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Abstract

We study a distributed approach to the path planning problem.
We focus on holonomic kinematic motion in a plane with static ob-
stacles. The problem consists in planning the path of a rigid object
of arbitrary shape that has to be transported from an initial to a final
location through a constrained path. The planner observes the envi-
ronment from above through a visual system. We consider the case in
which the path covers a large area, such that the planner architecture
consists of a wireless network of observer nodes which each can see a
portion of the area. A centralized solution is neither robust nor scal-
able. To overcome these difficulties we propose a fully distributed
approach: each observer node locally calculates the part of the path
relative to the area that it sees, and communicates to its neighbors
the information which permits the cooperative execution of the plan-
ning. Our goal is to calculate effective paths in a way that is scalable,
resource efficient, and robust to calibration and alignment errors.

1 The robot model

As reference models for the planner nodes, we consider the
eye-bot robots, that are being developed in the Swarmanoid
project (http://www.swarmanoid.org). These are small flying
robots that can attach to the ceiling, are equipped with a video
camera pointing to the floor, and have an infrared system
for measuring the relative bearing and distance between two
robots and for wireless communications.

2 Problem description
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Eye-bots attach to the ceiling and cover the entire area be-
tween the start and the goal. Each robot has a limited vision
of the environment and we assume that the partial view of
neighbor robots overlaps, in order to permit the sharing of the
rigid object position. However, the overlapping is subject to
errors deriving from errors in camera calibrations and in the
measure of robots’ relative positioning.
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3 Path planning
Our distributed planner is derived from the numerical poten-
tial field technique for a single camera planner (Latombe et al.,
1991; Choset et al., 2005) which is computed using the wave
front expansion with skeleton on a bidimensional uniform cell
partitioning. This solution first spreads the potential over a
subset of the free space, called skeleton, which corresponds to
the Voronoi diagram; then the potential is computed in the rest
of the map. The potential descent is performed using A∗.

Potential field expansion over the skeleton.

Diffusion of the potential field over the remaining free space.

4 Distributed path planning
The distributed algorithm has three phases:

1. Neighbor detection. Each robot builds a neighbor table, in
which the relative positions of nearby nodes are stored with
some estimation error.

2. Potential field diffusion. Each robot expands the potential
field on its part of the map, and sends to its neighbors the
frontier values. The system minimizes the communication
overhead, transmitting only the information of the skeleton
cells near the frontier.

3. Path calculation. The robot above the start position begins
path calculation. When the trajectory exits from its area of
view, the robot sends the object coordinates to a selected
neighbor. Then the process iterates from robot to robot until
the target position is reached.

Illustration of the potential field diffusion phase.

Examples of path trajectories.

4.1 Heuristics to escape local minima and loops

Given the distributed nature of the approach, the same local
minimum in the potential field can negatively affect the path
calculation phase of multiple robots. Moreover, the calculated
path can present loops due to distributed sub-path composi-
tion. To overcome these issues, which can cause an overhead
in computational and communication resource usage, we pro-
pose three heuristics:

• Smart Loop Avoidance: during path calculation a node can
detect loops. In this case, it coordinates with all involved
nodes to retrace the search back to the beginning of the loop.
• Skeleton Pruning: pre-pruning of the skeleton during the po-

tential field diffusion, to block passages that would not let
the object passing through.
•Narrow Passage Detection: during path calculation a node can

detect a narrow passage, block it, and then repeat the poten-
tial field diffusion step.

5 Experimental results
Through simulation, we tested our approach in a set of 20 sam-
ple scenarios differing in obstacle structure and object shape.

5.1 Effect of heuristics vs. position errors

We studied the effect of the relative positioning error between
nodes in terms of angle and distance error for the algorithm
with and without the heuristics. The results for different error
values are shown in the plots below. In all the experiments the
camera nodes maintain a 4x3 grid formation.
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Performance vs. errors. The error values on the x-axis indicate the stan-
dard deviation of a zero mean Gaussian distribution used to sample the
distance/angle error between the robot pairs. For each scenario we ran 40
trials. Each data point represents the average of 20x40 experiments.

For relatively low errors the performance is always very close
to the reference. While for increasing errors:

• The algorithm with heuristics degrades rapidly in terms of
success rate but slowly for path quality.

• The algorithm without heuristics behaves in opposite way.

In both cases, the system is relatively sensitive to errors on the
angle, while it is quite robust to distance errors.

5.2 Scalability performances

In a distributed approach the imprecision in potential dif-
fusion necessarily increases with the number of nodes. We
study the effect on performance of increasing the density of
the nodes over a fixed area varying angle errors.
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The increase in node number negatively affects performance.
However, node redundancy can at the same time counterbal-
ance the increase in the relative positioning error, as is well
evidenced by the success rate plot.
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