used to correct the system’s behavior [11]. In our work, the controlled
system is a group of foot-bots and the control system is an eye-bot. The eye-
bot continuously monitors the position of the center of mass of the foot-bots
beneath. The reference value is the target location that the foot-bots must
reach. The output of the eye-bot is the guidance vector ~d.

In Section 3.1, we describe the basic communication algorithm between the
eye-bot and the foot-bots. In Section 3.2, we describe the cohesion algorithm
we employed. In Section 3.3 we analyze the system performance.

3.1 Aerial–Ground Robot Communication

The shared reference frame. Both of the proposed algorithms rely on the
fact that an eye-bot and the foot-bots below share a common frame of reference.
This first algorithm assumes that the frame of reference is shared, i.e., persistent
and known by all robots. A shared frame of reference could be constructed, for
example, from an environmental feature accessible to all robots. Alternatively,
as proposed in [4, 5], an eye-bot could use its body to indicate a reference
vector ~r, and foot-bots would sense such vector. In this work, we follow the
latter approach. The reference vector is used as the x-axis of a right-handed
common reference frame. Therefore, once ~r is known, the other axes are set
without ambiguity. We used the LED ring of the eye-bot to achieve this effect,
by lighting up two LEDs located at opposite locations on the ring in different
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Figure 2: Assisted navigation with shared reference. Calculations by the aerial
robot (left) and by the ground-based robot (right). The center of mass of the
distribution of ground-based robots calculated by the aerial robot is marked
with ‘CoM’.

colors. The upwards-looking camera of the foot-bot detects the LEDs as colored
blobs, from which the reference vector is constructed.

Aerial robot. An eye-bot sends guidance instructions to the foot-bots us-
ing the range and bearing system. Guidance instructions consist of a direction
vector ~d expressed with respect to the common reference frame. Since the foot-
bots are on the ground, for an eye-bot it is sufficient to perform two-dimensional
calculations (see also Figure 2). Thus, both ~r and ~d are two-dimensional vec-
tors. To calculate ~d, the eye-bot first calculates the center of mass ~ce of the
distribution of the foot-bots beneath. Each foot-bot keeps its LED ring lit, so
that the eye-bot camera can detect the foot-bots as colored blobs. Vector ~ce is
calculated simply as the center of mass of the positions of the sensed blobs.

We indicate with ~de the position on the ground where the eye-bot would like
the foot-bots to go to. Vector ~de is the result of motion planning by the eye-bot
(for a distributed algorithm to calculate ~de, see [12]). If the reference vector ~r

is set as the local x-axis of the eye-bot, to obtain the direction vector ~d, the
eye-bot computes ~d = ~de − ~ce.

Ground-based robot. From the point of view of a foot-bot, the reference
vector ~r is sensed with respect to its local reference frame as a vector ~rf (see
also Figure 2). Such vector forms an angle θf with the local x-axis. The foot-
bot must move according to a local direction vector ~df , that is obtained simply
rotating ~d by θf .

3.2 Cohesion

Several approaches exist to achieve cohesion with mobile robots [17]. One of
the simplest and most effective is based on virtual physics [16]. This approach
considers the robots as particles immersed in a virtual potential field. The po-
tential field is “virtual” because each robot uses its sensor readings to calculate
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Figure 3: Geometrical representation of the overflow distance. Robot i is outside
the optimal distribution at destination, so λ∗i > 0. Robot j is inside, so λ∗j = 0.

the force of interaction with nearby robots. In the case of cohesion, such force is
used as a direction vector and is transformed into motion actuation (e.g., wheel
speed).

For our system, we selected the following potential:

V (x) = ε

((
δ

x

)2α

− 2
(

δ

x

)α
)

,

where x is the distance between two robots, δ is the target distance the robots
should keep between each other, and ε is a factor that accounts for the depth of
the minimum of the function in x = δ. When α = 6, V (x) corresponds to the
Lennard-Jones potential [7]. The magnitude of the virtual force of interaction
~f(x) between two robots is given by:

|~f(x)| = −dV

dx
=

2αε

x

((
δ

x

)2α

−
(

δ

x

)α
)

.

In this work, we used the following values for the parameters: δ = 0.4 m,
ε = 8 500 J and α = 0.25. The foot-bots use the range and bearing system
to obtain the distance vectors ~xi to nearby robots, and calculate the force of
interaction ~fi(xi) with each of them. The cohesion interaction vector is then
computed as the average interaction force. The cohesion interaction vector is
summed to ~df to obtain the actual movement vector, in turn transformed into
wheel actuation.

3.3 Experiments

3.3.1 Experimental Setup

We conducted a set of experiments in simulation to analyze the system. The
robots were simulated with ARGoS [10], an accurate physics-based simulator.

