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Abstract

Swarm robotics is an ongoing area of research that is expected to revolutionise various real-
world domains such as agriculture and space exploration. Swarm robotics systems are composed
of a large number of simple and autonomous robots. Each robot locally interacts with other
robots and with the environment following a set of behavioural rules. These individual interac-
tions enable the swarm to exhibit interesting collective behaviours and to accomplish specific
tasks. The main challenge in designing robot swarms is to determine the behavioural rules
that each robot should follow so that the swarm as a whole can perform the desired task. The
performance of robot swarms in a given task depends on the designer’s choice of appropriate
individual behavioural rules. In this thesis, we investigate simple individual behavioural rules
for improving the performance of robot swarms in two major tasks. Using simple behavioural
rules makes the designed solutions possibly usable with simpler platforms such as micro- and
nanorobots.

The first task we address is known as the best-of-n decision problem where the swarm is
required to select the best option among n available alternatives. Solving the best-of-n decision
problem is considered to be a fundamental cognitive skill for robot swarms as it influences
the swarm’s success in other tasks. In this thesis, we introduce individual behavioural rules to
improve the performance of robot swarms in the best-of-n problem. Through these rules, robots
vary their interaction strength over time in a decentralised fashion to balance the acquisition
and the dissemination of information. The proposed behavioural rules allow swarms of simple
noisy robots with constrained communication to limit the effect of individual errors and make
highly accurate collective decisions in a predictable time. In some scenarios where the best
option changes over time, the swarm is required to switch its decision accordingly. In this thesis,
we introduce individual behavioural rules through which the robots process new information
and discard outdated beliefs. These behavioural rules enable robot swarms to adapt their
decisions to various environmental changes, including the appearance of better choices or
the disappearance of the current swarm’s choice. Our analysis shows that relying on local
communication is more favourable for achieving adaptation. This result highlights the benefit
of the local sensing and communication characterising biological and artificial swarms.
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The second task we address in this thesis is the collective resource collection task. In this
task, the robots are asked to retrieve objects that are clustered at unknown locations in the
environment. We address this task because of its numerous potential real-world applications. In
many of these applications, the objects to collect are assigned different importance or value. In
this thesis, we introduce a bio-inspired individual behaviour that allows robot swarms to perform
quality-based resource collection. Similarly to foraging ants, in our proposed behaviour, the
robots coordinate their collection efforts by laying and sensing virtual pheromone trails. The use
of pheromone trails offers an advantageous implementation of the memory and communication
capabilities necessary for the efficient collection of clustered objects. The proposed behaviour
allows robot swarms to satisfy various collection objectives and achieve an optimal resource
collection behaviour in the case of relatively small swarms.

In this thesis, we analyse swarm robotics systems using both minimalistic tools such
as stochastic and multi-agent simulations, and more advanced tools such as physics-based
simulations and real robot experiments. Using these tools, we demonstrate the effectiveness
of the proposed individual behavioural rules in improving the performance of robot swarms
in the addressed tasks. The results we present in this thesis are of potential interest to both
engineers designing robot swarms, and biologists investigating the behavioural rules followed
by individuals in living collective organisms.
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Chapter 1

Introduction

Swarm robotics [76] is the subfield of robotics where systems are composed of a large number
of relatively simple robots. The robots are simple compared to the task they are required to solve,
i.e. the robots would be unable to solve the task individually [76]. These robots locally interact
with each other and with the environment via simple behavioural rules. These local interactions
allow the swarm as a whole to achieve complex tasks without any central control. To achieve
local interactions, the individual robots are generally equipped with a limited sensing and
communication range [76]. The behaviour of robot swarms is often inspired by the functioning
of social insect colonies, such as ants and bees, where the individuals perform simple actions
that when combined enable the colony to accomplish tasks that are not achievable by the
individual. For instance, army ant colonies are able to build bridges to cross gaps, thanks to
two simples rules followed by each ant: stop moving when another ant is walking over its back
and resume moving if no other ant is walking over its back [59, 67].

In the last decade, mobile robots became more capable and reliable due to the recent
developments in environment sensing technologies such as 3D cameras [63], and the huge
advances made in computer science areas including artificial intelligence [124] and 3D machine
vision [224, 225]. Therefore, a fair question concerning swarm robotics emerged: Why use a
swarm of simple robots instead of a single highly-capable robot? The answer is that, similarly
to their biological counterpart (i.e. social insects), robot swarms are expected to offer interesting
advantages that are not always provided by single complex robots. These advantages include
fault tolerance, scalability, adaptivity, and parallelism [16, 85]. Fault tolerance [26] is the
ability of robot swarms to accomplish their assigned task even under the failure of a reasonable
number of robots. The fault tolerance feature is the result of the enormous redundancy achieved
by using large numbers of homogeneous robots and the lack of central control that represents a
single-point-of-failure. Scalability [37, 77] is the capacity of robot swarms to maintain their
performance in the event of the addition or the removal of robots without the need to redesign
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their controllers. Adaptivity [47] is that robot swarms are expected to adapt their behaviour to
environmental changes and to successfully perform their task without prior knowledge of the
environmental conditions. Parallelism [141] is the ability of robot swarms to simultaneously
exploit independent pieces of information and perform different actions. This advantage is a
direct consequence of using a large number of robots that can occupy different areas of the
environment at the same time.

The above advantages make robot swarms suitable for a variety of applications. This
includes tasks performed under uncertain conditions such as in disaster areas [62, 6, 22] and
space exploration [203, 220], and tasks executed in environments where faults are highly
likely and maintenance is not possible such as in hazardous environments [32], underwater
operations [95], and space missions [203]. Robot swarms are also desired in scenarios where
the swarm size is likely to vary, such as in agricultural applications [3] where the number of
robots may be selected depending on the field’s size. Moreover, robot swarms are appropriate
for applications that benefit from parallelisation, such as construction works [186] where
multiple structures can be constructed in parallel to accelerate the process.

Although the numerous advantages offered by swarm robotics and its broad range of
possible applications, this technology is still in the research phase and not ready for deployment
in the real-world [76]. In the last two decades, researchers focused their efforts in laying
the foundation for the swarm robotics field by trying to reproduce the collective behaviours
observed in biological swarms such as social insects colonies [105], bird flocks [14], and
fish schools [120]. The collective behaviours reproduced by researchers are very simple and
constitute a sort of building blocks for the complex behaviours needed in real-world applications.
The reproduced behaviours enables robot swarms to achieve spatial organisation such as pattern
formation [190, 184] and aggregation [202, 58, 188, 189], efficient navigation such as collective
transport [69, 45, 175] and coordinated motion [205, 46], and decision-making abilities such
as task allocation [1, 140, 223] and consensus achievement [167, 211, 130].

To allow robot swarms to achieve the desired collective behaviours, researchers are required
to determine the behavioural rules that each robot must follow for the swarm to manifest
the desired collective behaviour (also know as the macroscopic behaviour) [16, 8]. These
behavioural rules define how the individual robot interacts with other robots within its local
communication range and with environmental elements within its local sensing range. The
set of behavioural rules that the individual robot executes constitute what is referred to as the
individual behaviour [169], or as the microscopic behaviour [167, 165], or sometimes as the
agent-based model [82].

The work presented in this thesis aims at improving the performance of robot swarms
in the best-of-n decision and collective resource collection tasks through the extension of
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existing individual behaviours, via the addition of simple but effective behavioural rules. We
introduce the original contributions made in this thesis and their corresponding publications in
Sections 1.1 and 1.2, respectively. We outline the structure of the thesis in Section 1.3.

1.1 Original contributions of the thesis

This work addresses two well-know collective behaviours. The first behaviour is the so-called
best-of-n decision problem where robot swarms are required to reach a consensus for the best
option among n available alternatives [134, 71, 167, 177, 210, 206, 209, 198]. We looked at
the best-of-n decision problem because solving this problem is considered as a fundamental
cognitive skill for robot swarms due to its high usability within various collective tasks [209].
For instance, to succeed in its landing, a swarm of aerial robots is required to find the most level
landing spot. Similarly, bridge-building robots have to select the location with the smallest gap
to ensure the building of a solid bridge.

Previous research works introduced various individual behaviours to allow robot swarms to
solve the best-of-n decision problem [218, 134, 122, 123, 177, 211, 212, 210, 165, 167, 159,
209]. Most of these behaviours addressed the best-of-n problem in the case of n = 2 options.
However, a recent theoretical analysis [164] has shown that the dynamics of the decision
process are qualitatively different for a higher number of options (i.e. n > 2) especially when
the difference between their qualities is small. The ability of the swarm to reach a consensus
for the best option decreases as the number of options and the similarity between their qualities
increases. Moreover, this theoretical study [164] demonstrated the existence of a dilemma in
these scenarios. If the robots rely mainly on individually acquired information to update their
individual belief about the possible best option, the swarm will be unable to reach a consensus.
However, when the robots update their individual belief mainly based on information acquired
through interaction with others, the swarm accuracy in selecting the best option decreases. In
the work presented in this thesis (see Chapter 4), we validate the presence of such a dilemma
through stochastic analysis and introduce individual behavioural rules whereby robots control
their interaction with others through time to overcome the presented dilemma and achieve
better performance.

Almost all existing studies considered static best-of-n decision problems where the number
of the available options and their qualities remains constant throughout the decision pro-
cess [218, 134, 122, 123, 177, 211, 212, 210, 165, 167, 159, 209]. This assumption is suitable
to model scenarios where solving the best-of-n problem is followed by the execution of other
tasks for which the success depends on the swarm’s decision. Therefore, the above works aimed
at maximising the swarm’s decision accuracy and minimising the time to make a decision. This



4 Introduction

is known in the literature as optimising the speed-accuracy trade-off [142, 212, 210]. However,
only a little attention has been given to dynamic best-of-n decision problems where the number
of options and their qualities may vary during the decision process [149, 148]. In dynamic
best-of-n decision problems, the swarm is not only required to select the best available option
but also to keep its decision up-to-date with the environmental changes. In the work presented
here (see chapter 5), we introduce two individual behavioural rules, each of which, when added
to the existing individual behaviours for solving the best-of-n decision problem, enables the
swarm to adapt its decision to environmental changes.

The second collective behaviour addressed in this thesis is the collective resource collection
task where robots are instructed to collect objects spread in an unknown environment [83, 84,
82, 85, 143, 53, 111, 112, 144, 2, 110]. We address this task for its substantial application
potential in various real-world domains including space exploration, search and rescue, and
the collection of natural resources [220, 16, 221]. In the real world, resources are generally
distributed in the form of clusters [168]. Previous research demonstrated that relying on
memory and communication is necessary for the effective collection of clustered objects [85].
Memory and communication can be implemented using stigmergy [76] where the robots mark
the environment as a way to memorise and share information. Through stigmergy the robots
use the environment as a shared memory to store interesting information without the need for
individual memory [8]. Moreover, stigmergy allows the robots to exchange information without
being present in the same place at the same time [89]. For this reason, researchers in swarm
robotics dedicated considerable attention to the use of stigmergy in the collective resource
collection task [65, 217, 136, 129, 19, 39, 90, 153, 60, 83, 82, 85, 111, 112]. Most of these
works considered that the available objects have the same value, and hence only focused on
finding individual behaviours that allow robot swarms to minimise the time to collect the objects
available in the environments [83, 82, 111, 112]. However, far too little attention has been paid
to the case where the objects have different values. This scenario represents a class of potential
real-world applications where the objects to collect may have different importance or priority.
For instance, in a human-performed search and rescue operation, victims are rescued based on
their risk level, starting from those at higher risk then moving to those at lower risk [38]. Value-
based resource collection has been also observed in some species of foraging ants that assign
different values to the different food types available in their environment [9, 147, 182]. In this
thesis (see Chapter 6), we introduce a simple ant-inspired stigmergy-based individual behaviour
that enables robot swarms to collect objects of different quality. Using the proposed behaviour,
the swarm is able to satisfy various collection objectives observed in real ants, such as focusing
the collection efforts on the best-quality resource [10, 9, 158, 182], the nearest resource [66, 33],
or balancing the distance-quality trade-off [127]. Satisfying multiple objectives makes the
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proposed behaviour suitable for various real-world applications. For instance, focusing the
collection on high-quality objects is required in applications where the quality is essential while
focusing the collection on nearest sources is appropriate for applications where quantity is
important.

To take a step closer to the application of swarm robotics in the real world, a growing number
of research works are validated using real robots. However, most research studies in swarm
robotics are still conducted in simulation [16, 51] because experimenting with a large number
of robots is very challenging and time-consuming. Moreover, simulation allows researchers to
multiply trial-and-error cycles to obtain satisfactory results and to conduct experiments that are
not achievable within the space of a typical research lab such as using very large swarms and
environments. However, for simulation to not be an impeding factor for the advancement of
swarm robotics towards applicability, simulation must allow researchers to correctly predict
the performance of their designed collective behaviours in the real world. Therefore, swarm
robotics simulators should be as accurate as possible in representing real-world conditions. In
this thesis, we validated the results of our works through both physics-based simulations and
real robots experiments. We employed the well-known Kilobot platform [174]. As part of our
efforts to obtain accurate simulation results, we contributed to the development of a Kilobot
simulator which minimises the reality-gap (see Section 3.4.2).

1.2 Publications constituting this thesis

The contributions listed in Section 1.1 have been disseminated through the following research
publications:

Journal articles:

• Talamali, M. S., Saha, A., Marshall, J. A. R., and Reina, A. (2021). When less is more:
robot swarms can better adapt to changes with constrained communication. (submitted)

• Talamali, M. S., Bose, T., Haire, M., Xu, X., Marshall, J. A. R., and Reina, A. (2020).
Sophisticated collective foraging with minimalist agents: a swarm robotics test. Swarm
Intelligence, 14(1):25–56.

Conference papers:

• Talamali, M. S., Marshall, J. A. R., Bose, T., and Reina, A. (2019). Improving collective
decision accuracy via time-varying cross-inhibition. In 2019 International Conference
on Robotics and Automation (ICRA), pages 9652–9659.
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• Font Llenas, A., Talamali, M. S., Xu, X., Marshall, J. A. R., and Reina, A. (2018).
Quality-sensitive foraging by a robot swarm through virtual pheromone trails. In Swarm
Intelligence (ANTS 2018), volume 11172 of LNCS, pages 135–149. Springer.

• Pinciroli, C., Talamali, M. S., Reina, A., Marshall, J. A. R., and Trianni, V. (2018).
Simulating Kilobots within ARGoS: models and experimental validation. In Swarm
Intelligence (ANTS 2018), volume 11172 of LNCS, pages 176–187. Springer.

1.3 Thesis outline

This thesis is structured into seven chapters.
In Chapter 2, we review the literature related to the collective behaviours addressed in this

thesis. In Section 2.1, we look at previous works that introduced individual behaviours for
solving the best-of-n decision problem and highlight their limitations. We dedicate Section 2.2
to overview literature related to stigmergy-based collective resource collection in swarm
robotics. We review works about foraging ants which are the main source of inspiration for
stigmergy-based resource collection. Then we introduce the techniques used by engineers
to implement stigmergic communication is swarm robotics. Finally, we present and review
the development of the Central Place Foraging Algorithm (CPFA) a state-of-the-art collective
resource collection algorithm.

In Chapter 3, we introduce the tools we employed to analyse the swarm systems studied
in this thesis. In Section 3.1, we introduce the Gillespie algorithm [64] we used to analyse
chemical reaction models of our swarm systems. In Sections 3.1 and 3.4, we introduce the
multi-agent simulator and the physics-based swarm robotics simulator respectively, that we
employed to test our proposed individual behaviours. In Section 3.3, we present the Kilobot
platform [174] we employed and the Augmented Reality for Kilobots (ARK) system [160] we
used to enhance its capabilities. Part of the content covered in this chapter has been published
in [138].

In Chapter 4, we introduce individual behavioural rules for improving the performance
of robot swarms in the best-of-n decision problem. We formalise the best-of-n decision
problem and describe our experimental setup in Section 4.1. In Section 4.2, we present the
overall structure of the individual behaviours each robot follows to solve the best-of-n decision
problem. In Section 4.3, we introduce the Direct Comparison (DC) strategy, a simple individual
decision-making algorithm that we compare our proposed individual behaviour against. In
Section 4.4, we present the honeybee-inspired individual decision-making behaviour, analyse its
performance using the Gillespie algorithm [64], and introduce behavioural rules for enhancing
its performance. In Section 4.5, we confirm the benefit of our proposed behavioural rules
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through physics-based swarm robotics simulations and compare their performance to both the
original honeybee-inspired behaviour and the DC algorithm. The work presented in this chapter
has been published in [198].

In Chapter 5, we introduce individual behavioural rules that allow robot swarms to adapt
their decision in the case of dynamic best-of-n decision problems where the best option changes
over time. In Section 5.1, we formalise dynamic best-of-n problems, while in Section 5.2, we
present the types of environmental change we consider. In Section 5.3, we describe the overall
individual behaviour the robots follow to solve the best-of-n problem and adapt to environmental
changes. In Section 5.4, we introduce the individual decision-making behaviour and the
individual behavioural rules we proposed to add to it for achieving adaptation. In Section 5.5,
we define the experiments we conduct to assess the effect of the proposed behavioural rules.
We present and discuss the results of these experiments in Sections 5.6 and 5.7, respectively.
The work presented in this chapter is in preparation for submission to a scientific journal.

In Chapter 6, we propose a stigmergy-based individual behaviour that allows robot swarms
to accomplish collective resource collection where objects have an assigned quality and to
satisfy different collection objectives. In Section 6.1, we define the collective resource collection
task, indicate the required robot capabilities in the case of stigmergy-based solutions, and
explain how we used augmented reality to achieve these capabilities. In Section 6.1, we
introduce the stigmergy-based individual behaviour we propose for solving the considered
resource collection task. In Section 6.3, we present the optimality model we used to assess the
performance of our proposed behaviour. The results of the analysis are shown and discussed in
Section 6.4 and 6.5, respectively.

Finally, in Chapter 7, we summarise the contributions of the thesis and discuss future
research work.





Chapter 2

Literature review

In previous research studies, researchers proposed individual behaviours that allow robot
swarms to achieve a wide range of collective behaviours [16]. These collective behaviours
include spatially-organising behaviours such as aggregation [202, 58, 188, 189], pattern forma-
tion [190, 184], and chain formation [128, 129, 191, 40]; navigation behaviours such as coordi-
nated motion [205, 46] and collective transport [69, 45, 175]; and collective decision-making
behaviours such as consensus achievement [167, 209, 130] and task allocation [1, 140, 223].
In this thesis, we propose simple individual behavioural rules that improve the performance
of robot swarms in the tasks of collective decision-making and collective resource collection.
In this chapter1, we review previous research works that introduced individual behaviours to
allow robot swarms to solve these collective tasks. Research works that proposed individual
behaviours for collective decision-making are reviewed in section 2.1. In section 2.2, we review
research works that investigated individual behaviours for collective resource collection.

2.1 The best-of-n decision problem

Making decisions is a fundamental cognitive skill for all living and artificial systems. Robot
swarms are expected to autonomously solve complex tasks [76] and thus are required to
make collective decisions in which the robots need to reach consensus for one option among
numerous possible alternatives. Selecting the same option enables the swarm to respond to
external stimuli in a unified and coordinated manner. For example, when the swarm needs
to allocate all its resources (e.g. drilling robots) to a single task (e.g. drilling a water well)
which is localised in space (e.g. drilling location), the swarm has first to decide which is the

1In this chapter, parts of section 2.2 are a verbatim reproduce of parts of the "Related works" section of the
published manuscript: Talamali, M.S., Bose, T., Haire, M. et al. Sophisticated collective foraging with minimalist
agents: a swarm robotics test. Swarm Intelligence 14, 25–56 (2020).
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best location to perform the task (e.g. the location with a higher likelihood of hosting water
underneath), among the candidate spots, to deploy its workforce. Reaching a consensus would
lead to the effective usage of the swarm’s abilities while dividing the swarm’s resources would
weaken its response and may impede success. In some applications, the available choices are
of equal value to the swarm; hence, the robots are required to reach a consensus for any of
them [57, 78, 130, 157]. This type of decision problem is known as the symmetry-breaking
problem [78, 209, 163]. In other applications, the available choices have different values, and
hence the swarm is required to select the best option among them. This problem is known in
the literature as the best-of-n decision problem [134, 71, 167, 177, 210, 206, 209, 198], where
n is the number of the available alternatives. In swarm robotics, the best-of-n decision problem
received considerable scholarly attention for its general formalisation of consensus problems.
For instance, in the best-of-n problem formalisation, setting the qualities of the options to the
same value allows to study the symmetry-breaking problem [159].

Previous research works proposed numerous individual behaviours that allow robot swarms
to solve the best-of-n decision problem [209]. Some of these behaviours are task-specific as
they enable the swarm to perform a particular consensus-based task (e.g. navigating through the
shortest path [136, 71, 165], or aggregating on the spot with the highest light intensity [100]).
Other research works proposed task-independent behaviours (also called opinion-based be-
haviours [209]). Through these behaviours, robot swarms address the best-of-n decision
problem as a separate task itself. The swarm then solves its primary task based on the agreed
choice. For instance, if the swarm is required to aggregate in the spot with the highest light
intensity, the swarm will firstly decide about which of the available spots has the highest light
intensity, then after reaching consensus, the swarm starts the aggregation process.

In this thesis, we address the best-of-n decision problem as a fundamental cognitive task
that robot swarms may be required to solve as part of any other task. Therefore, we only
review previous individual behaviours that allow robot swarm to solve the best-of-n decision
problem independently of the context (Section 2.1.1). Some of these behaviours were originally
introduced in a specific experimental scenario. Here, we introduce these behaviours in the
general form of the best-of-n decision problem. In Section 2.1.2, we highlight the limitations
of the reviewed behaviours.

2.1.1 Existing individual behaviours for solving the best-of-n problem

The first task-independent behaviour that aimed to allow robot swarms to solve the best-of-n
decision problem has been proposed by Wessnitzer and Melhuish [218]. In this behaviour, each
robot shares its decision about the best option with other robots within its local communication
range. Each robot then uses the received opinions of its peers to update its decision based on the
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majority rule. When applying the majority rule, if the opinions of the neighbouring robots are
equally split between the different opinions, the robot selects an opinion at random. The authors
applied this behaviour in a prey-hunting scenario to allow a robot swarm to reach consensus
on which prey to hunt. In their experiments, the authors focused on the binary scenario (i.e.
two prey). The authors ignored the exploration aspect, and the robots were initially committed
to one of the two prey at random. Through this behaviour, the robots’ reached consensus on
one of the two prey. The authors analysed the performance of the swarm against the robot’s
communication range and the connectivity degree (number of peers the robot considers when
applying the majority rule). Their results revealed that the higher the communication range and
the connectivity degree, the faster and more accurate the swarm’s decision.

Parker and Zhang [134] introduced another individual behaviour for solving the best-of-n
decision problem in swarm robotics. This behaviour is inspired by the nest-site selection
behaviour of social insects [114, 151, 200]. The behaviour proposed by Parker and Zhang [134]
is one of the most complete best-of-n solving behaviours in the literature as it allows the
robots to both decide about the best available alternative and to detect that a consensus has
been reached. Detecting consensus enables the robots to start implementing the outcome of
the decision process. The proposed individual behaviour can be divided into two concurrent
sub-behaviours: the decision-making behaviour that allows the robots to reach consensus on
the best available option, and the quorum-sensing behaviour that enables the swarm to detect
that consensus has been reached. In the decision-making sub-behaviour, each robot can be
in one of four states. The first is the searching state where the robot has no opinion and
explores the environment to find the available options. When a robot encounters an option, it
estimates the option’s quality, commits to it and enters the advocating state. In the advocating
state, the robot advertises its option by sending recruitment messages to other robots within its
local communication range. The frequency at which the robot sends recruitment messages is
proportional to the quality of its option. The robot can also be in the idle state where it keeps
waiting for recruitment messages to act accordingly. When a robot is in the searching, the
advocating, or the idle states and receives a recruitment message for an option, it enters the
researching state where it visits the option’s location to estimate its quality and starts advertising
it (i.e. returning to the advocating state). Since each robot advertises its option with a frequency
that is proportional to the estimated option’s quality, robots are more likely to be recruited for
options with better quality. This drives the swarm’s decision to converge to the highest-quality
option. In the quorum-sensing sub-behaviour, robots estimate how much the other robots agree
with their opinion. Each robot sends messages to its peers to ask them whether they agree with
its opinion or not, the other robots then reply by a "Yes" or a "No" message. By computing
the proportion of "Yes" replies, the robot measures the degree of agreement in the population.
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When the degree of agreement reaches a certain threshold (called the quorum threshold), the
robot detects that consensus has been reached and enters the committed state where it sends
special messages to directly convert robots with a different opinion to its option. Parker and
Zhang tested the proposed behaviour on swarms of up to 11 real robots in the case of n = 2
options. In the conducted tests, the proposed behaviour allowed the swarm to find the true
best option 80% of the time despite the noisy nature of the individual quality estimates made
by the robots. The accuracy of the swarm’s decision increased by increasing the value of the
quorum threshold. It is important to note that applying the quorum-sensing behaviour proposed
by Parker and Zhang [134] requires the robot to store the reply messages and the IDs of the
robots within its communication range, hence the individual robot must have enough memory
capabilities. This limits the usability of the behaviour in simpler platforms such as micro and
nanorobots.

Montes de Oca et al. [122] modified a theoretical majority-based opinion formation model
proposed by Krapivsky and Redner [103] to build a new individual behaviour for solving the
best-of-n decision problem. In the original version of the behaviour by Krapivsky and Redner,
in each time step, a team of three randomly selected robots is formed. Then the three robots
switch their opinion to the opinion adopted by the majority within the team. This process is
continuously repeated until consensus is reached. This behaviour allows the swarm to reach a
consensus for the best option only when the robots opinions are initially biased towards the
best option [122]. This result is undesired because, in reality, robots have no prior knowledge
about which option is the best. Montes de Oca et al. [122] extended this behaviour to enable
the swarm to select the best option even when the initial opinions of the robots are unbiased (i.e.
robots opinion are randomly distributed over the opinions). In Montes de Oca et al.’s extension,
multiple trios are formed at the same time to accelerate the decision process. Moreover, robots
that participate in team-based voting become latent. The robots remain latent for a stochastic
time that is inversely proportional to the quality of their options. The lower the quality of the
robot’s option; the longer the robot remains latent. Through the added latency mechanism,
robots committed to better options are less frequently latent and thus are more often selected
in team formation. This drives better opinions to spread faster and lead the swarm to reach
consensus for the best available option. Montes de Oca et al. tested their proposed behaviour
through a simulated collective transport task where robots are required to transport objects from
one point to another through the shortest path. Montes de Oca et al. selected the well-know
double bridge setup [66] where two paths are available, one long, and one short. Each formed
team was responsible for transporting one object. The latency time spontaneously arose from
the fact that teams selecting the longer path (i.e. the less favourable option) took more time
to arrive (i.e. remained unusable for longer times). Through these experiments, Montes de
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Oca et al. have shown that with an optimal number of simultaneous trios formation, the swarm
selects the shortest path (i.e. the best option) with 86% accuracy. Montes de Oca et al. tested
their proposed behaviour in an easy best-of-n problem (i.e. a large difference between the
options’ qualities). Therefore, it is not clear whether their proposed behaviour allows the swarm
to reach consensus for more difficult problems (i.e. a small difference between the option’s
qualities) and to break the symmetry when the options have equal qualities.

In a later work [123], Montes de Oca et al. extended the behaviour they proposed earlier
in [122] by replacing the majority rule with a more complex opinion update rule. This update
rule is based on the exponential smoothing technique, which is generally used for smoothing
time-dependent data by weighting each data point with a weight that is exponentially decreasing
with time. Using this update rule, each robot continuously holds a belief about each of the n
available options. This belief reflects how much the robot thinks that each of the options is
possibly the best. If the robot’s belief about an option exceeds a threshold, the robot updates
its opinion about the best option to the corresponding option. Each robot shares its opinion
about which option is the best with agents within its communication range. Then in each time
step, the robot uses the exponential smoothing equation to update its belief about the available
options based on the opinion of a randomly selected peer. Similarly to the behaviour proposed
in [122], when an agent updates its opinion to a different option, the agent stops updating its
opinion for a stochastic amount of time. Montes de Oca et al. used Monte Carlo simulations to
demonstrate that the individual behaviour they proposed in [123] allows to solve symmetric
binary problems where two options of equal quality are available. This method of updating
individual opinion requires each robot to memorise a belief about each of the available options
in addition to its opinion about which of them is the best. This requires the robot to have a
large memory (especially when the number of options is high) limiting the transferability of
the behaviour to very minimal swarm robotic platforms.

Scheidler et al. [177] extended the behaviour proposed by Montes de Oca et al. [122]
introducing a new individual behaviour for solving the best-of-n decision problem. In the
behaviour introduced by Scheidler et al. [177], instead of forming teams and applying the
majority rule, robots update their opinions about the best available option following the so-
called k-unanimity rule. To apply the k-unanimity rule, each robot stores the last k opinions
received from other robots. If the last k stored opinions are all the same, the robot switches
its opinion to the corresponding option. Each robot updates its opinion with a frequency that
is inversely proportional to the quality of its selected option, the higher is the quality of the
robot’s option, the less frequently the robot updates its opinion. After each opinion update,
the robot is allowed to capture the opinions of other robots and to share its own opinion with
them for a fixed amount of time independent of the quality of the robot’s option. Therefore,
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robots that are committed to better options share their opinions with others more frequently
than robots that are committed to lower-quality options. This increases the chance that robots
switch their opinions to options with better qualities leading the swarm to reach consensus for
the best available option. Scheidler et al. analysed the dynamics of the decision process both
analytically and using the master equation for up to n = 3 options. Their analysis revealed that
it is possible to control the speed-accuracy trade-off through the parameter k of the k-unanimity
rule. For higher values of the parameter k, the swarm takes more time to reach consensus
but makes more accurate decisions and vice versa. The analysis has shown that the proposed
behaviour allows breaking the symmetry (i.e. allows the swarm to reach consensus when
the options have the same quality). Finally, the analysis revealed that the outcome of the
decision process is influenced by the number of options n, the initial distribution of the robots’
opinions, and the difficulty of the decision problem (i.e. how similar the available options
are). Additionally, Scheidler et al. performed a scalability test where they demonstrated that
larger swarms make slower but more accurate decisions. However, this scalability test was
limited to 50 robots; hence it is not clear how the decision process is influenced in the case of
larger swarms. Previous studies showed that increasing the number of robots might increase
the swarms’ performance up to a critical/optimal number where the swarm’s performance
starts decreasing [73]. Similar to Montes de Oca et al. [122], Scheidler et al. applied their
proposed behaviour for solving the shortest path selection task in the well-known double bridge
setup [66] with a 10 real-robot swarm. Through these experiments, Scheidler et al. validated
their analytically-obtained results.

Valentini et al. [211] proposed another behaviour for solving the best-of-n decision problem.
The behaviour introduced in [211] is called the weighted voter model and is an extension of
the classical voter model [109] wherein each time step a randomly chosen agent embraces the
opinion of a randomly picked neighbour. The weighted voter model extended the classical voter
model by adding a positive feedback mechanism that allows the swarm to reach a consensus
for the best option. In this mechanism, each robot disseminates its opinion for a time that is
proportional to its option’s quality. This mechanism is similar to how house-hunting honeybees
employ recruitment waggle dance for quality-dependent durations [215]. Using the weighted
voter model, the robot’s behaviour is divided into two states, the exploration state where the
robot visits its option to estimate its quality and the dissemination state where the robot moves
randomly in a central place to advertise its opinion. The robot remains in the dissemination
state for a fixed amount of time. During the dissemination period, the robot advertises its
opinion for a time that is proportional to its quality, the better the quality of the robot’s option,
the longer the robots advertises its option. When the dissemination period is over, the robot
applies the classical voter rule by switching its opinion to the opinion of a randomly selected
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robot within its communication range. After updating its opinion, the robot switches to the
exploration state, where it estimates the quality of its current option. Valentini et al. employed
an ODE model, Gillespie simulations [64], and agent-based simulations to analyse the decision
dynamics emerging from using the weighted voter model in case of n = 2 options. This analysis
demonstrated that the weighted voter model enables finite-size swarms to reach consensus for
the best of the two options even under robots’ noisy quality estimations and when the two
options qualities are similar (i.e. symmetry-breaking problem). In later works [212, 210],
Valentini et al., modified the weighted voter model by replacing the classical voter rule they
used in [211] by the majority rule. At the end of the dissemination period, the robot updates
its opinion to the opinion adopted by the majority of robots within its communication range.
Through ODE analysis in the binary scenario (n = 2 options), Valentini et al. [212, 210]
demonstrated that decisions using the majority rule are generally faster than using the voter
model especially when the quality of the two options are similar. The analysis also revealed
that the maximum number of opinions each robot uses when applying the majority rule and the
size of the robot’s neighbourhood (i.e. the average number of robots each robot communicates
with at a time) influence the collective decision of the swarm. The higher the value of these
two quantities, the less accurate and faster the swarm’s decision is, and vice-versa. In [210],
Valentini et al. validated the results they obtained previously using ODE analysis through
implementation on a swarm of 100 real Kilobots.

Reina et al. [165] proposed another individual behaviour for solving the best-of-n decision
problem called the collective decision through cross-inhibition (CDCI) strategy. This behaviour
is inspired by the decision-making behaviour of the house-hunting honeybees [181]. Reina
et al. considered that robots have no prior knowledge about the decision problem; hence robots
were initialised in the uncommitted state and had to explore the environment in search for the
available options. While exploring the environment, if an uncommitted robot encounters an op-
tion, it probabilistically commits to the option. This transition is called discovery. In each time
step, a committed robot attempts to recruit uncommitted robots within its local communication
range by probabilistically sending recruitment messages, and tries to stop other committed
robots from advertising competing options by probabilistically sending cross-inhibition mes-
sages (also called stop signal [181]). When an uncommitted robot receives a recruitment
message, it commits to the corresponding option. This transition is called recruitment. When
a committed robot receives a cross-inhibition message from a robot that is committed to a
different option, it becomes uncommitted. This transition is called cross-inhibition. In each
time step, committed robots probabilistically decide to spontaneously become uncommitted.
This transition is called abandonment. Reina et al. [161, 162, 165, 167] linked the probability
with which the individual robot performs the previous transitions (i.e. microscopic level) to
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the rates at which these transitions occur at the macroscopic level. This micro-macro link
allowed Reina et al. to have a quantitative match between the collective behaviour predicted by
the macroscopic model and the results from robot experiments. In [165], Reina et al. adopted
the value-sensitive macroscopic rates proposed in [132]. In this parameterisation, the robots
discover or get recruited for a particular option with a rate that is proportional to the option’s
quality. The robots spontaneously abandon an option at a rate that is inversely proportional to
the option’s quality and get cross-inhibited (i.e. return to the uncommitted state) with a constant
rate. Through ODE analysis, this value-sensitive parameterisation has been demonstrated
to allow the emergence of interesting collective decision-making behaviours in the binary
case [132]. When the qualities of the two options are different enough, the swarm chooses the
best option. When the two options have equal (or nearly equal) quality, the swarm randomly
selects any of them if their quality is sufficiently high. The probability of the cross-inhibition
transition controls the minimum quality above which two options with similar quality are
considered to be of sufficient quality, and any of them is selected at random. If the quality is
not sufficiently high, the swarm refrains from deciding and remains undecided, waiting for the
appearance of a better alternatives. Reina et al. validated their proposed micro-macro link and
the theoretical findings presented in [132] through physics-based simulations of the shortest
path selection scenario [165]. In a later study [159], Reina et al. tested the collective decision
through cross-inhibition behaviour using a swarm of 150 real Kilobots. This study revealed
that its dynamics are slowed due to spatiality that makes the mixing between agents of different
opinions harder.

2.1.2 Limitations of the existing best-of-n behaviours

In most of the behaviours introduced earlier, each robot updates its opinion based on the opinions
of other robots within its communication range [218, 134, 122, 123, 177, 211, 212, 210]. Thus,
the individual robots need to have considerable memory capabilities to store these opinions,
especially in high-density swarms. Requiring a large memory limits the transferability of
these behaviours to limited platforms such as nano and micro-robots [185, 108, 222]. The
behaviour proposed by Reina et al. [165, 167, 159] limited the robot’s memory requirement to
a single piece of information. The authors assumed that updating the robot’s opinion based
on a randomly-selected neighbour’s opinion can be reduced to using the last acquired opinion
instead of storing the opinions of all the surrounding robots and selecting one of them at random.
The reason for this choice is that a robot that is randomly exploring the environment collects
the opinions of other robots in random order each time. Therefore, selecting the last received
opinion gives the same result as storing all the opinions and choosing one of them at random.
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All the behaviours presented earlier (except the one proposed by Scheidler et al. [177])
were tested in the binary case (i.e. n = 2 options). However, a later theoretical study by Reina
et al. [164] on the best-of-n problem revealed a qualitative change in the dynamics of the
decision process for n > 2 especially when the qualities of the options are similar. The
higher the number of options and the more similar the qualities of the options, the harder
it is for the swarm to reach consensus for the best option. Moreover, some of the previous
behaviours [218, 123] considered the robots’ opinions to be initially equally divided between
the available options. This assumption opposes realistic scenarios where robots do not know
about the decision problem in advance and need to explore the environment to find the available
alternatives [165, 167, 159]. The environment exploration may lead to biased initial distribution
of the robots’ opinions which influences the swarm’s decisions as has been demonstrated in
other behaviours [122, 211, 212, 210, 177].

Almost all previous studies on the best-of-n decision problem [209] assessed the perfor-
mance of the swarm in terms of decision accuracy and speed, i.e. how often and quickly the
swarm selects the best available option. Only the two works by Prasetyo et al. [149, 148] that
evaluated the flexibility of the swarm’s decisions in the best-of-n problem, i.e. the ability of
the swarm to adapt its decision in case of environmental changes. These works [149, 148]
demonstrated that the weighted voter model introduced earlier [211] does not allow the swarm
to adapt its decision to environmental changes. Additionally, the authors proposed two engi-
neered mechanisms that allow adaptation under the weighted voter model. The first mechanism
requires a subpopulation of robots within the swarm to be stubborn. These stubborn robots
remain committed to the same option forever and continuously monitor its quality during their
exploration phase. When the quality of an option becomes higher than the others, the stubborn
robots committed to that option detects the change and reverts the swarm’s decision. In the
second mechanism, the robots have a probability of spontaneously switching their commitment
to other options. This spontaneous opinion switching drives the robots to occasionally reassess
the quality of the available options and detect quality changes. However, these mechanisms
allow adaptation only in case of quality changes and are incapable of detecting other types of
environmental changes such as the appearance of new options or the disappearance of existing
options. Moreover, the two mechanisms require the robots to have prior knowledge about
the available options, which is generally not possible in realistic scenarios. Besides, the two
mechanisms have been tested only in case of n = 2 options, and it is not clear how they will be
implemented for n > 2 options.
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2.2 The collective resource collection task

As part of the work presented in this thesis, we looked at the collective resource collection task
for its promising implications in numerous real-world applications such as space exploration,
search and rescue, and the collection of natural resources [220, 16, 221]. In the collective
resource collection task, the robots are required to retrieve objects that are distributed in an
unknown environment [83, 84, 82, 85, 143, 53, 111, 112, 144, 2, 110]. In previous works,
the objects were either individually uniformly distributed, or grouped into clusters that are
uniformly distributed [137, 83, 85]. The cluster-based distribution is closer to the distribu-
tion of natural resources in the real-world [168]. To effectively retrieve clustered objects,
the robots should rely on both memory and communication [85]. Relying on memory and
communication requires more complex individuals and thus limits the transferability of the
solutions to simpler robotic platforms. However, these two elements can be implemented at
the collective level through the use of stigmergy [76] where robots modify the environment
as a way to communicate with others and as a form of shared memory [8]. For this reason,
significant attention has been given to the use of stigmergic communication in the collective
resource collection task [65, 217, 136, 129, 19, 39, 90, 153, 60, 83, 84, 82, 85, 111, 112]. To
design stigmergy-based resource collection behaviour, engineers have mainly been inspired
by social insect behaviours, especially the behaviour of some ant species that we overview
in Section 2.2.1. In Section 2.2.2, we survey the techniques that engineers have adopted to
implement stigmergy-based foraging robots. Finally, in Section 2.2.3, we review the Central
Place Foraging Algorithm (CPFA) a state-of-the-art stigmergy-based collective algorithm for
effectively performing the resource collection task in swarm robotics.

2.2.1 Bio-inspiration

Some ant species coordinate their food collection by leaving pheromone trails when returning
from a discovered resource to their nest [219, 91]. In these ant species, the deposited pheromone
trails serve as a positive feedback mechanism of mass recruitment which guides nest-mates
to the discovered food sources [194]. Foraging ants, equipped with pheromone concentration
sensors [199], reach food sources by following the deposited pheromone trails with a preference
to higher concentration trails [81, 213, 24]. The modulation of positive feedback (e.g. as a
function of the source quality [9, 147, 182] or footprint frequency [35]) allows ant colonies to
reach various collective patterns, such as selecting the best-quality food source available in
the environment [10, 9, 158, 182], selecting the shortest path linking the food source to the
nest [66, 33], and balancing predation-risk and food quality [127].
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In addition to the ability of collective resource exploitation, adaptation to environmental
fluctuations is a critically important ability for many biological organisms [204], including
foraging ants [41]. The mechanisms behind mass recruitment abilities (i.e. positive feedback)
are generally in opposition to those that allow adaptation and flexibility [196, 204], there-
fore, organisms showing adaptability are generally capable of more complex behaviour. A
remarkably interesting example is offered by Monomorium pharaonis ants which make use of
repellent pheromone as a form of negative feedback [192, 171, 172, 34]. Ants use this repellent
pheromone to mark unrewarding trails, and this could be a strategy to stop the exploitation
of trails that lead to depleted food sources. Other evidence of adaptability in ants has been
documented by [10] who showed that Tetramorium caespitum ants are able to refocus their
foraging efforts from a previously selected lower-quality food source, to a newly available
higher-quality food source. Ants of this species can adapt to the environmental changes because,
in addition to pheromone-based recruitment, they use tandem running to recruit ants to newly
available higher-quality food sources [10]. In contrast, Lasius niger ants, using pheromone-
based recruitment only, are unable to switch their foraging efforts to the newly available food
source. In fact, Lasius niger ants only rely on indirect forms of negative feedback, which
may arise from physical constraints at the food source (e.g. overcrowding or food depletion)
or within the nest (e.g. filling of food reserve) [34]. Finally, in another study, [182] showed
that Temnothorax rugatulus ants employing quality-dependent linear recruitment and quality-
dependent abandonment are able to adapt to the environmental changes. T. rugatulus ants select
the best-quality food source in the case of two unequal-quality sources, equally exploit the two
sources if they have equal qualities, and refocus their foraging efforts in case of changes in
relative qualities [182].

2.2.2 Implementation of stigmergic communication in robotics

To implement the pheromone-based recruitment mechanism in a robot swarm, an important
question concerns the means of implementing pheromone trails; in particular, how the robots
deposit pheromone, how the pheromone trails in the environment evolve, and how pheromone
can be sensed by the robots. Here, we categorise state-of-the-art work in this area into three main
approaches: beacon robots, robots with onboard actuators and sensors, and smart environments.

In the first category of robotic systems, some robots are tasked as static beacon robots
[65, 217, 136, 129, 19, 39, 90], which have the functions of storing pheromone levels and
communicating with other robots in their neighbourhood. The most significant advantage of
this approach is that the system can be implemented with simple robots in largely unknown
and unstructured environments. However, there are some limitations: (i) allocation of beacon
robots means they are not actively contributing to the main task, such as foraging; (ii) in large
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environments, the number of beacon robots increases in order to cope with the communication
requirements, thereby further limiting the number of robots performing main tasks; (iii) beacon
robots become obstacles themselves which restrict the movements of other robot agents. These
issues can be overcome by the creation of mobile beacon robots, which can contribute to the
main task as well as acting as beacons concurrently [191, 40]. However, the performance
of the latter approach relies on finding the correct balance between the swarm size and the
communication range as a function of the environment size.

Researchers have made several attempts to equip robots with onboard actuators and sensors
to implement indirect communication. For example, one early solution by Svennebring
and Koenig [195] was to install marker pens on robots so they could draw lines on the path
as pheromone trails. This method improved robots’ performance in the area coverage task;
however, it did not incorporate pheromone evaporation or diffusion which are features of
real ant trails; evaporation, in particular, is considered important to avoid runaway positive
feedback [60, 56]. Another design proposed by Purnamadjaja and Russell [153] equipped
robots with devices to emit and detect gas, which then provided guidance to robots towards a
source area. The main limitation of this design was the high volatility of the chemicals used.
In [118], Mayet et al. proposed a technique of energising phosphorescent paint using UV-LEDs
mounted on E-Puck robots to mark the path, as well as sensors for picking up the glowing
paint signal representing the pheromone trail, was presented. Although this allowed emulation
of pheromone decay, diffusion could not be emulated. A more recent study by Fujisawa
et al. [54, 55] used ethanol for indirect communication signals between robots, with an ethanol
pump and an ethanol sensor installed on each robot. This implementation preserved the four
characteristics of pheromone: evaporation, diffusion, locality (i.e. pheromone level is only
affected by the local environment) and reactivity (i.e. pheromone evolution is based on reactions
with the environment).