In our experiments, a group of foot-bots is deployed in a certain location
in the environment. The task is navigating the environment to reach a target
location that is 12.5 m far from the deployment location and is unknown by the
foot-bots. To assist these robots, 5 eye-bots are attached to the ceiling. They
form a line connecting the foot-bot deployment location to the target location.
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Each eye-bot’s task is to guide the foot-bots within its sensorial range to the
next eye-bot. Thus, navigating from eye-bot to eye-bot, the foot-bot group
eventually reaches the target.

To study our system, we selected two performance measures. The first con-
siders the distance of the foot-bots to the target at the end of the experiment.
However, a simple average of these distances would not be a good performance
measure because, the larger the group size, the higher the average is. To obtain
a measure not dependent on group size, first consider the case in which the
foot-bots are in perfect formation at distance δ = 0.4 m from each other. Each
foot-bot can be seen as a circle whose radius is δ/2. With N foot-bots, the total
area occupied by the circles is A = Nπ(δ/2)2. The tightest foot-bot formation
possible corresponds to the optimal circle packing [6] in a circular region around
the destination point. We can approximate the radius ρ of this circular region
with:

ρ =

√
A

π
=

√
Nδ2

4
.

For each foot-bot i, we calculate its distance to the target λi and define the
overflow distance λ∗i as

λ∗i = max(λi − ρ, 0).

The overall overflow distance λ∗ is calculated as the average over the λ∗i . As
shown in Figure 3, the only foot-bots that contribute to the overall overflow
distance are those outside the optimal circle packing centered in the destination
point. The smaller λ∗i , the closer the robots are to the target location. The
overall overflow distance is our first performance measure.

The second is the number of foot-bots lost. A foot-bot is considered lost
when it has not been in communication with an eye-bot for some time, because
without directional information it cannot proceed by itself. However, connec-
tivity may be lost temporarily, so a certain degree of tolerance is necessary.
Therefore, a foot-bot that has just lost contact with an eye-bot keeps moving
along the last received direction for a predefined amount of time. After this
time, if the foot-bot still has not restored contact with an eye-bot, the foot-bot
stops on spot and declares itself lost.

3.3.2 Results Without Sensory Noise And Bias

In this first set of experiments, we tested our system under the assumption that
the robots’ sensors are not affected by noise and always return correct readings.

Figure 5(a) compares the distribution of λ∗i over 100 experimental runs when
the robots do not maintain cohesion and when they do. In these experiments, the
foot-bot group size ranges from 1 to 25. The box plots show that, even though
cohesion is not strictly necessary for the foot-bots to reach their destination, it
increases significantly the performance of the system. In fact, with cohesion,
the overall overflow distance is zero for all the group sizes we tested.

Furthermore, requiring the foot-bots to maintain cohesion has a dramatic
impact on the number of foot-bots lost. As reported in Figure 5(b), without
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cohesion about a third of the robots lose connectivity with the eye-bots without
being able to restore it. On the contrary, cohesion allows all the robots to
reach their destination. In fact, even if some of the robots happen to lose
connectivity, the rest of the swarm is still able to drag them in the right direction.
In this sense, a cohesive swarm has the advantage of covering a large area, thus
increasing the probability that some robots are in contact with an eye-bot. At
any moment, it is enough that a small portion of the robots is informed of the
target direction for the entire group to reach destination [3].

3.3.3 Results With Sensory Noise And Bias

We repeated the previous set of experiments to study the impact of noise and
errors on the system performance. In all these experiments, we employed 25
foot-bots.

We focused our analysis on the foot-bots and indentified two main aspects
that can be affected by noise on the foot-bots: (i) the reference vector ~rf and
(ii) the measure of the distance to nearby robots. Noise on ~rf affects the target
direction ~df , potentially increasing the overall overflow distance. Noise on the
distance measures to neighbors could result in the loss of robots when the foot-
bots maintain cohesion.

Bias on the sensed reference vector ~rf . In these experiments we assume
that the foot-bots have a bias in the way they sense the reference vector ~rf . The
bias is realized as a constant rotation applied to ~rf . Such rotation is chosen
uniformly at random in a certain range by each robot at the beginning of each
run. We tried the following ranges: [−1◦ : 1◦], [−2◦ : 2◦], [−5◦ : 5◦], [−10◦ : 10◦],
and [−20◦ : 20◦].