Perhaps the most popular approach in implementing pheromone communication is through a
smart environment [193, 60, 83, 56, 5, 207, 49, 197, 125], which has the capability to store and
to supply virtual pheromone information to robot agents in real-time. The popularity arises from
the fact that this approach is generally low-cost and easily adaptable to different sizes of swarm
and environment. Smart environments may be difficult to install and use for real applications;
rather, such setups are often employed for targeted research experiments. This category can
be further divided into three classes: the usage of (i) Radio-Frequency Identification (RFID)
tags [115, 116, 88, 87, 15, 101]; (ii) simulated pheromone environments, using projected light
or other custom hardware for virtual pheromone implementations [193, 60, 56, 5, 207] , and
(iii) augmented reality tools in which a virtual environment is sensed and acted on by robots
using virtual sensors and actuators [166, 160].
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2.2.3 The Central Place Foraging Algorithm (CPFA)

Previous research works proposed multiple pheromone-based individual behaviours for solving
the collective resource collection task in swarm robotics. The behaviour that received the
most attention in recent years is the so-called Central Place Foraging Algorithm (CPFA)
introduced by Hecker et al. [83], in which robots rely on both individual memory and pheromone
communication to effectively collect the available resources in an unknown environment. In the
CPFA, the robot is initially positioned at the depot where the collected resources are stocked,
and it starts its collection trip by visiting a random location in the environment called the
search site. Once at the randomly selected search site, the robot performs a correlated random
walk in search of the available resources. While searching for resources, the robot has a fixed
probability to give up and return to the nest, and when finding a resource, the robot brings it
back immediately to the depot. If the robot detects more than a single resource at the same site,
the robot memorises the corresponding location. The robot uses the memorised location to
return to collect the remaining resources. This action is known as site fidelity. Additionally, on
its way back to the depot, the robot lays pheromone trails to indicate the clustered resource’s
location to other robots. This action is referred to as recruitment. Hecker et al. considered
different distributions of the resources: the random distribution where single resources are
uniformly distributed in the environment, the clustered distribution where fixed-size clusters
of resources are placed at set locations, and the power-law distribution where clusters of
power-law-distributed sizes are placed at selected locations in the environment. The authors
tested the CPFA’s performance using both simulated and physical robots by evaluating the rate
at which the robots collect the resources for the different distributions, both when robots act
individually or in teams of three. The results revealed that for all distributions the robots collect
resources almost twice as fast when acting in trios than when acting individually. Moreover,
the collection is faster when using pheromone trails (i.e. recruitment) in addition to individual
memory (i.e. site fidelity), especially for the clustered distribution.

A later work by Letendre and Moses [107] used Genetic Algorithms (GA) to find the
CPFA’s parameters that maximise the foraging rate. In this work, the authors demonstrated
that combining site fidelity and pheromone-based recruitment allows the swarm to achieve the
highest foraging rates for all distributions. For the clustered and power-law distributions, using
only site fidelity allows better performance than when using pheromone-based recruitment
only as it allows the robots to better find resources in known areas. However, the authors
suggested that the use of pheromone is better suited in case of depleting resources as it allows
information about the available resources to spread faster within the population. Therefore, the
authors concluded that using both mechanisms enables the swarm to guarantee the required
performance in the different possible scenarios. Another work by Hecker and Moses [84]
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employed GA to optimise the parameters of the CPFA in case of positional and resource
detection errors which degrade the performance of the swarm. The use of GA revealed that
the best strategy in case of positional errors is to spend less time searching for local resources
and to rely less on site fidelity. In case of detection error, the best strategy is to deeply search
local areas and to increase the use of pheromone-based communication. However, the strategy
suggested by the GA in case of a combination of both errors did not improve the performance.
The authors suggested that this is due to the contrasting effect of the two types of errors. The
GA approach has also been used by Hecker and Moses [85] to determine the combination of
the CPFA’s behavioural rules that maximises the performance of the swarm in case of different
resource distributions, sensing errors, and swarm sizes. For low detection errors and highly
clustered resources, the best strategy is to rely on pheromone communication. When the
resources are distributed in clusters of variable size, the robots should rely on site fidelity. In
the case of larger swarms, the robots’ motion has to rely on directed motion to better diffuse in
the environment and overcome crowding.

Hecker et al. [82] extended the CPFA to increase the effectiveness of the algorithm at the
end of the collection process when fewer resources remain in the environment. Following this
extension, when 90% of the resources are collected, the robots switch to the so-called clusters
exploitation behaviour, in which they concentrate their searching efforts in selected regions in
the environment. These regions are computed centrally at the depot based on the location of
the previously collected resources provided by the robots. Improvements resulting from the
clusters’ exploitation are better appreciated in scenarios where resources are highly clustered in
the environment.

The need to bring the retrieved objects to a central depot limits the effectiveness of the
CPFA algorithm as it leads to long travel times [85] and crowded areas [53]. To mitigate
against this issue, Lu et al. [111] extended the CPFA to the case where multiple static depots
are distributed in the environment introducing the Multiple-Place Foraging Algorithm (MPFA).
The goal of the MPFA is to limit the effect of overcrowding observed in larger swarms and
the longer travel times experienced in wider environments on the CPFA’s performance. In the
MPFA, at the start, the robots are randomly distributed over the multiple depots. During the
collection process the robots bring back the collected resources to the nearest depot. Except for
these two differences, the individual robot has an identical behaviour as in the CPFA. Using
physics-based simulations, Lu et al. demonstrated that the MPFA outperforms the CPFA as
it reduces collisions between robots and results in shorter travel times. A later work by Lu
et al. [112] introduced a dynamic version of the MPFA where special robots act as depots that
continuously adjust their positioning in the environment to optimise the collection process.
The dynamic depots adjust their position by moving to the centroid of the resources’ areas
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that the collecting robots recently discovered. The dynamic MPFA allows faster collection
than the CPFA and the static MPFA in both larger environments and for larger swarms. The
performance of the dynamic MPFA remains dominant over the other strategies, even under
sensing and navigation errors.

2.3 Conclusion

The work presented in this thesis introduces individual behavioural rules for improving the
performance of robot swarms in two well-known swarm robotics tasks. The first task is the
best-of-n decision problem where robots are required to reach a consensus for the best option
out of n available alternatives. Solving the best-of-n decision problem is considered to be a
fundamental cognitive skill of robot swarms [209]. Moreover, the best-of-n problem has a
general formalisation that covers multiple decision-making problems such as the symmetry-
breaking problem where the options are all the same and the robots only need to select any of
them. For these reasons, a considerable amount of literature proposed individual behaviours
that allow robot swarms to solve the best-of-n problem. Some works proposed task-specific
behaviours that allow to solve the best-of-n problem within specific collective tasks (e.g.
the aggregation task). Other works proposed generic behaviours for solving the best-of-n
problem independently of the main task of the swarm. In this chapter, we reviewed these
task-independent behaviours and highlighted their limitations.

The second task addressed in this thesis is the collective resource collection task where
robots are required to retrieve objects spread in an unknown environment. This task has
various potential real-world application, including space exploration and natural resources
collection [220, 16, 221]. Natural resources are generally distributed into clusters [168]. To
effectively retrieve clustered objects, the robots need to use both memory and communica-
tion [85]. These two capabilities can be implemented at the collective level using stigmergy [76]
without the need for individually-complex robots. Stigmergy is a communication mean in
which robots mark the environment to communicate with others and to create a shared memory.
In this chapter, we reviewed the behaviour of some ant species that mark the environment
using pheromone trails to coordinate their efforts when collecting nutrient from the environ-
ment. The behaviours of these ant species have been the main source of inspiration for many
stigmergy-based resource collection behaviours in swarm robotics. Besides, we looked at the
different techniques employed by researchers to implement stigmergic communications in
swarm robotics studies. Finally, we introduced the CPFA [83], a state-of-the-art stigmergy-
based algorithm for solving the resource collection task, and reviewed its evolution in the past
few years.





Chapter 3

Analysis of swarm robotics systems

Swarm robotics systems belong to the family of complex systems. Complex systems are
generally very difficult to understand due to their dependence on a large number of parameters
and the non-linearities they contain. To cope with the complexity of these systems, researchers
study them following a step-by-step process [106, 79, 94, 12, 214]. In each step, the system
is represented using an appropriate model which simplifies the system by discarding some
of its parameters. This allows researchers to better understand the effect of the remaining
parameters. In this thesis, two types of models are used to study swarm robotics systems,
chemical reaction models and agent-based models. While these models are introduced in later
chapters, the tools used to analyse them are presented in this chapter. Section 3.1 introduces the
Gillespie algorithm [64, 154] used to analyse chemical reaction models. Sections 3.2 and 3.4
present the multi-agent simulator and the physics-based swarm robotics simulator, respectively,
employed in this thesis to analyse agent-based models. To make a step closer toward the
application of swarm robotics systems in the real world, in this thesis, we implement some of
the designed individual behaviours on real robots. The swarm robotics platform used for real
robot experimentation is presented in Section 3.3.

3.1 Stochastic simulations

In this section, we introduce the Gillespie algorithm [64, 154] used to analyse the chemical
reaction models studied in this thesis. Chemical reaction models are employed to describe
swarm robotics system. Chemical reaction models symbolise swarm robotics systems as
chemical systems where the molecules are the robots, the chemical species of the system
are the sub-populations of robots in different states, and the chemical reactions represent the
interactions between robots and between robots and the environment.
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Chemical (or swarm robotics) systems are stochastic systems as each reaction (or interac-
tion) has a probability of occurring per unit of time. The time evolution of these systems can
be described analytically by the so-called master equation which is a function of independent
variables representing the populations of the chemical species (or robots sub-populations). The
solution of the master equation gives the probability of the presence of each molecular species
(or robots sub-population) at each instant of time. For systems involving large numbers of
species and chemical reactions, analytically solving the master equation is strictly impossible.
For this reason, Gillespie [64] proposed a computational method to determine the stochastic
time evolution of theoretically any spatially homogenous chemical system (or well-mixed
swarm robotics system) independently of solving the master equation. The algorithm proposed
by Gillespie [64] employs Monte Carlo methods [80] to simulate the Markov process that
describes the system’s evolution and hence the solution of the master equation. The Gillespie
algorithm is simple but efficient as it can simulate systems with a large number of species and
complex reactions. The only requirement for the Gillespie algorithm to be usable is to describe
the system as a set of chemical reactions and assign a rate of occurrence for each reaction.

Using the occurrence rates of the chemical reactions governing the system and the initially-
known number of molecules of each chemical species, the Gillespie algorithm describes the
probability that a given reaction happens after a given amount of time as a time-dependent
exponential probability density function (PDF). By using the PDFs of all the reactions and
by applying the Monte Carlo method [80], the algorithm randomly draws which reaction will
happen next and when that will be. The algorithm then updates the number of molecules
of each chemical species, hence the PDFs, and the simulation time. This procedure is then
repeated until the simulation reaches a specified stopping time. Full technical details of the
Gillespie algorithm are given in [64].

In the original Gillespie algorithm, the occurrence rates of the chemical reactions are
considered to be constant throughout the simulation. However, in some systems, in biochemistry,
for example, the occurrence rates of the chemical reactions vary over time due to external
factors such as changes in temperature and volume. For this reason, Purtan and Udrea [154]
proposed a method to make the Gillespie algorithm usable for systems of time-dependent
rates. Purtan and Udrea’s method is applicable to the version of the Gillespie algorithm using
the first-reaction Monte Carlo technique. In its first-reaction version, the original Gillespie
algorithm determines the next reaction to happen and the time that will take by integrating
the PDF of each reaction over time to compute the average time required for the reaction to
happen, then considers that the next reaction to happen is the one with the minimum time (for
details see [64]). Purtan and Udrea [154] suggested that this version of the Gillespie algorithm
can be used to simulate the time evolution for systems with time-variant rates of known time
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functions. Purtan and Udrea [154] achieved this by replacing the constant rates in the original
version by the time functions of the time-variant rates when integrating the PDFs over time to
find the time for the next reaction to happen.

In this thesis, we employ both the original Gillespie algorithm [64] and Purtan and Udrea’s
extension [154] to study swarm robotics systems with constant and time-variant interactions
(see Chapter 4).

3.2 Multi-agent simulations

Multi-agent simulators are used in swarm robotics to analyse and validate the designed collective
behaviours. Multi-agent simulations are minimalistic as they ignore realistic aspects such as
physical interactions between robots, and generalist as they do not aim to represent any specific
robotic platform. However, multi-agent simulations are richer than the stochastic simulations of
Section 3.1 because they consider additional aspects such as local interactions between agents
and spatiality that have been proved to affect collective behaviours [159]. In this section, we
introduce DeMaMAS, the multi-agent simulator employed in this thesis.

In swarm robotics, researchers often use the MASON [113] multi-agent simulator for its
speed, flexibility and ease of use. In this thesis, we used multi-agent simulations to analyse
the designed collective decision-making algorithms only. For this reason, we decided to
employ DeMaMAS (Decision Making Multi-Agent Simulator) [21], a simulator designed
specifically for collective decision-making research. In DeMaMAS, robots are represented
by small coloured circles and options (i.e. choices) are represented by bigger colour-coded
circles (see Figure 3.1). The colour of an agent indicates its choice and its motion state.
For example, the red agents in Figure 3.1 are committed to the red-coloured option and are
exploring the environment through an isotropic random walk, light-red agents are committed to
the red-coloured option and are on their way to measure its quality. Uncommitted agents are
indicated by grey colour. In DeMaMAS, the environment is a square which satisfied periodic
boundary conditions [178, 156]. When an agent crosses a border, it appears on the opposite
one, and when an option is located at a border, it will be seen from the opposite one. This type
of environment allows to avoid spatial correlations that may result from having hard borders.

In DeMaMAS, the agent is composed of three main parts (see Figure 3.2) which are the
sensors, the actuators, and the mind. The sensors enable the agent to acquire the information
necessary to make a decision. The sensors are the eyes and ears which allow the agent to
perceive the available options and receive information from other agents, respectively. The
actuators are the feet and the mouth which allow the agent to explore the environment in
search of the available options, and to disseminate their belief to the other agents, respectively.
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Fig. 3.1 The visual interface of DeMaMAS. The big circles represent the options (i.e. the
choices) while the small circles represent the agents. The colour of an agent indicates its choice
and its motion state. For example, the red agents (i.e. the small red circles) are committed to
the red-coloured option and are randomly exploring the environment. The light-red agents are
committed to the red-coloured option and are on their way to measure its quality. The grey
agents are uncommitted.

The mind embeds the agent’s collective decision-making model. The mind is in charge of
dealing with the information acquired by the sensors, controlling the actuators, memorising the
information required by the agent, and updating the agent’s decision.

DeMaMAS proposes a general and modular structure for the agent’s mind and hence
for collective decision-making models. As depicted by Figure 3.2, the proposed structure
divides the agent’s mind into four main components. The first component is the Sensors
Information Processing which processes the information received through the sensors and
converts it into a single piece of usable information. This information is then transferred to
the second part of the mind, the Update Opinion component, which is in charge of updating
the agent’s decision. The third main component of the mind is the memory where the agent
stores their opinion, parameters of some mind functions, and the information received from
the sensors (before their processing). The fourth component of the mind is the Actuators
Control which controls the navigation and the communication of the agent by setting the
agent’s motion and shared information.
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Fig. 3.2 The general framework of collective decision-making agent-based models proposed in
DeMaMAS.

Each of the previous components of the mind is composed of multiple unitary modules. For
each of these modules, DeMaMAS offers a set of configurations which are basic behavioural
rules of collective-decision making algorithms. The available configurations of the unitary
modules proposed by DeMaMAS are listed and described in detail in [21]. By setting the
configuration of each module, the user is able to build existing collective decision-making
models. Moreover, the user can make new combinations of the proposed configurations to
build new collective decision-making models. In [20], for instance, DeMaMAS was used to
build and compare existing decision models such as the cross-inhibition model [132, 165], the
weighted voter model [211], and the k-Unanimity model [177]. Additionally, by varying some
modules of the existing models, [20] were able to produce novel collective decision-making
models which are more resilient to external attacks.

3.3 Swarm robotics implementation

Stochastic and multi-agent simulations of Sections 3.1 and 3.2 represent effective tools to
analyse collective behaviours. However, implementation on robot swarms gives much more
complete tests as it takes into account additional aspects such as physical interaction between
robots. For this reason, the collective behaviours designed in this thesis are often tested on both
real and simulated robot swarms. In this section, we introduce the Kilobot swarm we used to
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conduct our swarm robotics experimentation. Details on how we simulated the Kilobot swarm
are given in Section 3.4.

3.3.1 The Kilobot robot

The Kilobots (Figure 3.3) are very simple, low cost, scalable, and easy-to-operate robots [174].
Due to these interesting features, the Kilobots quickly became a well-known and broadly used
swarm robotics platform. However, the Kilobots have only three actuators and two sensors
which make their capabilities very limited. The Kilobot is equipped with two vibration motors
that enable its slip-stick differential-drive locomotion. The Kilobot is able to move forward at a
nominal speed v0 ≈ 1 cm/s and rotate in place both in clockwise and anti-clockwise directions
at a rotation speed ω0 ≈ 45 ◦/s. The Kilobot has an infrared (IR) transceiver that allows it to
communicate with other Kilobots in a range of ∼10 cm. Additionally, the IR transceiver allows
the Kilobots to receive information from external IR emitters such as the overhead controller
(OHC) device used to program large numbers of Kilobots simultaneously. The OHC can also
be used to send personalised information to the Kilobots, thus researchers employed it to equip
the Kilobots with virtual sensors (see Section 3.3.2). The Kilobot is also equipped with an
RGB LED that can be used to communicate its internal state to the user or external systems.
For instance, as shown in Section 3.3.2, the Kilobot is augmented with virtual actuators that it
operates using its RGB LED. Finally, the Kilobot is equipped with an ambient-light sensor.

Fig. 3.3 A picture of the Kilobot robot
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3.3.2 The Augmented Reality for Kilobots (ARK) system

Due to the low number of sensors and actuators the Kilobot supports, the experimental
paradigms that can be achieved using the Kilobot are very limited. To widen the range
of the experimental paradigms where the Kilobot can be used, open-source technology has
been developed to expand the Kilobot’s sensory and actuation capabilities via customisable
virtual sensors and actuators [160, 207]. This technology uses the concept of augmented
reality to allow the Kilobots to sense and modify computer-simulated virtual environments in
addition to the real world. In recent years, this technology has been proposed by two different
implementations, the Augmented Reality for Kilobots (ARK) [160] and the Kilogrid [207]
systems.

Fig. 3.4 Picture of the Kilogrid system (image source [207]).

The Kilogrid consists of an electronic table composed of hundreds of IR transceivers and
LEDs (see Figure 3.4) to real-time communicate with the Kilobots moving on the table. Via
the Kilogrid, each Kilobot can communicate and receive considerable amounts of data at high
frequency. The drawback of Kilogrid is its high installation costs. In contrast, the ARK system
reduces the communication frequency between robots and the virtual world but consists of a
cheap and efficient virtualisation system for Kilobots (see details in [160]). In this thesis, we
employ the ARK system due to its low installation cost and its ability to automatically perform
several time and effort-demanding house-keeping tasks such as motor calibration, unique ID
assignment, and experiment video-recording.
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Fig. 3.5 Graphical representation of the ARK architecture (image source [160]).

ARK consists of an overhead camera array to track the Kilobots, an array of IR OHC to
communicate to the Kilobots, and a computer (base control station, BCS) to run the ARK
software and simulate the virtual environment (see the system architecture in Figure 3.5). The
information about the virtual sensors is computed on the BCS, depending on the location of
each robot in the virtual environment. This information is then communicated to the specific
robot with addressed messages via the OHC. The OHC sends 9 bytes messages (similar to the
messages sent between Kilobots) to address three robots at a time, where the information sent
to each robot is packed in 3-byte long ARK messages. In the ARK message, 10 bits are used
to specify the unique Kilobot address assigned to the robots via ARK prior to the experiment.
The remaining 14 bits of the ARK message are used to store information about the robot’s
virtual sensors. Virtual actuation is computed onboard by the Kilobots, communicated with
colour-coded messages via LEDs visible by the overhead cameras, and processed by the BCS,
which updates the virtual environment accordingly. Additionally, the BCS updates the temporal
dynamics of the virtual environment. In this way, each Kilobot can receive personalised
information about its virtual sensors depending on its real-time physical position computed
through a robust vision algorithm which continuously keeps track of ID-assigned Kilobots. The
Kilobot can then autonomously decide when to modify the virtual environment through virtual
actuators. An ARK experiment can be composed of multiple virtual environments of different
structure and spatio-temporal dynamics.

Here is an example to understand the functioning of the ARK system. Let us imagine a
scenario where the robots are tasked to find and transport a resource to a specific location in the
environment. The ARK system will simulate the presence of this resource virtually (i.e. in the
BCS) while the robots are operating in the real environment. ARK tracks the robots’ positions
using cameras and interposes the virtual environment (i.e. the resource) on the captured images.
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ARK equips the real robots with a virtual sensor to detect the simulated resource. This is
achieved by comparing the position of the robots and the position of the virtual (i.e. simulated)
resource. ARK informs the robots about the resource’s presence when the resource is within a
defined distance (i.e. sensing range) from the robot’s position. The decision to interact with the
resource is made by the robots internally. The robots communicate their interaction choices to
the ARK system via their RGB LEDs. For example, the robot can show a blue LED to inform
the ARK system about its decision to transport the resource. ARK will then update the virtual
environment accordingly, i.e., move the virtual resource according to the robot’s movement.
More examples on the functioning of the ARK system can be found in the later chapters and in
[160].

3.3.3 Kilobot’s 3D-printed add-on

Fig. 3.6 A picture of a Kilobot with a 3D-printed ring (originally designed for the study of
[150]) which considerably improves ARK’s performance in terms of tracking and LED colour
detection.

In this thesis, we improved the ARK tracking system by applying to the Kilobots a 3D-
printed light structure illustrated in Figure 3.6. This structure brings the double advantage of
improved crowded tracking and LED colour detection. In fact, in crowded situations, Kilobots
without the ring form a big black mesh and individual robots were difficult to track. Instead,
when using the 3D-printed ring, Kilobots always remain slightly separated, and in the overhead
images, they appear as distinct easy-to-track circles. Additionally, the 3D-printed plastic ring
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reflects and diffuses the Kilobot’s LED light resulting in an improved overhead camera colour
detection in any orientation. This feature is particularly useful for ARK’s virtual actuators that
are implemented through colour-coded LED messages. The 3D-printed structure is open-source
and available at https://diode.group.shef.ac.uk/kilobots

3.4 Swarm robotics simulations

Results in swarm robotics studies are mostly (when not entirely) produced in simulation
[16, 51]. This is because experimentation and debugging with real robots is effort-and-time
demanding due to the numerous hardware issues, battery limitations, and logistic adversities.
Additionally, using swarm robotics simulation researchers are able to evaluate the designs and
parametrisations of their produced behaviours, isolate the process from distracting factors,
and test cases which are not achievable in a research lab such as using large swarm sizes and
large environments. In order to offer an alternative to real robot experiments, swarm robotic
simulations need to be accurate enough to represent reality and fast enough to allow the user to
perform the design cycles required to achieve desired swarm behaviours. Here, we introduce
the ARGoS simulator [139, 138] used in this thesis to simulate the Kilobot swarm. We also
present how this thesis contributed to the improvement of the ARGoS Kilobots extension.
Finally, we introduce the simulated counterpart of the ARK system, which we added to the
ARGoS simulator.

3.4.1 ARGoS simulator

Since the release of the Kilobots in 2012, new simulators such as Kilombo [96] and KBSim [72]
were specially developed to simulate them. Additionally, existing simulators such as V-
REP [173] and ARGoS [139, 138] were upgraded to support the Kilobots. In this thesis we
employ the ARGoS simulator [139, 138]. The main reason why ARGoS is used instead of the
other simulators is its ability to control the trade-off between the simulation speed and accuracy.
In contrast to Kilombo and KBSim which are very fast but minimalistic, or V-REP, which is
accurate but very slow, ARGoS offers simulations of acceptable accuracy at a reasonable speed.
ARGoS achieves a good accuracy by using accurate Kilobot models which implement features
observed in reality. The models used by ARGoS were validated against real-world behaviours
in appropriate experimental setups (for details see [138]). Kilombo and KBSim, instead use
highly simplified models that were never validated. ARGoS achieves reasonable speed and
scalability (simulates 1000 robots in real-time) through its multi-threaded architecture which
takes advantage of the computational power of multi-core processors. Moreover, to improve the

https://diode.group.shef.ac.uk/kilobots
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speed-accuracy trade-off, ARGoS allows the user to specify which elements of the experiment
are influential and thus require accurate simulation, and which elements are negligible and thus
can be coarsely simulated. For instance, the user can decide to which extent physics should be
simulated by selecting one of the supported physics engines.

Another important feature offered by the ARGoS simulator [139] in its Kilobots extension
[138] is the support of cross-compiling, which enables the use of the same control software
in simulation and with real robots. This allows the user to avoid bugs that may result during
the process of translating algorithms between different platforms and to save time by applying
improvements and modifications to a single code instead of two. In contrast, KBSim and
V-REP do not support this feature and require the user to write two different codes, one for
simulation, and one for the real robots. Kilombo, instead, achieves cross-compilation between
real and simulated robots by modifying the original Kilobot API. The new Kilobot API required
by Kilombo sets restrictions on the way the Kilobot control software can be written and make
any improvements or patches released for the Kilobot not directly usable (requiring adaptation
to the Kilombo API).

3.4.2 Minimising the reality-gap for reliable swarm robotics simulations

In this thesis, we contributed to the development of ARGoS Kilobots extension [138] by
improving its accuracy (i.e. minimising the reality-gap). We modelled the noise and inter-
individual variations observed in the Kilobots’ motion. We also tuned the physical interaction
simulation to better simulate collisions between the robots. These contributions were published
in [138] and are presented in this section.

3.4.2.1 Modelling of noise and inter-individual variations

The Kilobot is able to move on a flat surface through the slip-stick differential-drive locomotion
produced by its two vibration motors. This locomotion system is influenced by small variations
such as the position of the motors and the bending of the robot’s legs, resulting in strong
inter-individual variations. For this reason, before each experiment, Kilobots are individually
calibrated to perform their fundamental motions, i.e. to move forward and to turn on the spot
at desired speeds. The calibration process is very difficult as it depends on which surface the
Kilobots move. While most researchers rely on manual calibration, some labs possessing the
ARK system (see Section 3.3.2) rely on its automatic calibration functionality to simultaneously
calibrate tens of robots. Although ARK allows to save the time and effort invested in manual
calibration, the motion of its calibrated robots is still subject to the high noise intrinsically
present in Kilobot slip-stick locomotion. Therefore, Kilobots, either when manually or auto-
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matically calibrated, are never able to perfectly move straight or rotate in place at their normal
speeds. To improve the accuracy of Kilobot simulations, the noisy motion observed in real
robots must be reproduced in simulation. To achieve this in ARGoS, we included a noise
component in the Kilobots’ motion model. We then tuned the noise component to match the
motion observed in reality.

We simulated the Kilobot motion using a differential-drive locomotion model where we
included a noise component in the speed of each wheel. The applied left (ℓ) and right (r) speeds
v̂i (with i ∈ {ℓ,r}) are computed as a function of nominal speeds vi and noise components as
follows:

v̂i = f t
i (vi +bi), i ∈ {ℓ,r} (3.1)

Where fi and bi are Gaussian-distributed random parameters with user-defined mean and
standard deviations, representing per-step actuation noise and per-robot bias added to the
nominal speed vi, respectively. For each robot, the actuation noise fi with i ∈ {ℓ,r} are drawn
from the specified Gaussian distributions at each simulation time-step. The per-robot bias bi,
instead, are drawn only once at the beginning of the experiment.

To reproduce the noisy motion experienced with real Kilobots, we tuned the motion model
of equation (3.1) through experiments performed on a sample of 120 real Kilobots. First, we set
the nominal (noise-free) speeds vi of equation (3.1) to values that produce the Kilobot nominal
speeds. We put vi = 1 cm/s for i ∈ {ℓ,r} to achieve the average Kilobot’s forward speed of
≃ 1 cm/s. We set vℓ = 2 cm/s and vr = 0 for a ∼ 45 ◦/s clockwise rotation and the opposite for
anti-clockwise rotation. We then conducted experiments using 120 different calibrated Kilobots
(6 robots per experiment) to tune the noise distributions of the model of equation (3.1) (i.e.
distributions of fi and bi). In each experiment, we asked the Kilobots to move forward for 60 s
and recorded their trajectories using ARK. We then divided the trajectory of each robot into
10 s displacements. For each displacement, we computed the corresponding speeds v̂i (with
i ∈ {ℓ,r}) of the differential drive model of equation (3.1). Then using v̂i, we computed the bias
bt

i = v̂i − vi (ignoring white noise, i.e. fi = 1) for each 10 s displacement (hence t ∈ {1, ...,6}
for our 60 s experiments). We then computed the average bias bi = ∑bt

i/6 for each robot ,
and we report the distributions of biases (for both left/right velocities i ∈ {ℓ,r}) of the 120
tested Kilobots in Figure 3.7(a). Finally, we computed the mean µb = 0.015 mm/s and standard
deviation σb = 1.86 mm/s of the determined distribution. These values are implemented as
default noise values in ARGoS, but the user, if needed, can set their values.

To show the effect of the noise implementation on the accuracy of ARGoS Kilobots
simulator, we reproduced the experiments we conducted with real Kilobots in simulation and
ran them both with noise and without noise. We then compared the mean square displacement
(MSD) of the 120 real Kilobots and the simulated robots. As shown by Figure 3.7(b) the
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Fig. 3.7 ((a)) Distribution of the bias in straight motion estimated from measurements over
120 different Kilobots which have been previously calibrated (60 manually, 60 automatically).
The bars consider 12 bins in the range [−6,6]mm. The solid red line shows the approximated
Gaussian distribution Nb(µb,σb) (with mean µb and standard deviation σb) used in the default
configuration of ARGoS. ((b)) Comparison between simulation (600 robots) and reality (120
robots) in term of MSD when robots are asked to go straight for 1 minute. The default noise
values of ARGoS give an accurate match between reality and simulation.

noise-free simulations have a huge difference from real robot experiments. Instead, when noise
is added, the dynamics of the simulated robots have an outstanding match with reality.

3.4.2.2 Tuning physical interactions simulation under ARGoS

As described in Section 3.3.1, the Kilobots have no sensors which enable the implementation
of collision avoidance algorithms. For this reason, collisions between robots and with the
environment are highly frequent in real Kilobot experiments. Hence, the correct simulation
of physical interactions between Kilobots is expected to improve the overall accuracy of
the Kilobot simulation. Here, we tune the ARGoS physics engine in order to improve the
simulation of physical interactions and thus the overall accuracy of the Kilobot simulation. We
also compared the ARGoS and Kilombo simulators in term of physical interactions simulations.

In ARGoS, physical interactions are simulated using the full dynamics of modern rigid-
body simulation engines [121, 139, 173]. An important and tunable parameter of these physics
engines is the friction between the bodies of colliding robots. Here, we aimed to reach a
match between the real and the simulated physical interactions by tuning the friction value.
For this purpose, we designed a repeatable experimental setup in which collisions between
Kilobots are maximised. In the designed experiment, we initially placed 50 Kilobots in the
compact distribution shown in Figure 3.8(a). The Kilobots are placed on the vertices of four
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Fig. 3.8 ((a)) Initial distribution in four concentric circles with all 50 Kilobots facing towards
the centre. ((b)) Comparison between real 50 Kilobots (19 runs) and 50 simulated Kilobots
(100 runs) in ARGoS and Kilombo. We show the average mean square displacement (MSD) in
a highly dense environment. ARGoS shows a good agreement with reality, whereas Kilombo
does not. Video footage is available at https://youtu.be/6HYti0ABuxc.

concentric regular polygons and facing toward the centre of the polygons. Each polygon has
twice the number of robots and double the radius of its internal polygon. The Kilobots then
perform an isotropic random walk [36] in which they continuously alternate between forward
motion for ∼10 s and turn on the spot in a random direction (clockwise or anti-clockwise) for
a random time drawn from a uniform distribution U (0,4)s. We performed 20 replicates of
this experiment with real robots and 100 runs with simulated Kilobots in both ARGoS and
Kilombo. We performed ARGoS runs for different values of the friction parameter (from 0.1
to 2.0 with a step of 0.1). In each run, we recorded the trajectory of each Kilobot for 3 minutes
and computed the mean square displacement (MSD) of the 50 Kilobots for each experiment as
follows:

MSD(t) =
1

50

50

∑
k=1

[(xk(t)− xk(0))2 +(yk(t)− yk(0))2] (3.2)

where xk(t) and yk(t) are the coordinates of the kth robot at time t. For ARGoS, we selected
the friction value, which minimises the least square error between the MSD of the real and
the simulated experiment. Figure 3.8(b) shows the time evolution of the MSD of the Kilobots
in reality (blue), in ARGoS (green), and in Kilombo (red). It is clear that ARGoS simulates
physical interactions between robots more accurately than Kilombo.

https://youtu.be/6HYti0ABuxc
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3.4.3 Simulating ARK in ARGoS

ARK is integrated with ARGoS through the latter’s plugin interface that implements the ARK
Loop Function (ALF), which is the simulated counterpart of the ARK’s base control station. The
ALF is executed every ARGoS time-step and is in charge of simulating the virtual environments
and orchestrating the simulated OHC entity which sends IR ARK messages to the simulated
Kilobots. To facilitate the transfer from simulation to reality, the ALF uses the same structure
and the same methods’ names as its real counterpart. The virtual environments are set up at the
beginning of the simulation via the method SetupVirtualEnvironments(), updated every
time-step via the method UpdateVirtualEnvironments(), and graphically visualised via
the method PlotEnvironment(). Similarly to the ARK’s base control station, the ALF has
real-time access to the state of the simulated Kilobots, i.e. their position, orientation, and LED
colour. This information can be used by the user to code the functioning of the virtual actuators
and sensors. The virtual actuators are ‘actuated’ by updating the virtual environments via the
method UpdateEnvironmentsThroughVirtualActuators(). The virtual sensors’ readings
are computed using the Kilobot’s state via the method UpdateVirtualSensors(), and are
transmitted to the robot via the method TransmitKilobotState(ARK_message). The ALF
automatically codes the 3-byte ARK messages within standard 9-byte Kilobot messages in
the same way ARK does. Therefore the Kilobot control software needs to decode the ARK
messages in ARGoS in the same way it does in reality. In line with the ARGoS features,
this implementation choice is particularly useful because it allows to work with the same
identical code in simulation and on real robot. ALF gives to the user the possibility to limit the
communication to a maximum frequency of 60 ARK messages per second (to match real ARK’s
frequency) or to simulate an unlimited ARK message frequency. Finally, custom parameters
specific to the virtual environments, sensors, and actuators can be specified from the experiment
configuration file.

To showcase the ALF functioning, we reproduced a simulated version of one experiment
based on ARK, the Demo C of [160]. Figure 3.9 shows two screenshots of the experiment in
simulation (left) and reality (right) featuring 50 Kilobots that operate in two virtual environments
(flower field and nest).

3.5 Conclusion

In this chapter, we introduced the tools employed in this project to analyse models of swarm
robotics systems. Section 3.1 described the Gillespie algorithm [64, 154] used to analyse
chemical reaction models. Section 3.2 presented DeMaMAS [21, 20], the multi-agent simulator
we employed to test collective decision-making agent-based models. In Section 3.3, we
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Fig. 3.9 Two screenshots of the same experiment in simulation (left) and reality (right). We
(re)implemented the Demo C from [160] in which 50 Kilobots sense and modify two virtual
environments. The full video is available at https://youtu.be/kioZR99hnU4.

introduced the Kilobot platform [174] used in this project to test the designed collective
behaviours in the real world, the Augmented Reality for Kilobots (ARK) system [160] employed
to extend the capabilities of the Kilobot robot, and the 3D-printed ring added to the Kilobot in
order to improve ARK’s tracking performance. In Section 3.4, we presented ARGoS simulator
[139, 138] used to simulate the Kilobot experiments. This section also explained how, as part
of this project, we contributed to the improvement of the ARGoS Kilobots simulator [138] by
modelling and tuning the Kilobot’s motion noise, calibrating the simulator’s physics engine to
better simulate physical interactions between Kilobots, and implementing a simulated ARK
system.

https://youtu.be/kioZR99hnU4


Chapter 4

Improving accuracy in collective
decision-making

The work presented in this thesis investigates individual behavioural rules that improve collec-
tive behaviours in swarm robotics. In this chapter1, we propose individual behavioural rules
that control the interactions between the robots to improve the collective decision-making of
the swarm in terms of decision accuracy and speed. We consider the best-of-n decision problem
in which the swarm is required to select the best option among several alternatives. Previous
research revealed the existence of a dilemma on how to weight the individually-acquired
information and social information [164]. When robots update their belief about the best option
using mainly individually-acquired information, the swarm is not able to reach a consensus.
While when the robots rely mainly on information acquired through interaction with other
robots, the swarm frequently selects an inferior option. This situation usually manifests when
the number of options is high, or when the difference between the quality of the options is tight.
To solve the previous dilemma, we propose individual behavioural rules using which each robot
vary the strength of its interactions with other robots over time. To quantify the performance
improvement resulting from the proposed individual behavioural rules, we integrated them into
the honeybees-inspired decision-making strategy [181, 132] and compared them with previous
decision-making strategies. We performed our tests and comparisons using both stochastic
analyses and swarm robotics simulations.

In this chapter, we first formalise the best-of-n decision problem in Section 4.1 and describe
our experimental setup in 4.1.1. Next, in Section 4.2, we present the generic robot behaviour

1This chapter is a modified version of a published manuscript: M. S. Talamali, J. A. R. Marshall, T. Bose and A.
Reina, "Improving collective decision accuracy via time-varying cross-inhibition," 2019 International Conference
on Robotics and Automation (ICRA), 2019, pp. 9652-9659. The "Abstract" and “Introduction” sections of the
manuscript has been renamed and modified to maintain consistency with other chapters.
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that we used to implement collective decision-making strategies. In Section 4.3, we introduce
the direct comparison strategy, which is a simple collective decision-making strategy. Then
in Section 4.4.1, we present the honeybee-inspired decision strategy used to integrate the
proposed individual behavioural rules introduced in Section 4.4.3. In Section 4.4.2 we present
the chemical reactions model of the honeybee-inspired decision strategy and the stochastic
analyses we performed to confirm the existing dilemma regarding the strength of interaction
and show the benefits of the proposed individual behavioural rules. In Section 4.5, we validate
the benefits of these individual behavioural rules through swarm robotics simulations. Finally,
we discuss the limitation and possible extensions of the proposed individual behavioural rules
in Section 4.6.

4.1 Formalisation of the best-of-n decision problem

In the best-of-n decision problem studied in this project, a swarm of S robots is required to reach
consensus on the best option among the n options available in the environment. Each of the
available options has a unique ID i (with i ∈ {1, ...,n}), a position in the space χi, and a quality
vi ∈ [vmin,vmax] (vmin/vmax are the min/max quality that the robot can sense). To successfully
solve the best-of-n decision problem, the swarm must select the option with the highest quality.
This can be formalised as follows:

argmax
χi

vi , with i ∈ {1, ...,n}. (4.1)

The number of the available options n, their locations χi, and their qualities vi (with
i ∈ {1, ...,n}), are a priori unknown to the robots. A robot is only able to acquire information
about the options located within its field of view. Therefore, to find the available options,
estimate their qualities, and decide on the best option, the robots are required to explore the
environment.

In this study, we assumed that the robots could only make noisy estimates of the options
qualities v̂i (with i ∈ {1, ...,n}). We simulated the noisy estimate v̂i of the absolute quality vi as
drawing a random number from a normal distribution N (vi,σ

2) with mean vi and variance σ2.
The variance σ2 represents how noisy are the quality estimates made by the robots. When a
robot draws an estimate outside its sensing range [vmin,vmax], we reassigned its estimate to the
value of the nearest bound. We also assumed that a robot has limited memory and can store
the quality and the location of its preferred option (i.e. its commitment) only. Additionally,
similarly to previous collective decision-making studies [152, 180, 135, 27], we considered
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Fig. 4.1 Sample initial distribution of S = 200 simulated Kilobots in a scenario with n = 6
options and decision difficulty κ = 0.5. The red circles represent the areas (radius 25 cm) in
which the options can be perceived by the robots via ARK. The colour intensity represents the
option’s quality vi ∈ [0,10]. The swarm is tasked to select the best option.

that consensus is reached for an option i when the number of robots committed to the option i
reaches or exceeds a quorum threshold Q = 80% of the full population S.

4.1.1 Experimental setup

Almost all previous studies on collective decision-making investigated binary decision problems
(n = 2); in this project, we focused on the best-of-n problem with n ≥ 2 options. Moreover, we
considered the case of one superior-quality option and n−1 equal low-quality options. This
experimental scenario has been used in many previous studies in different domains [179, 52,
170, 176, 164] as it allows to vary the difficulty of the best-of-n decision problem using a single
parameter. In this study, this parameter is denoted by κ = vL/vH ∈ [0,1], where vH is the quality
of the superior option and vL is the quality of the other (n−1) inferior equal-quality options
(with vH ,vL ∈ [vmin,vmax] = [0,10]).

In the study described in this chapter, we tested the designed collective decision-making
algorithms in simulation using a swarm consisting of S = 200 Kilobots [174]. To simulate
the Kilobots, we employed the ARGoS Kilobots simulator described in Section 3.4.1. We
also employed the ARK system introduced in Sections 3.3.2 and 3.4.3 to allow the robots to
perceive the options, compute their locations, and estimate their qualities. When an option i
is within the robot’s field of view (25 cm), the robot receives an ARK message containing the
option’s location χi and quality v̂i. We also employed ARK to inform the robots about their
GPS location. A Kilobot can request its GPS information from ARK by lighting up its LED in
red colour. ARK sends messages containing GPS information to all robots with a red LED. In
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this study, the Kilobots use their GPS information to navigate toward an option to self-estimate
its quality.

To avoid the spatial correlations that may be caused by the initial position of the robots
and the positioning of the options, we uniformly distributed our S = 200 robots in a 2m×2m
square environment as illustrated in Figure 4.1. We also distributed the n options on the vertices
of a regular polygon with n edges and radius 50 cm. An example with n = 6 options is depicted
in Figure 4.1. Moreover, we randomised the location of the best option in each simulation run.

4.2 Robot behaviour

In the study described in this chapter, we implemented the Kilobot behaviour following
the guidelines of the design pattern for decentralised decision-making described in [167].
According to these guidelines, each robot contributes to the collective decision by performing
three concurrent actions:

4.2.1 Environment exploration

Since the information about the available options (their number, locations, and qualities) are
a priori unknown to the robots; the robots are required to explore the unknown environment
in order to locate and estimate the quality of the available options. Searching for options in
an unknown environment can be simply achieved by performing a diffusive isotropic random
walk [36]. For this reason, in this study, we programmed the Kilobots to continuously perform
a straight motion for approximately 10 s then rotate in a random direction for a random number
of seconds drawn from a uniform distribution U(0,5)s. Besides allowing the discovery of the
available options, the random walk allows the robots to exchange information with different
peers and hence better estimate the overall state of the swarm. When encountering an option i,
the Kilobot memorises the option’s location χi and its estimated quality v̂i. The Kilobot then
uses this information to update its commitment state.

In this study, a robot makes a single noisy quality estimate of the encountered options
and does not average multiple measurements to compute a more accurate estimate. This is
because we are not interested in individual strategies to reduce noise; instead, we are interested
in collective strategies that allow a swarm of noisy robots to effectively aggregate noisy
measurements. We assume that in real-world applications, performing individual strategies
to attenuate noise would improve the accuracy of the estimates, but does not eliminate noise.
Therefore, we modelled the robots’ noisy estimates through sampling from a normal distribution
N (vi,σ

2).
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4.2.2 Social interactions

Whilst searching for the available options in the environment through a random walk, each
robot communicates with other robots within its local communication range of about 10 cm.
Every second, each robot transmits a message to share its commitment state with others. When
committed to an option, the robot shares the option’s location with others, and in some decision-
making strategies, such as the one described in section 4.3, the robots also share their estimate
of the option’s quality. Robots use the options’ information received from others to update their
commitment state.

4.2.3 Commitment updates

While solving the best-of-n decision problem, each robot in the swarm can be either in the
uncommitted state U or committed to an option (i.e. in the committed state C). The robots have
no prior knowledge about the decision problems; hence all the robots are initially uncommitted.
A robot committed to option i stores its location χi and its estimated quality v̂i. When a Kilobot
acquires information about an option, either through physically encountering the option or by
being informed by another robot, the Kilobot updates its commitment state accordingly. The
Kilobot can change from an uncommitted state to become committed to an option or can revert
its commitment from one option to another. In this study, we implemented multiple strategies
for updating the robot’s commitment and compared their performance in solving best-of-n
decision problems. The implemented strategies are introduced in Sections 4.3 and 4.4.

4.3 Direct comparison strategy

If one thinks about collectively solving the best-of-n decision problem, the first strategy that
may come to mind is to compare the options’ qualities and every time select the one with the
highest quality. This strategy is known in the literature as the direct comparison strategy (DC)
[208]. In the DC strategy, the robots are required to exchange their estimates of the option’s
quality v̂i; then each robot updates its commitment state accordingly. When an uncommitted
robot gets access to information about an option i, either through a message from a peer or
by encountering the option while exploring, the robot commits to the option i and stores its
location χi and its estimated quality v̂i. When a robot that is committed to option i receives
information about a different option j ̸= i from a peer, and in case the options j has a better
quality than the option i (i.e. v̂ j > v̂i), the robot changes its commitment to option j and stores
the received information χ j and v̂ j. In case the two options i and j are equally good, i.e. v̂i = v̂ j,
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the robot chooses one of them at random. Making this random choice is expected to allow the
swarm to reach consensus in case of equal-quality options.

As discussed in Section 4.2, the robots make only one noisy estimate of the option’s quality
that they disseminate within the swarm. We consider this estimate to be the most accurate
measurement they can make even when performing individual strategies to attenuate noise.
The DC strategy allows information to spread at high speed; hence consensus is reached very
quickly. However, the DC strategy also allows errors to spread at the same high speed. It is
enough that a single robot overestimates the quality of an option for this one to be selected
by the swarm because robots rely on second-hand quality estimates made by other robots to
update and advertise their opinion.

To assess the effect of noise on the DC strategy, we implemented it on a swarm of S = 200
Kilobots using the ARGoS Kilobots simulator (presented in Section 3.4.1). We performed our
tests in case of n = 6 options, and for multiple problem difficulties κ = vL/vH ∈ [0.5,1.0] and
noise magnitudes σ2 ∈ [0,5]. As depicted by Figure 4.2, the results of these tests showed that
the accuracy of the DC strategy quickly drops as the quality estimation noise magnitude or
the problem difficulty increases. Additionally, the results have shown that although the robots
select a random option in case of equal-quality, the swarm is not always able to break the
decision deadlock in this case of equal-quality options.

4.4 Collective Decisions through Cross-inhibition

In the study described in this chapter, we extended the Collective Decisions through Cross-
Inhibition (CDCI) strategy proposed in [167] to improve its performance and overcome the poor
performance of the direct comparison strategy described in Section 4.3. The CDCI strategy has
been inspired by the strategy employed by European honeybees [181] to decide on their future
nest-site from the possible nesting locations available in their environment. The CDCI strategy
has been employed in multiple swarm robotics studies [165, 159]. In our extensions of the
CDCI strategy, we introduced time-varying interactions between the robots and removed the
requirement of sharing the quality estimates of the options between the robots. Through these
additions, we were able to improve the performance of the CDCI strategy in both decision speed
and accuracy. These improvements are shown in later sections through multiple comparisons.