We report in Figure 5(c) a comparison of the results obtained with and
without cohesion. Without cohesion, the robots, on average, end their journey
with an overall overflow distance λ∗ of almost 1 m. This result is fairly stable for
all the tested ranges with the exception of the widest bias range, [−20◦ : 20◦].
In this case, the average value of λ∗ almost doubles. On the contrary, when
the foot-bots maintain cohesion, the system is always able to reach destination
precisely (λ∗ = 0). In other words, even if the robots suffer from different
bias, cohesion allows them to average out their differences and converge on
the destination point. In fact, cohesion compensates at the swarm level for
individually biased sensory data.

In Figure 5(d), we plot the percentage of foot-bot lost on the way to desti-
nation. When the robots do not maintain cohesion, roughly a third of them is
lost during navigation for all ranges except the widest. In the latter case, on
average, almost half the robots get lost. Cohesion, on the other hand, allows all
robots to reach their destination.

Noise on the sensed reference vector ~rf . In this set of experiments, we
added noise to the reference vector ~rf sensed by each foot-bot. Noise consists of
a rotation applied to ~rf . The rotation is chosen at random at each control step
from a Gaussian distribution with zero mean. We studied the impact of this
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kind of noise on the system for the following values of the standard deviation:
{5◦, 10◦, 20◦}.

In Figure 5(e), the results when the robots maintain cohesion are identical
to those obtained when a bias is applied to ~rf . Interestingly, without cohesion
Gaussian noise has a positive effect on λ∗. This counter-intuitive result can
be explained by visually analyzing the way the foot-bots move when affected
by high noise (standard deviation ¿ 5◦.) Two phenomena happen. The first
phenomenon is that the robots tend to move erratically and collide with other
robots. The second phenomenon is that the robots tend, on average, to go in
the right direction, due to the zero mean of the Gaussian noise. For this reason,
we noticed that the collisions increase over time and along the right path. In
other words, the robots tend to cluster together and form a very tight, cohesive
aggregate that drifts towards the right direction. Therefore, the results are
in line to those obtained when cohesion is explicitly maintained. The above
reasoning also explains why, for high levels of noise, foot-bots are not lost when
cohesion is not explicitly maintained.

Noise in cohesion. In this set of experiments, we added noise to the dis-
tance measures xi that each foot-bot takes to calculate the cohesion interaction
force |~fi(xi)| (see Section 3.2). The noise was taken from a Gaussian distribu-
tion with zero mean. We studied the impact of this kind of noise on the system
for the following values of the standard deviation: {5, 10, 15, 20, 25} cm. We
varied the standard deviation to test its impact on the system performance. In
Figure 7(a), we see the evolution over time of the average of the overall over-
flow distance of the foot-bots for increasing noise levels. Despite the fact that
the time to complete the route increases with the noise level, with cohesion the
foot-bot eventually always get to destination, with no robots lost. Thus, the
system is robust also to this kind of noise.

4 Assisted Navigation With
Non-Shared Reference

In the following, we explain how cohesion can be used to achieve robust closed-
loop control even without the assumption that the reference frame is shared—
the robots cannot exploit a common environmental cue and the eye-bot is not
capable to indicate vector ~r with its body. In this second algorithm, we only
require that the robots can communicate and locate each other (situated com-
munication). Notice that the robots do not need to sense their mutual orienta-
tions—just their mutual positions.

In Section 4.1, we describe the new communication algorithm. The cohesion
algorithm explained in Section 3.2 is unchanged. In Section 4.2 we analyze the
properties of the system.
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Figure 4: Assisted navigation with non-shared reference. The robots do not
agree anymore on the frame of reference (left). Calculations by the aerial robot
(right). The center of mass of the distribution of ground-based robots calculated
by the aerial robot is marked with ‘CoM’.

4.1 Aerial–Ground Robot Communication

The non-shared reference frame. First, let us focus on the case in which
one eye-bot is guiding one foot-bot. The robots can sense their mutual posi-
tions, that is, they can both sense the vector connecting their positions. In
the environment, such vector is three dimensional. However, since navigation is
two-dimensional, it is enough for the robots to be able to sense the projection of
that vector on the ground (for the eye-bot) or on the ceiling (for the foot-bot),
and use such projection as the reference vector ~r. To avoid ambiguity, by design
~r points from the foot-bot to the eye-bot. When the group size is greater than 1,
the eye-bot calculates the center of mass of the distribution of foot-bots ~ce and
sets its local reference vector to -~ce. For the foot-bot nothing changes. However,
when the foot-bot group size is larger than 1, the robots no longer agree on the
exact reference frame (see Figure 4). In fact, while the eye-bot uses the center
of mass, the foot-bots calculate the reference vector from their position to the
eye-bot, which is in general different from that of the center of mass. Therefore,
we will refer to the reference vector calculated by the eye-bot as ~re and to that
calculated by a foot-bot as ~rf . As we will see, even if the robots do not agree
on the reference frame, navigation still works.

Aerial robot. Given the target location for the foot-bots ~de, expressed with
respect to its own local reference frame (see Figure 4), the eye-bot calculates the
vector ~dc

e = ~re + ~de, which represents the movement that the center of mass of
the foot-bots must perform to reach the desired position. Vector ~dc

e is expressed
with respect to the eye-bot’s local reference frame. The direction vector ~d sent
to the foot-bots is obtained by expressing ~dc

e in the reference frame defined by
~re.

Ground-based robot. A foot-bot receives vector ~d, and performs the same
calculations described in Section 3.1.
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4.2 Experiments

To test the performance of our system, we used the same experimental setup as
in Section 3.3.

4.2.1 Results Without Sensory Noise And Bias

Results in Figure 6(a) show that, without cohesion, the foot-bots are basically
unable to reach the destination. With cohesion, instead, results are in line
with those found in Section 3.3.2. Practically in all the runs, the robots reach
their destination in less than 1500 seconds. The outliers present in Figure 6(a)
correspond to few runs in which the robots took longer than 1500 seconds to
reach their destination. With respect to the first algorithm, this algorithm
performs similarly well for both performance measures. The main difference
among the two algorithms is that the first one allows the foot-bots to reach their
destination 10 times faster. This is not surprising, because, with a non-shared
reference, the foot-bots must spend time to keep cohesion, due to the different
perception of the reference vectors ~rf . On the contrary, when the reference
is shared, the foot-bots have a lower probability to diverge, so navigation is
smoother.

Analyzing the individual ~rf calculated by the foot-bots, we noticed that,
with this algorithm, it is as if each robot is experiencing a bias on ~rf that varies
(relatively slowly) over time. For this reason, then, it can be expected that this
algorithm performs somewhat similarly to the case in which a constant bias is
applied to the shared reference.

4.2.2 Results With Sensory Noise And Bias

Both in the case of biased and noisy ~rf , the cohesive foot-bot swarm reaches
the destination without foot-bots lost (results reported in Figures 6(c)–6(f)).
These results are remarkable and highlight how powerful cohesion is in filtering
noise and averaging out the different local references ~rf calculated by the robots.
Even when Gaussian noise is applied to cohesion, the foot-bots (reported in Fig-
ure 7(b)) reach safely their destination. Increasing levels of noise progressively
slow down system, but they do not hinder robustness.

5 Related Work and Conclusions

In this paper, we presented two algorithms to achieve closed-loop control among
aerial robots and ground-based robots in a navigation task, in which the desti-
nation is known only by the aerial robots. We showed that, if the ground-based
robots maintain cohesion, the aerial robots can deal with the ground-based
robots as a unique entity, and the resulting navigation is robust to high sensory
noise.

Previous work in this matter has primarily been done by Ducatelle et al. [4,
5]. They focus on self-organization of a heterogeneous swarm formed by two
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Figure 6: Box plot of the results of the experiments with non-shared reference
after 150 s of simulated time. The bottom and top of the box are the lower and
upper quartiles of the data, respectively. The band near the middle of the box
is the median. The lower whisker extends till 1.5 times the range of the lower
quartile, and the upper whisker till 1.5 times the range of the upper quartile.
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Figure 7: Results of navigation experiments with noise in cohesion.

homogeneous sub-swarms: one of aerial robots and one of ground-based robots.
The robots construct a shared common frame of reference through the LED
ring-equipped body of the aerial robots, in the same way as our first proposed al-
gorithm. The aerial robots communicate guidance information via radio. In [4],
Ducatelle et al. present an algorithm that enables a group of aerial robots to
find the shortest path from a source location to a target location, and back. In
this work, the aerial robots are statically attached to the ceiling. In [5], the
aerial robots are allowed to move, to find optimal attachment locations on the
ceiling. The interesting aspect of this work is that the aerial robots and the
ground-based robots create a closed-loop that allows the swarm to optimize the
relative placement of the aerial robots to achieve better navigation performance
for the ground-based robots.

In these studies, the ground-based robots move individually (not cohesively)
and the aerial robots behave as smart waypoints. The complexity of the tra-
jectories the ground-based robots can follow is limited by the number of aerial
robots in the system. In contrast, with our system, each aerial robot can send
precise guidance instructions whose complexity is arbitrary.

Our system could be also suitable to achieve human-assisted navigation,
whereby a human operator takes the role of the aerial robot. Recent work by
Robuffo et al. [15] demonstrated how a cohesive swarm of flying robots can be
controlled by a human through a suitably configured haptic interface. In this
system, the user controls a predefined leader directly, while the other robots
simply follow it. A similar system could be realized with our algorithms.
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