4.4.1 The basic CDCI strategy

In the CDCI strategy, each robot updates its commitment state using the probabilistic finite
state machine (PFSM) depicted by Figure 4.3. The active state of the PFSM depends on the
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Fig. 4.2 The results of 200-Kilobot swarm (100 simulations in each condition) showing the
effect of noise strength σ2 ∈ [0,5] on the decision accuracy in the best-of-6 problem with
difficulty κ = vL/vH ∈ [0.5,1] (vH = 10). We compare the accuracy of the DC strategy of
Section 4.3 (bottom-left triangles) with the accuracy of the time-varying strategy rstep(t) (with
τ0 = 50) of Section 4.4.3 (top-right triangles). While DC is highly sensitive to noise, the
proposed strategy shows remarkably high performance (≥ 93%) for any tested noise level and
difficulty κ up to 0.9. In case of equal-quality options (κ = 1), the quick dynamics of DC
allows to break the symmetry within 2 hours more often than the proposed strategy with a
suboptimal parameterisation of τ0 (see more details in Figure 4.9).

commitment state of the robot. When the robot is committed to option i, with i ∈ {1, . . . ,n},
the state Ci is active, while when the robot is uncommitted, the state U is active. Following the
CDCI design pattern [167], the robots update their commitment based on the information they
gather about the commitments distribution of the other agents in their local neighbourhood. In
the study described in this chapter, the robots gather information for δu = 50 clock cycles (i.e.
∼ 1.5s) before updating their commitment as follows. When an uncommitted robot encounters
the option i in the last δu clock cycles (i.e. the condition Ei is satisfied), the robot commits
to option i with a probability Pγi . In this case, we say the robot discovered option i. Robots
committed to option i may spontaneously abandon their commitment to option i and revert to
the uncommitted state with probability Pαi . When an uncommitted robot receives a message
from a robot committed to option i in the last δu clock cycles (i.e. the condition Mi is satisfied),
the robot commits to option i. In this case, we say that the robot was recruited. When a robot
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Fig. 4.3 The PFSM controlling the robot’s decision state. Robots update their commitment state
using the probabilities Pγi and Pαi of Equation (4.2) or upon receiving a message Mi from a robot
committed to i. The symbol | on the arrow for the discovery transition indicates conditional
probability on the occurrence of the event Ei of encountering option i. The transmission
symbols indicate that a robot in state Ci sends an interaction message (for recruitment and
cross-inhibition) with probability Phi .

committed to option i receives a message from another robot committed to a different option j
in the last δu clock cycles (i.e. the condition M j ̸=i is satisfied), the robot becomes uncommitted.
In this case, we say that the robot was cross-inhibited. At each broadcast tick, robots broadcast
messages to share information about their commitment state with the other robots in their
surrounding. A robot committed to option i probabilistically decides about the nature of the
information to share with others at each broadcast tick. The robot interacts with its peers and
shares information about its option i (i.e. the option’s location χi) with a probability χi, or
decides to not interact with them and appears as uncommitted with a probability 1−Phi .

Following the guidance given by the CDCI design pattern [167], each robot performs
interaction-based transitions (i.e. recruitment and cross-inhibition) probabilistically as a func-
tion of the commitments of its neighbouring robots. These probabilistic transitions can be
achieved through the selection of one random message M among all the messages a robot
receives during each update cycle δu when performing the interaction-based transitions (see
Figure 4.3 and [167] for more details). In this study, the robot stores the received messages
at the same memory location and uses the last saved information to update its commitment.
This implementation allows the robot to use the most up-to-date information to update its
commitment. Additionally, this implementation requires minimal memory and hence makes
the CDCI decision strategy usable on minimalistic robotics platforms.
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In contrast to the DC strategy of section 4.3 and the previous implementation of the CDCI
strategy [159], in the CDCI implementation of this study, robots do not share their quality
estimates of the options with other robots. Instead, after getting recruited to an option, the robots
navigate toward the option’s location to self-estimate the option’s quality. This behaviour is
similar to what honeybees [18] and ants [99] do when collectively selecting their future nest-site.
While moving toward an option to self-estimate its quality, robots suspend their interaction with
other robots. Despite being a time-consuming action, making individual estimates of the options
qualities allows mitigating against the spreading of individual misestimations. Our analysis
of the DC strategy revealed that the use of second-hand information (i.e. the shared quality)
spreads individual misestimations and lead to inaccurate collective decisions. To evaluate the
effect of self-estimations on the performance of the DC strategy, we modified the DC strategy
by asking each recruited robot to self-estimate the quality of the option. This modification
increased the performance of the DC strategy to a similar level as the CDCI strategy for κ ≤ 0.9.
However, the DC strategy was still unable to break symmetry (i.e. κ ≈ 1) even for long-running
times The DC strategy has shown quicker decisions compared to CDCI. It is because the DC
response is independent of the options’ quality, meaning that the swarm will take the same time
to decide between low-quality options or high-quality options. This behaviour may lead the
swarm to select a low-quality option before fully exploring the environment. In contrast, using
the CDCI strategy, the swarm will take a longer time to decide between low-quality options in
the hope to find something better in the environment.

Requiring individual estimates may lead numerous robots to move towards a popular option
for resampling its quality. To avoid the overcrowding and interference issues that may result in
this scenario, every robot, after resampling the quality of an option, goes away from the option
to a random location at least 50 cm distant before resuming a random walk. Figure 4.4 shows
the FSM of the robots’ movement.

In the CDCI strategy, each robot performs individual behaviours probabilistically as a
function of its option’s quality. The higher is the option’s quality, the more likely the robot
commits to it. This behaviour allows the swarm as a whole to reach consensus for the best
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Fig. 4.4 The FSM controlling the robot’s movements in the CDCI strategy. Red dots indicate
that the robot accesses its GPS location (through ARK).
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option. In the study described in this chapter, we employ the parameters proposed in [164] for
the probabilities of the robots individual behaviours. This parameterisation allows the swarm to
conserve the value-sensitive properties of the CDCI strategy even when the number of options
is higher than two:

Pγi = kv̂i∆, Pαi = kv̂−1
i ∆, Phi = hv̂i∆ , i ∈ {1,2, . . . ,n} (4.2)

where v̂i is the estimated quality of option i, while h and k are parameters to control the
frequency at which the robots send interaction messages and perform individual behaviours,
respectively. The ratio r = h/k represents the relative interaction rate. Following [167], the
parameter ∆ is required to scale probabilities within the valid range [0,1] and guarantee a
match between the microscopic and the macroscopic description of the process. ∆ = δuδcδs is
determined by three components: the number of Kilobot clock cycles between two updates
(δu = 50), the Kilobot clock period (δc ≃ 31ms), and the temporal scaling factor δs = 0.000594
which controls the speed of the decision process. As shown in [164], the critical parameter in
the swarm decision dynamics is the relative interaction rate r.

4.4.2 Stochastic analysis of the basic CDCI strategy

To identify which values of the relative interaction rate r allows the swarm to make better
decisions, we analysed the effect of the relative interaction rate r on the decision outcome of
the CDCI strategy using the stochastic simulation algorithm [64] introduced in section 3.1.
The stochastic simulation algorithm allows approximating the solution of the master equation
describing the macroscopic dynamics of the CDCI strategy [181, 167]. Approximating the
solution of the master equation takes into account the random fluctuations caused by the finite
size of the swarm S = 200 on the macroscopic dynamics of the system. In the study described
in this chapter, we performed 1,000 runs of the stochastic simulation algorithm (SSA) [64] to
obtain a reliable approximation of the solution of the master equation solution. To employ the
SSA, we represented the CDCI model of section 4.4.1 using the following chemical reactions
model:

Discovery : U
Pγi−→ Ci

Abandonment : Ci
Pαi−−→ U

Recruitment : Ci +U
Phi−→ Ci +Ci

Cross-inhibition : Ci +C j ̸=i
Phi−→ Ci +U

(4.3)
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where U and Ci stand for uncommitted and committed to option i respectively. While Pk,k =
{γi,αi,hi} are the probabilities of Equation (4.2).

Using the SSA, we analysed the collective decision given by the CDCI strategy for values of
r ∈ [1,100] with k = 1. At first, we fixed the number of options n = 6 and varied the difficulty
of the decision problem κ ∈ [0.5,1] (Figure 4.5(a)). Then we fixed the difficulty of the decision
problem κ = 0.9 and varied the number of options n ∈ [2,12] (Figure 4.5(b)). Each run of the
SSA is stopped if the simulation reaches a maximum decision time Tmax = 10 or when the
swarm reaches consensus for one of the options (i.e. the number of robots committed to the
same option reaches of the quorum threshold Q = 80%). The selected maximum decision time
Tmax = 10 is far above the average decision time; to ensure that the swarm is given enough
time to reach consensus. Figure 4.5 depicts the results of our analysis. Each tested condition is
represented by a coloured pie-chart. The yellow colour in the pie-charts indicates the proportion
of runs that terminated in a decision deadlock (i.e. the number of robots committed to any of the
options was smaller than quorum threshold Q=80). The green colour indicates the proportion
of runs where the swarm selected the best option. The red colour indicates the proportion of
runs where the swarm selected one of the (n−1) inferior equal-quality options. Our analysis
revealed that breaking decision deadlock requires high positive and negative feedback (i.e.
high relative interaction rate r). This result is in accordance with the findings of previous
deterministic mean-field analyses [164, 68]. Additionally, our analysis, similarly to stochastic
analyses of decision-making models of ants and slime moulds [126], has shown that high
positive feedback decreases decision accuracy.

The results shown in Figure 4.5(a) reveals the presence of a dilemma: On the one hand, low
values of r allow the swarm to accurately select the best option when its quality is much higher
than the other options’ quality (vH ≫ vL) but lead to a decision deadlock when the qualities
of the available options are similar (vH ≈ vL). On the other hand, high values of r allow the
swarm to break the decision deadlock but may lead to wrong decisions. It is because using high
values of r increases the speed at which opinions spread and hence first discovered options
have a higher chance to be selected even when having inferior quality. Moreover, as shown
in figure 4.5(b), the minimum r necessary to break deadlock increases quadratically with the
number of options. Furthermore, the interaction rate r that gives a maximum accuracy depends
on the decision problem (i.e. the number and the quality options), which is usually not known
to the swarm in advance. Therefore, fixing the value of r makes the CDCI strategy limited as it
may lead to poor performance in some decision problems.
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Fig. 4.5 Results of the SSA showing the influence of the interaction ratio r = h/k with k = 1
(of Equation (4.2)) for various best-of-n problems in the case of S = 200 robots. The pie-charts
indicate the percentage of 1,000 runs terminating in a decision deadlock, i.e. below quorum
Q = 0.8 after Tmax = 10 (yellow), a decision for the best option vH = 10 (green), or a decision
for any n−1 inferior-quality distractor vL = κ · vH (red). Panel (a) Sensitivity of CDCI to the
ratio r for various problem difficulties κ ∈ [0.5,1] in case of n = 6; the minimum r necessary
to break decision deadlock grows quadratically with κ . Panel (b) Sensitivity of CDCI to the
ratio r for various number of options n ∈ [2,12] in case of κ = 0.9; the minimum r necessary
to break decision deadlock grows quadratically with n. Sufficiently high values of interaction
rate r always lead to a decision, but accuracy rapidly decreases with increasing n or κ .

4.4.3 The time-varying CDCI strategy

In the study described in this chapter, we proposed a novel decentralised strategy to solve the
previous dilemma without the need to know the decision problem (i.e. n and κ) in advance.
Our strategy consists of starting with a low interaction rate r to limit the effect of initial random
fluctuations and then increasing the interaction rate to reach consensus. Starting with a low r
restricts interactions to stop the quick spreading of first discovered options which may be of
inferior quality vL . Increasing the interactions over time allows the swarm to break the decision
deadlock and reach consensus for the best discovered option. Moreover, in our strategy, the
speed at which the robots increase/start their interactions depend on the estimated quality of
their options; i.e. the higher is the quality of a robot’s option, the higher/earlier the robot recruits
and cross-inhibits other robots. This quality-sensitive increase of interactions is expected to
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allow better options to spread quicker, and hence improve the accuracy and speed of the swarm’s
decisions.

In our study, we investigated two possible implementations for our proposed time-varying
strategy. In the first implementation, the robots gradually increase their interactions rate r
following the ramp function rramp(t) shown in Figure 4.6(a). In the second implementation, the
robots abruptly vary their interaction rate r from zero to high values following the step function
rstep(t) shown in Figure 4.6(b). The two functions rramp(t) and rstep(t) are mathematically
described as follows:

rramp(t) =
hramp(t)

k
, hramp(t) =


Hmax

τ(v̂i)
t if t <τ(v̂i)

Hmax if t ≥τ(v̂i)

, (4.4)

rstep(t) =
hstep(t)

k
, hstep(t) =

{
0 if t <τ(v̂i)

Hmax if t ≥τ(v̂i)
, (4.5)

The two functions described by equations (4.4)-(4.5) keep the individual transitions strength
k constant (k = 1) all the time and increase the interaction strength h(t) over time from 0 to a
maximum value Hmax. The time at which the interaction strength h(t) reaches the maximum
value Hmax depends on the robot’s quality-estimate v̂i of an option i and is expressed by the
function τ(v̂i) = τ0vmax/v̂i. The time τ(v̂i) defines the slope of the ramp function rramp(t) and
the jump time of the step function rstep(t). For instance, if the robot’s option quality estimate is
equal to the maximum value (v̂i = vmax), the interaction strength h(t) reaches the maximum
value Hmax at τ0. In case the option’s quality estimate is smaller than the maximum value
(v̂i < vmax), the maximum interaction strength is reached later. A decentralised implementation
of the functions of Equations (4.4)-(4.5) can be achieved by programming the robots to increase
their interaction strength over time. This results in a higher probability of sending recruitment
and cross-inhibition messages given by equation (4.2) with the time-varying term h from
Equations (4.4)-(4.5).

To assess the performance of our time-varying strategy, we implemented its two variants
using the chemical reactions model of Equation (4.3) and approximated the solution of their
corresponding master equation using the stochastic simulations algorithm (SSA) [64]. In the
systems representing our time-varying strategy, the transition rates vary over time; hence it was
not possible to employ the original SSA as it only deals with systems of constant transition
rates. Therefore, we employed an extended version of the SSA proposed in [154], which
considers time-varying transition rates. We compared the decision outcome of the proposed
time-varying interaction strategies and constant values of the interaction rate r for different
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(a) (b)

Fig. 4.6 Two forms for the time-varying interaction h(t): hramp(t) of Equation (4.4) in panel (a)
and hstep(t) of Equation (4.5) in panel (b). With the ramp function, the robot constantly
increases the interaction strength hramp(t) with a slope proportional to the estimated quality v̂i;
instead, with the step function, the robot does not interact hstep(t) = 0 until a time τ(v̂i) that is
inversely proportional to the estimated quality v̂i.

decision problems of n ∈ {3,6,9,12} and κ = 0.9. The results of our comparison are reported
in Figure 4.7 following the same colour code of Figure 4.5. In each experimental condition,
the results were obtained through 1,000 SSA simulations. For a low value of the relative
interaction rate r = 1 the individual behaviours (i.e. discovery and abandonment) and the
interaction behaviours (i.e. recruitment and cross-inhibition) happen with a similar frequency
and does not allow the swarm to break the decision deadlock for more than three options of
almost similar quality (κ = 0.9). In case of high values of the relative interaction rate r = 100
where the individual behaviours are 100 times less frequent than the interaction behaviours, the
swarm always breaks the decision deadlock but makes a wrong decision more than half of the
time. It is because the initially randomly discovered options, which may be of lower quality,
quickly spread within the swarm. Thus the probability of a lower quality option to be selected
is high and increases with n. Both variants of our time-varying interaction rate r(t) improve the
accuracy of the swarm, especially the rstep(t) which leads to 100% of accurate decisions.

4.5 Robot swarm simulations

To validate our proposed strategies, we re-conducted the comparison of Section 4.4.2 through
implementation on a simulated robot swarm of S = 200 Kilobots2. We compared the different
strategies in case of various decision problems with n ∈ {3,6} options, a difficulty κ = 0.9
(vH = 10 and vL = 9), and a quality estimation noise strength σ2 = 1. Each experimental
condition was tested through 100 simulation runs. For this, we employed the widely-used

2The robot control software is available online at https://github.com/DiODeProject/
Time-Varying-CDCI

https://github.com/DiODeProject/Time-Varying-CDCI
https://github.com/DiODeProject/Time-Varying-CDCI
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Fig. 4.7 Results of the SSA showing the effect of the time-variant behaviours on the decision
outcome of a 200-agents swarm for various best-of-n options problems n ∈ {3,6,9,12} with
difficulty κ = 0.9. Results of each condition are computed over 1,000 runs and represented with
a pie-chart that indicates the percentage of runs terminating in a decision deadlock (yellow),
a correct decision (green), or an incorrect decision (red). In each run, the swarm makes a
correct/incorrect decision when it reaches the quorum threshold Q = 80% within Tmax = 10 for
the best option (VH = 10)/lower-quality option (VL = κ ·VH). Otherwise the swarm is stuck in
decision deadlock. The rramp(t) and rstep(t) from Eqs. (4.4)-(4.5) with parameters τ0 = 5 and
Hmax = 100 show a considerable improvement in accuracy (accuracy rate reported at the centre
of each pie-chart)

physics-based simulator ARGoS [139, 138] that we previously introduced in Sections 3.4.1
and 3.4. We set a time limit of Tmax = 2 hours for the swarm to decide for one option (i.e. at
least Q = 80% of the swarm select the same option). Although we used the time limit Tmax to
assess the swarm’s decision outcome, we run the simulations for 5 hours to better appreciate
the decision speed of the tested strategies. The results of our comparison are reported in
Figure 4.8, which shows the accuracy and the speed of the swarm’s decision. in each tested
decision problem and for different strategies. The results obtained via physics-based swarm
robotics simulations are qualitatively similar to those obtained through the stochastic analysis of
Section 4.4.2. As expected, using a low interaction rate r = 1, which results in slows dynamics,
the swarm remains undecided and is unable to break the decision deadlock before within the
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Fig. 4.8 200-Kilobot swarm results (100 simulations for each condition) for different decision
strategies (in each column) in case of n ∈ {3,6} options with difficulty κ = 0.9 and noise
strength σ2 = 1. Top pie-charts show the decision accuracy (same colour code of Figs. 4.5-4.7).
Bottom boxplots show the decision time; the horizontal red line (at 2 hours) is the cutoff time
to compute the decision outcome (e.g. indecision vs decision). We let the simulation run a
maximum of 5 hours to display the complete decision time dynamics. Low interaction rate
(r = 1) shows low convergence rate and frequent deadlocks. High interaction rate (r = 100)
shows low accuracy. Time-varying rramp(t) shows an improvement in accuracy, which is further
improved by rstep(t) (both time-varying strategies use τ0 = 50min). The DC (of Section 4.3)
shows low accuracy due to the spreading of noisy estimates.

time limit. On the other hand, a high interaction rate r = 100 accelerates the dynamics but leads
to wrong decisions. Using the first version of our proposed time-varying strategy rramp(t) (with
τ0 = 50 min), the swarm makes on average more accurate and faster decisions. The second
version of our time-varying strategy rstep(t) (with τ0 = 50 min) improves the decision accuracy
of the swarm further. Intriguingly, the rstep(t) strategy has also a stable and predictable decision
time of about a few minutes after τ0. The DC strategy of Section 4.3 has the quickest decision
times, but the lowest accuracy as individual misestimations quickly spread within the swarm
leading to wrong decisions. The stochastic analysis of Section 4.4.2 gave a good prediction of
the expected swarm behaviours, although not having identical dynamics as the swarm system.
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Fig. 4.9 Speed (green lines with 95% confidence shades and right y-axis) and accuracy (red
lines and left y-axis) of the swarm robotics system for varying interaction speed τ0 ∈ [0,60]min
for the rstep(t) strategy. An inaccurate tuning of τ0 may lead to sub-optimal performance.

The main differences between the swarm robotics system and the master equation model are
the local communication between the agents and local encountering of the options. Robots
perform discovery transitions only when they encounter the options which are localised in space.
Moreover, the robots exchange information only with other robots within their communication
range. Since the robots have slow motion, the local communication causes the robots to make
correlated interactions (i.e. a robot can speak with the same robots for several times steps). In
contrast, in the chemical reactions system analysed using the SSA, there is no notion of space
and locality, each agent can unconditionality interact with any other agent and discover any of
the options. For this reason, the interaction between the robots and between the robots and the
environment are completely uncorrelated.
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4.6 Discussion

In the study described in this chapter, we proposed behavioural rules through which the
individual robots control their interactions with others to improve the performance of the swarm
in making collective decisions. We tested these behavioural rules for solving the best-of-n
decision problem in which the robots’ task is to reach a consensus on the best option among
several available alternatives. We focused our tests on best-of-n problems with a high number of
options (n > 2) of nearly similar qualities as this type of decision problems are very challenging
to solve [7, 164]. Our proposed individual behavioural rules consist of increasing the strength
of interactions between the robots over time. This increase of interactions over time mitigates
against the quick spreading of the first randomly discovered low-quality options that may be
caused by strong interactions. Moreover, in the proposed individual behavioural rules, the
speed at which robots increase the strength of their interactions depends on the quality of their
options. The higher is the quality of a robot’s option, the faster the robot increases its interaction
strength leading to a quicker spreading of better options. To test the effect of the proposed
individual behavioural rules on the performance of the swarm in the best-of-n problem, we
integrated the behavioural rules into the Collective Decision through Cross-Inhibition decision
strategy (CDCI) [181, 159]. Through both stochastic analysis and physics-based swarm robotics
simulations, we demonstrated that our behavioural rules considerably improves the accuracy of
the swarm in solving the best-of-n problem.

Most of the previous research on collective decision-making algorithms in swarm robotics
studied binary decision problems (n = 2) [209]. Only very few works considered scenarios
of more than two options. e.g. [133, 56]. However, a previous theoretical analysis showed
that increasing the number of options can considerably change the swarm dynamics [164].
We, therefore, performed our analyses and experiments in a genuinely best-of-n setup. Our
proposed individual behavioural rules demonstrated highly accurate collective decisions with
an anticipated decision time for all the tested number of options.

Our best performing control rule divides the process of making a collective decision
into two phases: an exploration phase and an exploitation phase. In the exploration phase,
the robots individually explore the environment without interacting to allow the swarm to
accumulate knowledge about the available options. In the exploitation phase, the robots interact
with each other with a quality-proportional interaction strength to exchange their opinions
about which option is the best and reach consensus. Modulating the strength of individuals’
interaction as a function of environmental features have been previously demonstrated to
improve collective behaviours such as collective motion systems [201, 183, 102] and collective
foraging systems [131, 144]. While our step-based behavioural rule shows excellent decision
performance, it is important to highlight that the best time to switch from the exploration phase
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to the exploitation depends on the speed of the decision process which is a function of the
decision problem. As depicted by Figure 4.9, the accuracy and the speed of the collective
decision when using our two-phase behavioural rule rstep(t) depend on the value of the time
τ0. Figure 4.9 also shows that inaccurately tuning the minimum time for starting interaction τ0

may diminish the swarm’s performance. If the swarm switches to the exploitation phase too
early, before any option is discovered, the benefit of the two-phases behavioural rule disappears.
Conversely, if the switching happens too late, the swarm unnecessarily delays consensus and
reduces the decision speed. Preliminary results indicated that the best value of τ0 depends
on environmental and robots’ parameters including the environment size, the difficulty of
the decision problem κ , the strength of the quality-estimation noise σ2, and the robots’ field
of view. These parameters are generally not known to the designer in advance, and hence
the accurate tuning of the swarm system in advance is impossible. Therefore, to make our
step-based behavioural rule adaptive to different decision problems, we envision to work on a
decentralised strategy to allow individual robots to estimate the best moment to activate the
interaction. Robots may be able to estimate the best switching time through some form of
environmental sampling.





Chapter 5

Achieving adaptation in collective
decision-making

In the previous chapter, we proposed individual behavioural rules that improve the collective
decision-making of robot swarms in terms of accuracy and speed. In this chapter, we are
interested in strategies that allow robot swarms to adapt their collective decision in case of
environmental changes. Similarly to the previous chapter, we consider the best-of-n decision
problem in which the swarm is required to reach a consensus on the best option among several
options available in the environment. While in the previous chapter, the environment (i.e. the
number and the qualities of the available options) was static throughout the experiment, in
this chapter, we consider scenarios where the environment changes over time, requiring the
swarm to adjust its decision accordingly. In this study, we propose individual behavioural
rules that give robot swarms the ability to change their decision on the best available option
in response to the current state of the environment. We test these behavioural rules using
both multi-agent and swarm robotics simulations. Moreover, we analyse the performance of
these behavioural rules for different values of the robot density in the environment and the
robot’s communication range. In section 5.1, we formalise the dynamic best-of-n options
decision problem. In section 5.2, we present the types of environmental change considered
in our study. Section 5.3 introduces the overall robot’s behaviour. Section 5.4 introduces the
decision-making model we employ and the individual behavioural rules we proposed in this
study to achieve adaptation. Section 5.5 presents the experiments we conducted to analyse
the studied individual behavioural rules. Finally, the results of our analysis are presented and
discussed in sections 5.6 and 5.7, respectively.
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5.1 The best-of-n problem in dynamic environments

Similarly to the previous chapter, the study described in this chapter addresses the best-of-n
decision problem in which the swarm is required to reach a consensus on the best option (i.e.
with the highest quality) out of n options available in the environment. In the previous chapter,
the environment, i.e. the number and the qualities of the available options, remained fixed
throughout the experiment. Hence, the swarm was only required to reach a consensus on the
best available option once. This scenario is better suited to model collective decisions that must
be followed by the implementation of what has been decided. For instance, a swarm of aerial
robots have to decide about the best spot to land before performing the landing. In contrast, in
this chapter, the environment changes over time and hence the swarm is required to maintain its
collective decision about the best option up-to-date. This scenario corresponds to experimental
cases where the primary task of the swarm is to keep track of the best option in the environment
and possibly inform other systems that act accordingly. For example, a swarm of aerial robots
monitors a disaster environment to keep track of the most urgent task to execute and informs
another robotics system on the ground that executes the task.

In dynamic best-of-n decision problems, a swarm of S robots is required to flexibly vary
its decision about the best option in response to the changes that occur in the environment.
The environmental changes we consider in our study include variations in the number of the
available options, that is, new options may appear in the environment, and existing options
may disappear (see section 5.2). The number of options at time t is denoted by n(t). We also
consider environmental changes where the qualities of the available options vary over time.
During an experiment, each of the available options has a unique and constant ID i ∈ {1, ...,nT };
where nT is the number of the different options that can be found during an experiment. Each
option i has a fixed position in the space χi and a time-dependent quality vi(t) ∈ [0,1].

The desired behaviour of the swarm in dynamic best-of-n decision problems is to continually
update its decision about the best option following the changes in the environment. This can be
formalised as follows:

argmax
χi

vi(t) , with i ∈ {1, ...,nT }. (5.1)

As shown in the previous chapter and previous studies [164], the outcome of the swarm
decision-making best-of-n problems is influenced by the difficulty of the decision problem.
The difficulty of the best-of-n problem depends on how similar are the qualities of the available
options, the more similar they are, the harder is for the swarm to decide which of the options
is the best. In this study, we define the difficulty of the decision problem as the difference
between the qualities of the two best options ∆v = (vbest − vsecond-best). The higher the value of
∆v, the easier the decision problem and vice-versa.
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In this study, the robots have no prior knowledge about the decision problem. The robots
do not know in advance the number of the available options n(t), their locations χi, their
qualities vi(t) (with i ∈ {1, ...,nT }), or how they will vary over time. The robots only acquire
this information by exploring the environment. Moreover, a robot can gather information about
an existing option (i.e. the location and the quality of the option) only when the option is within
its sensing range Sr.

In line with the concepts of swarm robotics [76], in this study, we consider robots that have
minimal memory, communication, and sensory capabilities. In terms of sensory capabilities,
robots are only able to make noisy estimates of the options’ qualities v̂i(t) (with i ∈ {1, ...,nT }).
To simulate noisy quality estimations, each time a robot makes an estimate v̂i(t) of the option i’s
quality, the value v̂i(t) is randomly drawn from a normal distribution N (vi(t),σ2). The mean
of the distribution N is the true quality of the option vi(t). The variance of the distribution
N is an arbitrary number that defines how noisy are the robots’ estimates. When the quality
estimate made by the robot lies outside its quality sensing range [0,1], we set the estimate to
the nearest boundary value. In terms of memory capabilities, each robot can memorise only the
quality and the location of its selected option (i.e. its opinion about the best option). In terms
of communication capabilities, robots can share only a single piece of information that is the
location of their selected option. The robots do not share their ID as in [210] not the quality of
their selected option as in [159].

In previous collective decision-making studies [152, 180, 135, 27], as soon as the number
of robots committed to the same option i reaches or surpasses a quorum threshold Q of the full
population, the swarm is considered to have reached consensus for option i. In contrast, in this
study, we consider that consensus is reached for option i when the average number of robots
committed to an option i in the last Tw time steps is equal or higher than the quorum threshold
Q = 80%. This way of assessing consensus is more reliable because it ensures that the swarm
has truly settled on one option rather than being in oscillation between multiple options.

5.2 Environmental changes

A large number of research works have previously addressed the best-of-n decision problem
[209]. However, only a few of them looked at the problem in case of environmental changes
[148, 187, 13]. Moreover, the few works that studied the best-of-n problem in dynamic
environments [148, 187, 13] considered only one type of environmental change that is a sudden
swap of the qualities of the available options. In the study presented here, we considered a wider
range of environmental changes that are the appearance of a new option, the disappearance of
the best option, and a swap of the qualities of the two best options.
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5.2.1 The appearance of a new option

At the initial time t = 0, n(0) = n0 options are available in the environment. At the time Tc, the
swarm is fully settled on the best of the n0 available options, and a new option appears in the
environment (i.e. n(t ≥ Tc) = n0+1). If the new option has a higher quality than the previously
available best option, the swarm is required to switch its consensus to the new option. In case
the new option has an inferior quality than the previously available best option, the swarm
should maintain its previous consensus state.
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(c) t > Tc
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Fig. 5.1 A visual illustration of the appearance scenario in which a better option appears in the
environment.

In figure 5.1, we illustrate the appearance scenario in case of n0 = 2 options. The square
represents the environment where the robots operate. The options are represented as colour-
coded circles, and the number on top of each circle (i.e. option) represents the option’s quality.
The robots are illustrated by triangles, and the colour of each triangle matches the colour of
the option the robot believes is the best. As shown by figure 5.1(a), at the start (t = 0), two
options are available in the environment (the green option of quality 0.4 and the blue option of
quality 0.2). Agents are initially uncommitted (grey-coloured). At the time Tc (figure 5.1(b)),
the swarm is settled on the best of the two available options (the green option) when a better
option appears (the red coloured option of quality 0.8). In this case, the swarm is required to
switch its decision to the new best option (i.e. the red option), as shown in figure 5.1(c).
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5.2.2 The disappearance of the best option

In this scenario, at the start n(0) = n0 options are available in the environment. At the time Tc,
the swarm is fully settled on the best of the n0 options when this one suddenly disappears (i.e.
n(t ≥ Tc) = n0 −1). The swarm is required to switch its decision to the new best option (i.e.
the previously second-best).
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Fig. 5.2 A visual illustration of the disappearance scenario in which the best option disappears
during the experiment.

In figure 5.2, we illustrate the disappearance scenario in case of n0 = 3 options. As shown
by figure 5.2(a), at the start (t = 0), three options are available in the environment (the red
options of quality 0.8, the green option of quality 0.4 and the blue option of quality 0.2). Agents
are initially uncommitted (grey-coloured). At the time Tc (figure 5.2(b)), the swarm is settled
on the best of the three available options (the red option) when this one suddenly disappears
from the environment. In this case, as shown by figure 5.2(c), the swarm is required to switch
its decision to the new best option, i.e. the green option of quality 0.4 that was previously (i.e.
t < Tc) the second-best option.

5.2.3 A swap of the qualities of the two best options

In this scenario, the number of options remains constant throughout the experiment (i.e.
n(t) = n0 ∀t). However, at time Tc, while the swarm is settled on the best of the n0 available
option, the quality of the two best options are swapped. The previously second-best option
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becomes the new best option. In this case, the swarm needs to switch its decision to the new
best option (i.e. the initially second-best).

0.2 0.4

0.8

(a) t = 0

0.2 0.8

0.4

(b) t = Tc

0.2 0.8

0.4

(c) t > Tc

option agent

Fig. 5.3 A visual illustration of the swap scenario in which the qualities of the two best options
are swapped.

In figure 5.3, we illustrate the swap scenario in case of n0 = 3 options. As shown by
figure 5.3(a), at the start (t = 0), three options are available in the environment (the red options
of quality 0.8, the green option of quality 0.4 and the blue option of quality 0.2). Agents are
initially uncommitted (grey-coloured). At the time Tc (figure 5.3(b)), the swarm is settled on
the initially best of the three available options (the red option) when suddenly the qualities
of the two best options are swapped. In this case, as shown by figure 5.3(c), the swarm is
required to switch its decision to the new best option, i.e. the green option of quality 0.8 that
was previously (i.e. t < Tc) the second-best option.

5.3 The individual robot’s behaviour

In this study, each robot contributes to the solving of the best-of-n decision problem by
performing the same behaviour as the robot’s behaviour described in section 4.2 of the previous
chapter. In brief, the robot randomly explores the environment through a diffusive isotropic
random walk to locate the available options and estimate their qualities. While exploring the
environment, a robot interacts with other robots within its communication range to exchange
opinions about the best available option. Finally, the robot uses the information gathered
through environment exploration (also called individual information) and through interaction
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with others (also called social information) to update its opinion about the best available option
via a decision-making model (introduced in section 5.4). In contrast to the previous chapter,
in this study, through random exploration, the robots continuously monitor the environment
to detect changes. The robots can encounter new appearing options, re-assess the quality of
the available options, and update the quality estimate of their options to detect quality changes
and verify whether their option is still available or not. Every time a robot passes by the option
to which it is committed, the robot re-estimates the option’s quality. When a robot passes by
its option’s location but does not see it, the robot assumes that its option disappeared. When a
robot detects that its option disappeared, the robot sets the estimate of its option’s quality to zero
rather than abandoning the option and becoming uncommitted. By setting the option’s quality
to zero, the robot stops advertising the option and at the same time avoids being recruited (see
section 5.4.1) for the option again.

5.4 The decision-making models

In this study, we propose individual behavioural rules to give robot swarms the ability to adapt
their collective decision in case of dynamic best-of-n decision problems. We integrate our
individual behavioural rules into a personalised implementation of the existing weighted voter
decision-making model [211]. The weighted voter decision-making model, in its original form,
does not allow adaptation [148]. Our implementation of the weighted voter model is presented
in section 5.4.1. The individual behavioural rules we add to the original weighted voter model
to achieve adaptation are introduced in section 5.4.2.

5.4.1 The core of the decision-making models

The decision-making models employed in this study are based on the weighted voter model
[211]. The weighted voter model, in its original form [211], has been already demonstrated to
not allow adaptation in case of environmental changes [148]. Therefore, the weighted voter
model is adequate for testing the effectiveness of the proposed behavioural rules in achieving
adaptation.

Our implementation of the weighted voter model is slightly different from the one used in
previous studies [211, 148]. In this study, we assume that robots have no prior knowledge about
the decision problem. The robots start uncommitted and randomly explore the environment to
find the available options. As demonstrated in chapter 4 and in [198], it is important to take
into account the initial random exploration because it may be influential on the outcome of the
decision process. For these reasons, in our version of the weighted voter model, we include a
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quality-dependent discovery transition. An uncommitted robot that encounters an option while
exploring the environment may become committed to that option with a probability that is
proportional to the option’s quality.

In the original implementation of the weighted voter model used in [211, 148], the robot’s
behaviour is divided into two phases, a dissemination phase where the robot advertises and
updates its opinion, and an exploration phase where the robot assesses the quality of its option.
In the dissemination phase, the robot advertises its option for a time proportional to its estimate
of the option’s quality then switches to the exploration phase. In contrast, in our version of
the weighted voter model, each robot continuously communicates with the other robots. In
each broadcast period, the robot probabilistically decides whether to share its commitment
with others or not. The robot shares its commitment with a probability that is proportional to
the quality-estimate of its option. For instance, if the quality estimate of the robot’s option is
equal to 50% of the maximum possible quality, every broadcast period, the robot shares its
commitment with a 0.5 probability. Moreover, each robot continually explores the environment
in search for new options. Every time the robot passes by its option, the robot re-assesses the
quality of the option. When the robot commits to a new option through interaction with others,
the robot navigates toward the option’s location to self-estimate the option’s quality.

Our version of the weighted voter model is implemented using the probabilistic finite
state machine (PFSM) shown in Figure 5.4. The active state of the PFSM depends on the
robot’s commitment state. The state U is active when the robot is uncommitted. The state
Ci is active when the robot is committed to option i (with i ∈ {1, . . . ,nT }). At each update
time-step, the robot executes this model’s PFSM to update its opinion based on the information
in its possession. The information the robot uses to update its opinion can be either social,
i.e. coming from other robots in its local neighbourhood, or individual, i.e. gathered through
individual exploration efforts. Since the probability a robot shares information about its opinion
is proportional to the quality of its option; the higher the quality of an option, the more likely a
robot is exposed to information about it [167]. When an uncommitted robot holds individual
information about option i, i.e. the robot has encountered the option i during its exploration of
the environment satisfying the condition Ei, the robot commits to option i with a probability PDi .
This transition is called a discovery of option i. When a robot is uncommitted or committed
to option j and receives information about option i ̸= j from another robot (i.e. receives a
recruitment message Ri̸= j), the robot commits to option i. We call this transition recruitment to
option i. When the robot is recruited to option i, the robot navigates toward the option’s location
χi (received in the recruitment message Ri) to self-estimate the option’s quality. Once the robot
self-estimates the option’s quality, it resumes random exploration. As demonstrated in chapter 4,
self-estimating the option’s quality allows avoiding the spread of individual misestimations.
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Fig. 5.4 The PFSM used to implement our version of the weighted voter model [211]. This
PFSM is shown in case of n = 2 options but can scale to any number of options with two
transitions linking each pair of commitment states. Each robot executes this PFSM to update
its opinion about the best option based on the information it acquires through environment
exploration and interaction with peers. Upon the encountering Ei of option i (indicated by the
symbol | of conditional probability), an uncommitted robot U commits to the option i with
probability PDi . We call this transition a discovery of option i. When a robot is uncommitted
(state U) or committed to option j (state C j) and receives a recruitment message Ri ̸= j from a
robot that is committed to option i, the receiving robot commits to option i. At each broadcast
time-step, robots that are committed to option i advertise the option i with probability PAi .

At each broadcast time-step, each committed robot advertises its option i with probability PAi .
The robot advertises its option i by sending a recruitment message Ri to other robots in its
surrounding. The recruitment message Ri contains the option’s location χi. For the swarm to
reach a consensus for the best available options, the discovery and the recruitment transitions
must occur proportionally to the quality of the option [117, 167]. In other words, the higher is
the quality vi of option i, the more often a robot should discover or get recruited to option i.
Therefore, in our implementation, the discovery and advertising probabilities are the following:

PDi = PAi = v̂i , i ∈ {1,2, . . . ,nT }. (5.2)
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5.4.2 Local behavioural rules for achieving adaptation

As demonstrated in [148], the weighted voter model, as introduced in [211], does not allow
swarms to adapt their collective decisions in case of environmental changes. The reason for
this is that the weighted voter model has no mechanism that enables the individual robot to
commit to a different option once all the robots reach a consensus on the same option. Here,
we introduce two individual behavioural rules, each of which, when added to the weighted
voter model, allows the swarm to adapt its decision to environmental changes. These individual
behavioural rules make the individual robot always able to commit to a different option even
after all of the robots commit to the same choice. The proposed individual behavioural rules
are the Compare rule and the Forget rule.

5.4.2.1 The Compare rule

The Compare rule enables a committed robot to switch its commitment to an encountered option
when it has a higher quality than its current choice. Comparing the quality of the encountered
site to a threshold before committing to it has been previously used in decision-making models
of social insects [29, 30, 170]. Figure 5.5 shows the PFSM of our version of the weighted voter
decision-making model with the Compare rule (shown in red colour). Following the Compare
rule, a robot that is committed to an option i and encounters another option j ̸= i (i.e. satisfies
the condition E j ̸=i), switches its commitment from option i to j with a probability PS ji . The
swarm is required to switch its consensus only when its current choice is no longer the best.
Thus, the robot must switch its commitment from the option i to the encountered option j only
when it estimates that the option j is better than its current option i (i.e. v̂ j > v̂ j). Besides,
for the swarm to always favour options with the highest quality, the switching probability PS ji

should also be proportional to the estimated quality v̂ j. Therefore, the probability PS ji can be
expressed as follows:

PS ji = v̂ jH[v j − (vi + k)] , i ∈ {1,2, . . . ,nT } (5.3)

where H() is the unit step function, and k is a parameter that sets the minimum required quality
difference between the current robot’s option i and the encountered option j for the robot to
consider switching its opinion to option j. Using the parameter k, it is possible to set the
threshold for which updating the opinion is worthwhile. In fact, in certain scenarios, when the
qualities vi and v j are very similar, it is preferable for the swarm to not adapt its decision even
if option j is better than option i (i.e. v j − vi < k).
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Fig. 5.5 The PFSM of the weighted voter decision-making model with the Compare rule
(represented with red colour). This model extends our version of the original weighted voter
model (see section 5.4.1 and figure 5.4). Following the Compare rule, when a robot that is
committed to an option i encounters another option j ̸= i (i.e. satisfies the condition E j ̸=i), the
robot switches its commitment from option i to j with probability PS ji given by equation (5.3).

5.4.2.2 The Forget rule

The second individual behavioural rule that we propose to enable the swarm to adapt its
decision in case of environmental changes is the Forget rule. Following the Forget rule, the
robots spontaneously forget their current choice and become uncommitted. The Forget rule has
previously been included in several collective decision-making and foraging models of social
insects such as honeybees [132, 167, 164] and ants [194, 117, 182], and is sometimes referred
to as abandonment or leak. Becoming uncommitted allows robots to re-assess and commit to
the encountered options. As a result, the swarm can detect newly available options or changes
in the qualities of the available options.

In figure 5.6, we show the PFSM of our version of the weighted voter decision-making
model when including the Forget rule (shown in red colour). As depicted by figure 5.6, using
the Forget rule, a robot that is committed to an option i spontaneously forgets its option and
becomes uncommitted with probability PFi . Some previous studies [132, 167, 164] employed
the Forget rule as an additional mechanism that drives the building of consensus for the best
option. Thus, these studies selected the forgetting probability PFi to be inversely proportional to
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Fig. 5.6 The PFSM of the weighted voter decision-making model when including the Forget rule
(represented with red colour). This model extends our version of the original weighted voter
model (see section 5.4.1 and figure 5.4). Following the Forget rule, a robot that is committed
to an option i spontaneously forgets its option and becomes uncommitted with probability PFi

given by equation (5.4).

the quality of the robot’s option, so the robots abandoned options of low quality more often
than options of higher quality leading to more robots committing to better options. In this study,
we are interested in how the Forget rule could enable the swarm to adapt its collective decisions
in case of environmental changes. Therefore, for simplicity, we set the forgetting probability to
a constant α:

PFi = α , i ∈ {1,2, . . . ,nT }. (5.4)

5.5 Experimental setup

In this study, we introduce individual behavioural rules that allow the swarm to achieve adapta-
tion in case of dynamic best-of-n problems described in section 5.1 and for the different types
of environmental changes introduced in section 5.2. We employ the Decision-Making Multi-
Agent Simulator (DeMaMAS) (described in section 3.2) to analyse the collective decisions
resulting from the proposed behavioural rules. In section 5.5.1, we describe the experiments
conducted in the DeMaMAS simulator. Moreover, to showcase the effectiveness of the analysed
behavioural rules in more realistic setups, we tested them on a simulated Kilobot swarm using
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Fig. 5.7 A screenshot of the multi-agent simulations conducted in DeMaMAS (described in
section 3.2) for S = 50 robots and n = 3 options. The frame shows the limits of the 1× 1
environment with periodic boundary conditions. The coloured circles represent the areas (radius
0.2) in which the options can be perceived by robots (the small grey circles).

the physics-based swarm robotics simulator ARGoS [139, 138] of section 3.4.1. We describe
the conducted swarm robotics experiments in section 5.5.2.

5.5.1 Multi-robot experiments

In this study, we employ multi-agent simulations to analyse the effectiveness of our proposed
individual behavioural rules for achieving adaptation in case of the environmental changes
described in section 5.2. Moreover, we use multi-agent simulations to investigate the effect of
parameters such as the robot density in the environment, the robot’s communication range, and
the quality difference between the options, on the performance of our proposed strategies.

In our multi-agent experiments, a swarm of S robots is required to solve the best-of-n
decision problems with n = 3 options. However, our proposed behavioural rules are intended
to allow swarms to achieve adaptation in any best-of-n decision problem. To avoid the spatial
correlations that may be caused by the positioning of the options, in each experiment, the
options’ locations χi (with i∈ 1,2,3) are randomly and uniformly selected within the considered
1×1 environment. A robot is able to perceive options and estimate their qualities only when
these are within its sensing range Sr = 0.2. The robot is able to exchange information only
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(a) t = 0min (b) t = 20min (c) t = 40min

Fig. 5.8 Screenshots of the ARGoS simulator showing the state of the environment (i.e. the
number n and the qualities vi of the options) at different times of the swarm robotics experiments.
The colour-coded circles (radius Sr = 0.2m) represent the area where each option is perceivable
by the robots. At t = 0min (panel (a)), four options are available in the environment: option 1
(red) of quality v1 = 0.8, option 2 (green) of quality v2 = 0.6, option 3 (blue) of quality v3 = 0.4,
and option 4 (magenta) of quality v4 = 0.2. At t = 20min, option 1 disappears, and the other
options remain unchanged. At t = 40min, the qualities of options 2 and 3 are swapped, i.e.
v2 = 0.4 and v3 = 0.6.

with robots within its communication range Cr, which we varied in our experiments in the
range Cr ∈ {0.025,0.05,0.075,0.1,0.15,0.2,0.3,0.4,0.5}. The experiment length is 60,000
time steps, and the environmental changes are applied at time step Tc = 10,000. We carefully
selected Tc to give the swarm enough time to settle on a choice before the environmental change
occurs. We say that the swarm has reached consensus for an option if the average number of
robots committed to that option in the last Tw = 5,000 time steps is equal to or higher than
Q = 80% of the population S.

5.5.2 Swarm robotics experiments

In this study, we validated the effectiveness of the proposed individual behavioural rules in
achieving adaptation through their implementation on a simulated Kilobot swarm. Compared
to multi-agent simulations, swarm robotics simulations represent a step closer to reality as they
take into account collision between robots and noisy robot’s motion that may influence the
emergent collective behaviour of the swarm.

In the multi-agent simulations, each experiment focused on a single type of environmental
change. In contrast, the swarm robotics experiments involved all the three types of environmen-
tal changes considered in this study (i.e. the appearance of a better option, the disappearance
of the swarm’s option, and a swap in the qualities of the two best options). The experiments
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are one hour long and include up to n = 4 options. The environment state (i.e. the number and
the qualities of the options) is changed every 20min. At the start (t = 0min), four options are
available in the environment (figure 5.8(a)). All the robots are set to be committed to option 2
of quality v2 = 0.6 which is the second-best available option. Starting with a fully committed
swarm to the second-best option (the option 2 of quality v2 = 0.6) corresponds to simulating
the appearance of a better option, in this case, option 1 of quality v1 = 0.8. At t = 20min,
option 1 disappears from the environment and option 2 becomes the best (figure 5.8(b)). At
t = 40min, the qualities of options 2 and 3 are swapped (i.e. v2 = 0.4 and v3 = 0.6) making
option 3 the best (figure 5.8(c)).

To conduct the swarm robotics experiments, we employed the ARGoS Kilobots simulator
described in Section 3.4.1. We used a swarm of S = 50 Kilobots [174] with a communication
range Cr = 0.1m. To match the multi-agent experiments, we consider a 1m× 1m square
environment and the robots’ sensing range to be Sr = 20cm. To allow the Kilobots to perceive
the options, compute their locations, and estimate their qualities, we employed the simulated
ARK system introduced in section 3.4.3. When an option i is within the robot’s sensing range
(20 cm), the option’s location χi and noisy quality v̂i are sent to the robot via an ARK message.
We also use ARK to inform the robots about their GPS location and their orientation. Thanks
to the GPS location and orientation, the robots can move towards an option to self-estimate its
quality. Besides, a robot uses its GPS location to detect whether its option is still available or
not. If the robot is around its option (the distance between the robot’s location and its option’s
location is smaller than the robot’s sensing range), but the robot does not perceive the option,
the robot assumes that its option disappeared. When the robot thinks its option has disappeared,
the robot sets the quality of the option to 0. This allows the robot to avoid being recruited for
that option again.

5.6 Results

In this section, we present the results of our analysis of the swarm’s behaviour in the case of
the environmental changes described in section 5.2 when using the decision-making models
introduced in section 5.4. Section 5.6.1 shows the results of the experiments conducted using
the DeMaMAS multi-agent simulator, while section 5.6.2 presents the results of the swarm
robotics simulations.
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5.6.1 Multi-robot simulations results

Here, we present the results of the multi-agent simulations we conducted to analyse the
effectiveness of the behavioural rules (see section 5.4.2) in enabling the swarm to adapt its
decision in case of the environmental changes detailed in section 5.2. By conducting the
experiments described in section 5.5.1, we analysed the response of the swarm in best-of-n
problems of different difficulty ∆v. We also investigated the effect of the parameter of each
behavioural rule on the swarm’s adaption abilities. Finally, we analysed the effect of the robot
density in the environment D and the robot’s communication range Cr on the adaptation abilities
achieved through the proposed behavioural rules.

5.6.1.1 Performance metrics

In the multi-agent simulation results presented in this section, each experimental condition
is tested through 100 simulation runs. For each tested condition, we measure the probability
of adaptation (indicated in the following plots using circular markers) as the proportion of
runs where the swarm adapts its decision to the new best option, the probability of stagnation
(indicated using square markers) as the portion of runs where the swam keeps its decision
unchanged, and the indecision probability (indicated using triangular markers) as the proportion
of runs where the swarm becomes undecided (i.e. the number of robots committed to any of the
available options becomes less than the quorum threshold Q = 80% of the full population). We
also measure the adaptation time (indicated using cross markers) as the average time it takes to
the swarm to adapt its decision to the new best option. We consider that the swarm has adapted
its decision to the new option when the average number of robots committed to the new option
in the last Tw = 5,000 time steps is equal to or higher than the quorum threshold Q = 80% of
the total number of robots S

5.6.1.2 Effect of problem difficulty on adaptation

To investigate the effect of the proposed behavioural rules on the decisions of the swarm in the
case of environmental changes , we conducted the best-of-3 options experiments reported in
section 5.5.1 for S= 50 robots and variable problem difficulty ∆v∈{0,0.1, . . . ,0.5}. To vary the
difficulty ∆v = v1 − v2, we fixed the quality of the best option to v1 = 0.8 and the quality of the
worst option to v3 = 0.1, and varied the quality of the second-best option v2 ∈ {0.3,0.4, . . . ,0.8}.
We fixed the robot’s sensing range to Sr = 0.2, the robot’s communication range to Cr = 0.1,
and the level of the quality estimation noise to σ = 0.01.

The results of each tested condition are obtained via 100 simulation runs for each type
of environmental change, and each proposed behavioural rule. We fixed the parameter k of
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the Compare behavioural rule to k = 0.1, so a committed robot considers switching to an
encountered option only when estimating that the quality of the option is at least 0.1 better
than the quality of its current option (thus ∆v ≥ 0.1). We set the parameter α of the Forget
behavioural rule to α = 0.01. Thus, in each simulation time step, each committed robot may
forget its current option and become uncommitted with a probability PF = 0.01, that is, on
average, once every 100 time-steps.

Figures 5.9 and 5.10 show the results obtained using the Compare and the Forget behavioural
rules, respectively. Each panel in these figures presents the results obtained for a type of
environmental change (described in section 5.2). In each tested condition, the outcome of the
swarm’s decision is reported on the left y-axis using the blue lines and markers. The circular
markers report the proportion of runs where the swarm adapted its decision to the environmental
change. The square markers show the proportion of runs where the swarm kept its decision
unchanged (labelled as stagnation), and the triangular markers show the proportion of runs
where the swarm became undecided. On the right y-axis and using the red x-shaped markers,
we report the average adaptation time for the proportion of runs where the swarm adapted its
decision. The adaptation time measures the number of time steps it takes for the swarm to
reach a consensus for the new best option from when the environmental change happens.

As shown by figure 5.9, using the Compare behavioural rule (introduced in section 5.4.2.1),
the swarm is able to adapt its decision to the different environmental changes. In the appearance
scenario (figure 5.9(a)), for ∆v ∈ {0.1,0.2, . . . ,0.5}, the swarm switched its decision to the
new better option in 100% of the runs. When the appeared option had the same quality as
the swarm’s current choice (i.e. ∆v = 0), thanks to the parameter k = 0.1 that prevented the
robots from switching to options with less than 0.1 improvement in quality, the swarm kept its
decision unchanged. The swarm took on average between around 4,200 and 5,500 time steps to
switch its decision to the appeared option. The higher the difference between the quality of the
two best options ∆v (i.e. the easier is the problem), the quicker the swarm adapted its decision
to the new option. In the disappearance scenario (figure 5.9(b)), for ∆v ∈ {0,0.1, . . . ,0.5},
the swarm was able to switch its decision to the best of the remaining options (the previously
second-best option) in 100% of the runs. In the disappearance scenario, the average adaptation
time was between around 4,500 and 5,000 times steps. The average adaptation time decreased
as the difference in quality ∆v decreased, because for smaller ∆v the quality v2 of the remaining
best option is higher, and thus robots commit to it more often and reach consensus faster. In
the swap scenario (figure 5.9(c)), for ∆v ∈ {0,0.1, . . . ,0.5}, the swarm adapted its decision to
the new best option (the previously second-best option) in 100% of the runs. The swarm took
on average between around 4,700 and 6,100 time steps to reach a consensus for the new best
option. The smaller was ∆v, the more it took for the swarm to adapt its decision.
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(c) Swap

Fig. 5.9 Results of multi-agent simulation experiments described in section 5.5.1 for S = 50-
robots swarm in the case of the dynamic best-of-3 options problem described in section 5.2
when using the Compare behavioural rule introduced in section 5.4.2.1. Panels (a), (b), and
(c) show the results in the appearance, the disappearance, and the swap scenarios (described
in section 5.2.1), respectively. In each panel, we vary the difficulty ∆v ∈ {0,0.1,0.2, . . . ,0.5}
by varying the quality of the second-best option v2 ∈ {0.3,0.4, . . . ,0.8}, and fixing the quality
of the best option to v1 = 0.8 and the quality of the worse option to v3 = 0.1. We fixed the
noise level of the robots’ quality estimates to σ = 0.01 and the parameter of the Compare
behavioural rule to k = 0.1. In each tested condition, the results are obtained through 100
simulation runs. The outcome of the swarm’s decision is reported on the left y-axis using the
blue lines and markers. The circular markers report the proportion of runs where the swarm
adapted its decision to the environmental change. The square markers show the proportion
of runs where the swarm kept its decision unchanged, and the triangular markers show the
proportion of runs where the swarm became undecided. The adaptation time is reported on the
right y-axis using the red x-shaped markers.



5.6 Results 79

0 0.1 0.2 0.3 0.4 0.5
Difference v = v1 v2

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ilit
y

0

5

10

15

20

25

Ad
ap

ta
tio

n 
tim

e 
(×

10
3 )

(a) Appearance

0 0.1 0.2 0.3 0.4 0.5
Difference v = v1 v2

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

0

5

10

15

20

25

Ad
ap

ta
tio

n 
tim

e 
(×

10
3 )

(b) Disappearance

0.1 0.2 0.3 0.4 0.5
Difference v = v1 v2

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

0

5

10

15

20

25

Ad
ap

ta
tio

n 
tim

e 
(×

10
3 )

(c) Swap

Fig. 5.10 Results of multi-agent simulation experiments described in section 5.5.1 for S = 50-
robots swarm in the case of the dynamic best-of-3 options problem described in section 5.2
when using the Forget behavioural rule introduced in section 5.4.2.2. Panels (a), (b), and (c)
show the results in the appearance, the disappearance, and the the swap scenarios (described
in section 5.2.1), respectively. In each panel, we vary the difficulty ∆v ∈ {0,0.1, . . . ,0.5} by
varying the quality of the second-best option v2 ∈ {0.3,0.4, . . . ,0.8}, and fixing the quality of
the best option to v1 = 0.8 and the quality of the worse option to v3 = 0.1. We fixed the noise
level of the robots quality estimates to σ = 0.01 and the parameter of the Forget behavioural
rule to α = 0.01. In each tested condition, the results are obtained through 100 simulation
runs. The outcome of the swarm’s decision is reported on the left y-axis using the blue lines
and markers. The circular markers report the proportion of runs where the swarm adapted its
decision to the environmental change. The square markers show the proportion of runs where
the swarm kept its decision unchanged, and the triangular markers show the proportion of runs
where the swarm became undecided. The adaptation time is reported on the right y-axis using
the red x-shaped markers.
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As depicted by figure 5.10, the Forget rule (introduced in section 5.4.2.2) also enables the
swarm to adapt its decision to the different environmental changes. In the appearance scenario
(figure 5.10(a)), for ∆v ∈ {0.1,0.2, . . . ,0.5}, the swarm adapted its decision to the appeared
option in 100% of the runs. For ∆v = 0, the swarm switched its decision to the appeared
option in around 60% of the runs, it kept the same decision in around 25% of the runs, and it
became undecided in around 15% of the runs. The average adaptation time increased as the
difference between the quality of the two options ∆v decreased. The average adaptation time
rose from around 5,000 time steps for ∆v = 0.5 to around 12,000 time steps for ∆v = 0.1. In
the disappearance scenario (figure 5.10(b)), for ∆v ∈ {0,0.1, . . . ,0.5}, the swarm successfully
detected the disappearance of its current option and switched its decision to the new best option
(i.e. the previously second-best option) in 100% of the runs. The swarm took on average
between around 4,300 and 4,800 time steps to adapt its decision to the new best option. The
lower was ∆v, the quicker the swarm adapted its decision as a lower ∆v means a higher quality
of the new best option v2 and thus a faster consensus. In the swap scenario (figure 5.10(c)), for
∆v ∈ {0.1,0.2, . . . ,0.5}, the swarm adapted its decision to the new best option (the previously
second-best option) in almost 100% of the runs. The average decision time increased as ∆v
decreased, going from around 5,200 time steps for ∆v = 0.5 to around 10,000 time steps for
∆v = 0.1.

The adaptation using the Forget rule (figure 5.10) is slower than when using the Compare
rule (5.9), especially for lower values of ∆v. For instance, in the appearance scenario and
for ∆v = 0.1, the average adaptation time was around 12,000 time steps using the Forget rule
and around 5,500 time steps using the Compare rule, i.e. when using Forget, the swarm is
approximatively two times slower than when using the Compare rule. When using the Forget
rule, a robot only commits to the option i (proportionally to the quality estimate v̂i) if it is
uncommitted. Robots that are already committed ignore the other options they encounter in the
environment. Thus the probability that a robot commits to the new best option i using the Forget
rule is proportional to PF ·PE · v̂i (where PE is the probability of encountering the option). In
contrast, using the Compare rule, all robots that encounter the better option i may commit to the
option proportionally to their quality estimate v̂i of the option’s quality. Hence, the probability
that a robot commits to new best option i using the Compare rule is proportional to PE · v̂i.
Therefore, the probability that a robot commits to the new best option using the Compare rule

is approximatively
PE · v̂i

PFj ̸=i ·PEi · v̂i
=

1
PFj ̸=i

=
1
α

= 100 times higher than when using the Forget

rule. For this reason, the adaptation using the Compare rule is faster than when using the Forget
rule.
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5.6.1.3 Effect of the behavioural rules’ parameters on adaptation

Here, we investigate the effect of the parameter of each behavioural rule on the adaptation
abilities of the swarm. We conducted the same experiments as section 5.6.1.2 for different
values of the parameter of each behavioural rule. We varied the parameter k (introduced in
(5.3)) of the Compare rule in {0.1,0.2,0.3} and varied the parameter α (introduced in equation
(5.4)) of the Forget rule in {0.0001,0.001,0.01,0.1}. We tested each experimental condition
through 100 simulation runs.

Figure 5.11 shows the results of the experiments when using the Compare rule. In each
tested condition, we show the proportion of runs where the swarm adapted its decision to the
environmental change. The red solid lines and markers show the results for k = 0.1, the green
dashed lines and markers show the results for k = 0.2, and the blue dashed-dotted line and
markers indicate the result for k = 0.3. As shown by figure 5.11(a), in the appearance scenario,
the swarm adapted its decision to the new option only when ∆v ≥ k; i.e. only when the quality
of the new option is better than the quality of the existing best option by at least k. As depicted
by figure 5.11(b), in the disappearance scenario, the value of the parameter k did not influence
the adaptation abilities of the swarm. This is due to the fact that when the robots detect that
their option disappeared, they set the quality of their option to zero and hence are able to switch
their commitment to any encountered option that has a quality of at least k (as expressed by the
switching probability of equation (5.3)). As in the appearance scenario, in the swap scenario
(figure 5.11(c)), the swarm adapted its decision to the new option only when ∆v ≥ k.

As demonstrated by the results shown in figure 5.11, the parameter k can be used to control
the minimum improvement in quality that must occur for the swarm to consider adapting its
decision. For example, it may be undesirable that the swarm takes time to adapt its decision for
minor improvements in quality.

The results obtained when using the Forget rule are depicted in figure 5.12. In each tested
case, we report the proportion of runs where the swarm adapted its decision to the environmental
change. The red solid lines and markers show the results for α = 0.0001, the green dashed
lines and markers show the results for α = 0.001, the blue dashed-dotted line and markers
indicate the result for α = 0.01 and the black dotted lines and markers show the results for
α = 0.1. In the appearance (figure 5.12(a)) and the swap (figure 5.12(c)) scenarios, for α = 0.1
(the black dotted lines), the swarm is unable to adapt in most, when not all, the runs even when
the appeared option is much better than the existing options. For ∆v = 0.5 the swarm adapts
its decision to the new option only in around 10% of the runs. The reason for this is that for
α = 0.1 the robots forget their choice so often that they are unable to reach a consensus. For
α = 0.0001 (the red solid lines), the swarm is also unable to adapt its decision in most of the
runs even when the new option is much better than the existing options (i.e. ∆v = 0.5). For
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Fig. 5.11 Effect of the parameter k of equation (5.3) on adaptation when using the Compare
rule.

∆v = 0.5 the swarm adapted its decision to the new option in only around 40% of the runs. This
is due to the fact that for α = 0.0001 the robots rarely forget their choice and hence are not able
to consider the new option. For α = 0.01 (the blue dashed-dotted line), the swarm was able
to adapt its decision in nearly 100% of the runs for ∆v ∈ {0.1,0.2, . . . ,0.5}. For α = 0.001
(the green dashed line), the adaptation decreased compared to α = 0.01, especially for low
values of ∆v. For instance, in the appearance scenario, for ∆v = 0.1, the adaptation decreased
from 100% for α = 0.01 to around 75% for α = 0.001. As depicted by figure 5.12(b), in the
disappearance scenario, the adaptation is not much influenced by the value of α , except for
α = 0.1 where the swarm is generally not able to adapt because the robots too frequently forget
their choice, so they are not able to reach a consensus. The reason the value of alpha does not
much influence adaptation in the disappearance scenario is that when the robots detect that
their option disappeared they set its quality to zero and thus stop advertising the option. It is
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Fig. 5.12 Effect of the parameter α of equation (5.4) on the adaptation when using the Forget
rule.

then enough that one robot forgets the disappeared choice and commits to the new best (the
previously second-best option) that this choice quickly spreads within the population (i.e. the
swarm adapts).

As demonstrated by the results shown in figure 5.12, the forgetting probability value α

must be carefully tuned to achieve the desired adaptive decision. This result is in agreement
with a previous result on signal detection in social insects where the value of the forgetting rate
had to be tuned in order to detect signals in the presence of noise [97].

5.6.1.4 Effect of the robot’s communication range on adaptation

Here, we analyse the effect of the robot’s communication range on the adaptation abilities
given to the swarm by the Compare and the Forget behavioural rules introduced in section
5.4.2. We performed our analysis in the appearance scenario (described in section 5.2.1) where
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two options are initially available in the environment (i.e. n(0) = 2), the option 2 is of quality
v2 = 0.7 and the option 3 is of quality v3 = 0.1. At time step Tc = 10,000, option 1 of quality
v1 = 0.8 appears (i.e. n(t ≥ Tc) = 3). We fixed the number of robots to S = 200, the level of
the quality estimation noise to σ = 0.01, and the robot’s sensing range to Sr = 0.2. We fixed
the parameter k of the Compare rule to 0.1 and the parameter α of the Forget rule to 0.01. We
varied the robot’s communication range Cr ∈ {0.025,0.05,0.075,0.1,0.15,0.2,0.3,0.4,0.5}.
The results of our analysis are obtained through 100 simulation runs for each tested condition,
and are reported in figure 5.13. For each tested condition, we report the proportion of runs
where the swarm switched its decision to the new option using the circular markers and the
proportion of runs where the swarm kept the same decision using the square markers.
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Fig. 5.13 Effect of the robot’s communication range on adaptation in the appearance scenario
described in section 5.2.1. Two options are initially available in the environment (option 2 of
quality v2 = 0.7 and option 3 of quality v3 = 0.1). Option 1 of quality v1 = 0.8 appears at time
step Tc = 10,000. The swarm size is fixed to S = 200, and the quality estimation noise is set to
σ = 0.01. The robot’s sensing range is fixed to Sr = 0.2 and the robot’s communication range
Cr is varied in {0.025,0.05,0.075,0.1,0.15,0.2,0.3,0.4,0.5}. Panel (a) shows the results when
using the Compare rule with k = 0.1. Panel (b) shows the results when using the Forget rule
with α = 0.01. The results of each tested condition are obtained through 100 simulation runs.
In each tested condition, the proportion of runs where the swarm adapted its decision to the
new option is reported using the circular markers while the proportion of runs where the swarm
kept the same decision is reported using the square markers.



5.6 Results 85

Counter-intuitively, the adaption decreases as the robot’s communication range increases,
both when using the Compare rule (figure 5.13(a)) and when using the Forget rule (fig-
ure 5.13(b)). For instance, with a communication range of Cr = 0.05 the swarm adapts in 100%
of the runs while with a communication range of Cr = 0.5 the swarm is not able to adapt at
all. The reason for this is that longer communication ranges make the spread of new opinions
within the swarm harder. The longer is the communication range, the higher the number of
peers each robot communicates with at a time. Therefore, when a robot commits to the new
option while the swarm is fully settled on another option, the robot gets quickly converted
back to the previous choice, especially when the difference between the two options is small.
This result is particularly interesting as it highlights the benefit of local communication that
characterises both living and artificial swarms.

5.6.1.5 Effect of the robot density on adaptation

In this section, we investigate the effect of the robot density in the environment on the adaptation
abilities achieved by the swarm using the proposed behavioural rules. The robot density D
is computed as the ratio between the number of robots S and the area of the environment
AE . In this study, to vary the robot density, we kept the size of the environment AE = 1
constant and varied the number of robots S. We tested various values of robot density D =
S

AE
∈ {50,100,200,300,400,500,1000} in the appearance scenario of section 5.2.1. At the

start, option 2 (of quality v2 = 0.7) and option 3 (of quality v3 = 0.1) are available in the
environment (i.e. n(0) = 2). The option 1 of quality v1 = 0.8 becomes available later at time
step Tc = 10,000 (i.e. n(t ≥ Tc) = 3). We fixed the robot’s sensing range is fixed to Sr = 0.2,
the robot’s communication range to Cr = 0.1, and the level of the quality estimation noise
to σ = 0.01. We set the parameter k of the Compare rule to 0.1 and the parameter α of the
Forget rule to 0.01. We ran 100 simulations for each tested condition and each proposed
behavioural rule. The results of our analysis are reported in figure 5.14. In each tested
condition, the proportion of runs where the swarm adapted its decision to the appeared option is
reported using circular markers, while the proportion of runs where the swarm kept its decision
unchanged is reported using square markers.

As depicted by figure 5.14, adaption decreases as the robot density increases. For instance,
when using the Compare rule (fig 5.14(a)), a swarm of S = 50 robots adapts in 100% of the
runs while a swarm of S = 500 robots adapts in only 80% of the runs. When using the Forget
rule (fig 5.14(b)), a swarm of S = 50 robots adapts in 100% of the runs while a swarm S = 500
robots does not adapt at all. The reason for this is that the higher the number of robots, the
harder it is for a new opinion to spread. The higher the robot density; the higher the number of
peers that each robot communicates with at a time. As a result, when a robot commits to a new
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Fig. 5.14 Effect of the robot density on adaptation in the appearance scenario described in
section 5.2.1. Two options are initially available in the environment (option 2 of quality
v2 = 0.7 and option 3 of quality v3 = 0.1). Option 1 of quality v1 = 0.8 appears at time step
Tc = 10,000. The robot density D is varied in {50,100,200,300,400,500,1000}. The robot’s
sensing range is fixed to Sr = 0.2, the robot’s communication range is set to Cr = 0.1, and the
quality estimation noise is set to σ = 0.01. Panel (a) shows the results when using the Compare
rule with k = 0.1. Panel (b) shows the results when using the Forget rule with α = 0.01.
The results of each tested condition are obtained through 100 simulation runs. In each tested
condition, the proportion of runs where the swarm adapted its decision to the new option is
reported using the circular markers while the proportion of runs where the swarm kept the same
decision is reported using the square markers.

option while the swarm is already decided on another option, the robot gets quickly converted
back to the previous choice by its surrounding peers. This situation happens especially when
the difference between the new option’s quality and the quality of the swarm’s option is small.
In this case, the probability PA with which the robot advertises the new option is not superior
enough to compete with its peers’ advertisement for the current swarm’s choice.

5.6.2 Swarm robotics simulations results

In this section, we present the simulation results of the swarm robotics experiment described in
section 5.5.2 and conducted using the ARGoS swarm robotics simulator [139, 138] introduced
in section 3.4. Figure 5.15 shows the time evolution of the fraction of robots committed to
each option. The coloured lines show the average fraction of robots over 100 simulation runs.
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The coloured shade around each line shows the 95% confidence interval. The colour of each
line and shade matches the colour of the corresponding option. The vertical black dashed
lines show the times at which environmental changes occur and mark the different parts of
the experiment. The available options in each part of the experiment, their qualities, and their
colours are indicated on the top of each figure. The horizontal black dashed line indicates the
quorum threshold Q = 80%. As shown by figure 5.15, the swarm was able to adapt to the
different types of environmental change both using the Compare rule (figure 5.15(a)) and the
Forget rule (figure 5.15(b)). Figures 5.16 and 5.17 show screenshots from a simulation of the
swarm robotics experiment when using the Compare rule and the Forget rule, respectively.

5.7 Discussion

In this chapter, we proposed individual behavioural rules to give robot swarms the ability to
adapt their decisions in response to environmental changes. We tested the proposed behavioural
rules for solving the best-of-n decision problem in dynamic environments where the swarm is
not only required to decide about the best available option in the environment but also needs
to keep its decision up-to-date with changes that occur in the environment. In the context of
the best-of-n decision problem, environmental changes include variations in the number of
available options and their qualities. In this study, we considered the appearance of a better
option, the disappearance of the swarm’s option, and a sudden swap in the qualities of the
two best options. To allow the swarm to adapt its decision to these environmental changes,
we proposed two simple individual behavioural rules. The first is the Compare rule through
which committed robots can commit to a different encountered option when estimating that this
one has a better quality than their current option. The second is the Forget rule through which
committed robots spontaneously forget their current option and hence are able to reconsider
encountered options. We integrated these behavioural rules into the weighted voter model [211]
for collective decision-making that has been shown to not allow adaption in its original form
[148].

Using multi-agent simulations, we demonstrated the effectiveness of our proposed be-
havioural rules in enabling the swarm to adapt its decision to environmental changes. We
assessed the adaptation performance of relatively small swarms (S = 50) in best-of-n problems
of various difficulties ∆v. Both behavioural rules enabled the swarm to adapt its decision when a
better option became available in the environment. The swarm adapted its decision faster when
using the Compare rule because the probability that a robot commits to a new option using the
Compare rule is considerably higher than when using the Forget rule. Moreover, when using
the Compare rule, the swarm kept its decision unchanged when a new option of similar quality
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Fig. 5.15 Time evolution of the fraction of robots committed to each option in simulated
swarm robotics experiments described in section 5.5.2. The coloured lines show the average
fraction of robots over 100 simulation runs. The coloured shade around each line shows
the 95% confidence interval. The colour of each line and shade matches the colour of the
corresponding option. The vertical black dashed lines show the times at which environmental
changes occur and mark the different part of the experiment. The available options in each
part of the experiment, their qualities, and their colours are shown on the top of each plot. The
horizontal black dashed line indicates the quorum threshold Q = 80%. Panel (a) shows the
results when each robot executes the Compare-based decision-making model of section 5.4.2.1.
Panel (b) shows the results when each robot executes the Forget-based decision-making model
of section 5.4.2.2.

appeared in the environment. However, when using the Forget rule, the swarm sometimes
adapted its decision to the appeared option. The reason why the Compare rule allowed the
swarm to keep its decision unchanged when the appeared option is of similar quality is the
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(a) t = 0min (b) t = 20min

(c) t = 40min (d) t = 60min

Fig. 5.16 Screenshots of the swarm robotics experiment described in section 5.5.2 conducted
under ARGoS simulator. The screenshots are taken at different times throughout the experiment.
Here, each robot executes the Compare-based decision-making model introduced in section
5.4.2.1. A video of the experiment is available at https://youtu.be/nOU8XCe0J5Y.

parameter k (of equation (5.3)) that prevents the robots from committing to other options with
less than k quality improvement. The parameter k, when set to high enough values, prevents
the robots from considering similar quality options to be better than their current option due

https://youtu.be/nOU8XCe0J5Y
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(a) t = 0min (b) t = 20min

(c) t = 40min (d) t = 60min

Fig. 5.17 Screenshots of the swarm robotics experiment described in section 5.5.2 conducted
under ARGoS simulator. The screenshots are taken at different times throughout the experiment.
Here, each robot executes the Forget-based decision-making model introduced in section 5.4.2.2.
A video of the experiment is available at https://youtu.be/zudCnoPRG3c.

to estimation noise. Similar results can be achieved when using the Forget rule by correctly
setting the parameter α (of equation (5.4)). However, controlling the response of the swarm
through the parameter α is not straightforward. High values of α make the swarm unable to

https://youtu.be/zudCnoPRG3c
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a reach consensus as robots frequently forget their choice while low values make the swarm
unable to adapt its decision since robots will not forget frequently enough their current choice
to commit to the better option. It is important to highlight that the Forget rule is cognitively less
demanding than the Compare rule as it only requires the robot to spontaneously abandon its
choice [169]. In contrast, the Compare rule requires the robot to have the ability to memorise
and compare two values.

Through multi-agent simulations, we evaluated the influence of the robot density in the
environment and the robot’s communication range on the adaptation abilities achieved by the
swarm through the proposed behavioural rules. Counter-intuitively, the higher the density of
the robots in the environment and the longer the robot’s communication range, the less adaptive
is the swarm especially when the difference between the quality of the new best options and
the swarm’s current choice is small. The reason for this is that increasing the density of the
robots in the environment or the robot’s communication range increases the number of peers
each robot communicates with at a time. Consequently, when the swarm is settled on a choice,
and a robot commits to a new option, the robot gets quickly reverted by its peers to the previous
choice. A particularly interesting result is that lower communication ranges are better to achieve
adaptation. This result highlights the importance of local communication that characterises
swarms [76] and is in agreement with a recent study which suggests that limited cognitive and
sensory capabilities are essential for the emergence of collective behaviours in animal groups
[155].





Chapter 6

A simple individual behaviour for a
tunable collective resource collection
behaviour

In this chapter1, we address the collective resource collection task where robots are required
to find item sources in an unknown environment, collect items and transport them back to a
central depot. Here, we propose a bio-inspired individual behaviour that allows robot swarms
to perform the resource collection task in the case of objects of different quality. Similarly to
some species of foraging ants, in the proposed individual behaviour robots coordinate their
resource collection efforts using pheromone trails. Our proposed individual behaviour is highly
simplified, as it is based on binary pheromone sensors. Despite being simple, the proposed
individual behaviour is able to reproduce classical foraging experiments conducted with more
capable real ants that sense pheromone concentration and follow its gradient. One key feature of
our controllers is a control parameter which balances the trade-off between distance selectivity
and quality selectivity of individual foragers. To assess the performance of the emergent
collective behaviour, we employ an optimal foraging model [197] that explicitly takes account
of crowding, and we compare its predictions against the results of simulations with swarms of
varying sizes and experiments with up to 200 physical robots. In Section 6.1, we formalise the
collective resource collection task, outline the required robot capabilities, and explain how the

1This chapter is a modified form of a published manuscript: Talamali, M.S., Bose, T., Haire, M. et al.
Sophisticated collective foraging with minimalist agents: a swarm robotics test. Swarm Intelligence 14, 25–56
(2020). The "Abstract" and “Introduction” sections of the manuscript has been renamed and modified to maintain
consistency with other chapters. The section “Related works” of the manuscript has been modified and moved to
Chapter 2. The "Kilobot robot" section of the manuscript is not included as it was already explained in Section
3.3.1. The section "An optimal resource collection model" of the manuscript has been modified to reflect that it is
not part of the contributions made in this thesis. The "Appendix" section of the manuscript is not included as it is
not part of the contributions made in this thesis.
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ARK system (see Section 3.3.2) is used to equip the robots with the required capabilities. The
proposed individual behaviour is introduced in Section 6.2. Section 6.3 presents the optimal
foraging model used to assess the performance of the collective behaviour emerging from the
proposed individual behaviour. Finally, the results of our tests are presented and discussed in
Sections 6.4 and 6.5, respectively.

6.1 Resource collection in an unknown environment

In this section, we formally define the investigated problem and the required capabilities of
the robot (Section 6.1.1), then we describe how the ARK system (see Section 3.3.2) is used to
equip the robots with the necessary capabilities (Section 6.1.2).

6.1.1 The resource collection task

In this study, we investigate the problem of resource collection by a swarm composed of
S robots. The environment has n circular source areas of radius 10cm, denoted by Ai with
i ∈ {1, . . . ,n}, which are scattered around a central depot. Each area Ai offers resource items of
quality Qi. The quality is a numerical indication of the importance of the resource with respect
to the task that will be performed; this is similar to the nutritional value of food items in animal
foraging. In this work we are interested in the foraging process at steady state, therefore, we
assume sources which never deplete. If a robot enters a source area, it immediately collects
one virtual item (or object) and returns it to the central circular depot (of radius 10cm). We
do not take into account any handling time of the resource item. Also, we do not consider the
time spent in the resource patch, as the robot immediately finds an object and returns to the
depot (no exploration within the source area). The load carried back to the nest site is always
one item at a time. Travelling takes place with the same speed independent of the load carried
(i.e. either unloaded or loaded with one object). Keeping these aspects in abstract terms helps
to focus the study on the collective motion aspect and allocation of robots to source areas. In
fact, this study focuses on strategies to coordinate the robot motion between depot and source
areas through decentralised self-organising mechanisms. In particular, we explore how indirect
communication in the form of virtual pheromone trails can allow the robot swarm to balance
the trade-off between the quality of resource items and the distance between the source area
and the central depot.

The robots have limited computational and memory capabilities and need to operate in an
unknown environment. Robots are incapable of memorising source areas’ locations, instead
rely on pheromone trails to find the previously discovered sources again. This form of indirect
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communication requires the robots to be able to apply and read temporary marks in the
environment. Additionally we assume that robots always know the direction to the depot
(similarly to path integration in ants and other social insects [28, 17, 86]) and are able to detect
walls in front of them. However, robots do not possess any form of direct communication
amongst each other, and cannot perceive other robots in their surroundings.

6.1.2 Getting the required robot capabilities through the ARK system

In this study, we employ ARK to allow robots to apply and read virtual pheromone which
evaporates and diffuses over time. We equip the Kilobots with five virtual sensors and one
virtual actuator. In particular, each robot is equipped with:

• area sensor (either depot or source): the Kilobot is able to perceive if it is within the
depot or a source area (this information is encoded in 2 bits);

• item quality sensor: the Kilobot is able to estimate the quality of the item it retrieves
from the source area. Additionally, when the Kilobot enters in the depot, it can estimate
the quality of the items that have been collected up to now (this information is encoded
in 4 bits);

• depot direction sensor: the Kilobot has always knowledge about its relative direction to
the depot (this information is encoded in 4 bits);

• wall sensor: the Kilobot can sense if there is a wall at a distance of ∼ 5cm in front of
itself; note that this does not allow the Kilobot to sense the presence of other robots (this
information is encoded in 4 bits);

• pheromone gland actuator: the Kilobot can deposit a drop of pheromone at its location
(it expresses this behaviour by blinking its LED blue);

• pheromone antennae: the Kilobot can sense the presence of pheromone at a distance
of ∼ 3.5cm from its centre in front of itself (this information is encoded in 4 bits, see
Figure 6.1).

To store information about the pheromone, ARK models the environment as a discrete
2D matrix with cells of 6.7× 6.7mm2. Each time-step of length ∆t = 0.5s, ARK updates
the pheromone matrix by adding pheromone deposited by the robots (each drop consists of
an increment of φ = 250 in the cell under the robot’s centre) and computes evaporation and
diffusion of the pheromone. Each matrix cell m(i, j) is updated as

m(i, j) = m(i, j)[ elog(0.5)ε ∆t −4γ ∆t ]+ [m(i, j±1)+m(i±1, j)]γ ∆t, (6.1)



96 A simple individual behaviour for a tunable collective resource collection behaviour

90o

45o
0o

315o

270o

3

21

0

3.3cm
3.5cm
(5 cells)

Fig. 6.1 Kilobots sense via ARK the presence of virtual pheromone in front of themselves at
a distance of ∼ 3.5cm in four 45◦-wide sectors. The virtual sensor indicates the presence or
absence of pheromone as binary values, therefore, the Kilobot has no information about the
pheromone quantity or concentration difference. In this illustration, pheromone is represented
as blue circles, and thus the virtual sensor readings are [1,0,1,0]. When an exploring Kilobot
detects pheromone, it interrupts random exploration and moves towards the detected pheromone.
If more than one sector has pheromone (as in the illustration), to decide its motion direction
the robot compares the sectors’ direction with the depot direction (depot illustrated as a house
and direction differences as red and green angles) and moves towards the largest angle (green
arrow).

where the parameters ε = 0.1 and γ = 0.02 are the evaporation and diffusion rates, respectively.
Equation (6.1) is a discrete realisation of Fick’s law of diffusion [48], where we introduce the
exponential term to take into account the pheromone evaporation consistently with studies from
biology [56].

6.2 A simple individual behaviour for complex coordination

The individual robot behaviour is relatively simple and can be described by the Probabilistic
Finite State Machine (PFSM) illustrated in Figure 6.2. The main structure of the behaviour
is based on the control software designed by Font Llenas et al. [49]. The behaviour has
been enriched by adding a new Obstacle Avoidance state (indicated as AO in Figure 6.2), by
including an additional form of indirect communication that enables adaptability to different



6.2 A simple individual behaviour for complex coordination 97

quality scales (as described in Section 6.2.1), and by allowing for probabilistic transitions and
tuneable pheromone functions (as described in Section 6.2.2).

The robots do not have previous knowledge about the number, location, and items’ quality
of the source areas. Therefore, a robot starts by exploring the environment to discover source
areas (state RW in Figure 6.2). Due to the Kilobot’s limited capabilities (see Section 3.3.1),
the exploration is performed via an isotropic random walk which is a widely-used and simple
method to search for targets in an unknown environment [36]. The random walk consists of
alternate straight motion for 10 s and uniformly random rotation in [−π,π]. Upon encounter of
a source area, the robot (virtually) picks up an item and transports it to the depot (state GD in
Figure 6.2). As indicated in Section 6.1.1, we assume that the robots are limited in memory
and only able to keep track of the direction towards a single location in the space, in our case
the direction to the depot. This assumption is in line with the behaviour of several ants species
which rely on path integration to return to the nest [28, 17, 86]. The robots follow the direction
to depot to bring back collected items. Instead, to memorise the source locations, the robots
rely on their stigmergic coordination which represents a form of collective memory. Therefore,
on its way to the depot, the robot lays down virtual pheromone to allow itself, and other robots,
to find the source area again. The robot, every four seconds, takes a probabilistic decision to
deposit the next pheromone drop using the function Pφ (Qi) which is a function of the collected
item’s quality Qi

2. The function Pφ (Qi) is given by Equation (6.2) and described in detail in
Section 6.2.2. On arriving at the depot, the robot unloads the item and probabilistically decides
(according to Equation (6.3)) to turn back to follow the just-formed pheromone trail (state TB
in Figure 6.2), or to interrupt its exploitation of this source area and to resume exploration
through the random walk. When a robot senses virtual pheromone via the virtual antennae
(composed by four sectors described in Section 6.1.2), the robot follows the trail by moving
in the direction of the triggered antennae sector (state FP in Figure 6.2). If the robot senses
pheromone in more than one direction, e.g. both left and right sectors as in the illustration of
Figure 6.1, the robot compares the sensed-pheromone directions with the direction to the depot
(red and green angles in Figure 6.1) and moves towards the direction with the largest difference
(green arrow in Figure 6.1). This decision relies on the assumptions that robots only deposit
pheromone in their straight path from a source area to the depot and that they always have
access to the depot vector.

Compared with previous studies [49], the robot’s behaviour has been enriched through the
inclusion of obstacle avoidance (state AO in Fig 6.2). In fact, robots have been equipped with a
virtual sensor to detect walls (see Section 6.1.2). The robot reacts to a wall only if sensed in

2Lasius niger ants follow a similar behaviour, laying pheromone trails on their way back to the nest while
depositing a quantity of pheromone proportional to the quality of the foraged food [147, 31].
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Fig. 6.2 Probabilistic Finite State Machine (PFSM) of the individual robot behaviour. Circles
represent states and arrows are transitions. Robots start exploring the environment through a
random walk (RW); when they find a source area, they collect an item and return to the depot
(GD) laying pheromone according to Equation (6.2). Once arrived at the depot, they either turn
back (TB) or resume exploration (RW). When explorer robots detect pheromone, they follow it
(FP). When robots detect a wall, they avoid it (AO). Controlling individuals through this simple
PFSM leads to sophisticated collective foraging dynamics.

a frontal position, i.e. the two central sectors in the range [−45◦,45◦] of the robot’s heading
(note that the virtual wall sensor is composed by four sectors equal to the virtual antennae of
Figure 6.1). Upon wall detection, the robot turns left or right for about 22.5◦ in the opposite
direction of the sensed obstacle, then moves straight for 2.5 s, and finally returns to either the
random walk (RW) state or the go to depot (GD) state, depending on whether it carries an
item or not. This behaviour may be triggered multiple times until no obstacle is sensed in the
central sectors. In the case of symmetric sensing, i.e. both central sectors sense an obstacle, the
robot uses as tie-breaker the lateral obstacle sectors to turn in the freest direction. In the case of
complete symmetry, the direction is selected at random.

6.2.1 Adaptivity to relative quality differences

The robots do not have any prior information about the range of the sources’ qualities that
the unknown environment can offer. In order to allow the swarm to tune its behaviour to an
unknown quality range, the individual robots update over time their knowledge on the best
currently available quality Qmax. Initially, the robot has no prior knowledge about the quality
range and thus ranks the first source it finds as the best available. Over time, the robot constantly
compares its range (i.e. the best available quality Qmax) with other items collected by other
swarm members. The communication between robots is indirect and takes place within the
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depot. Each time a robot enters the depot, it can see the qualities of the items collected by
the swarm until now; thus, the robot compares its information with the best quality and, if
higher, updates its Qmax accordingly. This mechanism is consistent with animal behaviour
where individuals can assess the nutrient quality of the swarm’s reserves and compare against
their own [44, 4].

In our study, we consider unlimited item sources to investigate the steady-state regime,
however, in case of limited sources (i.e. with a limited number of items) the robots may update
their quality range by only observing the latest collected items. In this way, we predict the
swarm being able to flexibly adapt to appearance or depletion of sources.

6.2.2 Modulation of the individual rules to obtain a plastic behaviour

After collecting an item, the robot returns to the depot laying a pheromone trail. The pheromone
trail acts as a form of indirect communication between robots which inform each other about
paths connecting depot to discovered sources. Collective contribution to these trails leads to a
form of swarm memory which allows the swarm to remember the location of sources in the
environment. In fact, our simple robots cannot internally store sources’ locations, although
the swarm, as a whole, can remember locations through pheromone trails. A pheromone
trail is formed by a sequence of drops that the robot deposits via its virtual pheromone gland
(see Section 6.1.2). Similar to the approach of [49], a robot probabilistically decides every
four seconds whether to lay the next drop or not. In the previous work, we implemented
a simple linear function to map the quality Qi into a pheromone deposition probability, i.e.
Pφ (Qi) = Qi/Qmax. Linking the pheromone deposition function to perceived source quality
allowed the swarm to give priority to better quality sources over inferior sources.

In this study, we implement a tuneable function to allow the robot to regulate its selectivity
on the quality through a single parameter α ≥ 0. The probability to deposit the next pheromone
drop is given by

Pφ (Qi) = eα(Qi−Qmax)Q−1
i . (6.2)

The individual robots have access to α in a decentralised way and can alter this value to
vary the global response. Using an α > 1, the function has an exponential shape on Qi

resulting in high selectivity in favour of the highest quality sources. A value of α ≈ 1 leads to
(approximately) linear response, therefore, approximating the function investigated in [49], thus
having Equation (6.2) as a generalisation of the previous specific function. Finally, decreasing
α < 1 gradually flattens out the function to a constant value, that at the limit of α = 0 becomes
constant Pφ (Qi) = 1; this results in constant pheromone trails irrespective of the sources’
qualities.
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To further expand the individual robot capabilities to be able to balance the distance-quality
trade-off, we introduce a decay function Pd(ti) that robots use, upon arrival in the depot with an
item (event indicated with the letter ‘a’ in Figure 6.2), to decide whether to keep exploiting the
same source or to start exploring for new sources. Pd(ti) is inspired by similar abandonment
behaviours observed in social insects (e.g. foraging ants [182] and house-hunting honeybees
[181]) and allows the robots to abandon exploiting source Ai that required a long travel time ti
(either because it is distant or has an overcrowded path). The travel time ti is measured by the
robots as the time spent between the item collection (from the source Ai) and the item deposition
(in the depot). The function Pd(ti), similarly to Pφ (Qi) of Equation (6.2), is modulated by the
parameter α as

Pd(ti) = (α +1)−2e
ti−tmax
(α+1)

√
ti (6.3)

where tmax is a parameter indicating the robot’s prior knowledge on the maximum acceptable
time to return from a source area. The tmax could be adaptively tuned (similarly to Qmax in
Section 6.2.1), although in this study we do not explore this aspect and we fix tmax = 100s.
Assuming a fixed tmax is reasonable because in both biological and artificial systems source
areas may be accepted only if they are located within a certain maximum distance (or travel
time ti) from the depot that is decided a priori.

Equations (6.2) and (6.3) are linked by the parameter α which the robots can regulate to alter
the swarm behaviour. Increasing α > 1 has the combined effect of increasing discriminability
on quality Qi and flattening Pd(ti)≈ 0 for any distance; therefore, the swarm ignores distance
but selects the higher quality source. Conversely, small α < 1 flattens out quality differences
Pφ (Qi) ≈ 1 and accentuates differences on travel time with an exponential abandonment
Pd(ti) on high travel times; this leads to a system where the only discriminating factor on
source selection is distance due to a combination of evaporation and abandonment on farther
sources. Finally, intermediate values α ≈ 1 give a quasi-linear response of Pφ (Qi) and sublinear
Pd(ti)> 0 which allow the swarm to balance the distance-quality trade-off (similarly to what
has been reported in [49]).

6.3 Optimal foraging model

To assess the performance of the collective resource collection behaviour emerging from
the individual behaviour introduced in Section 6.2, we employ the optimal foraging model
proposed in [197]. This model gives a mathematical description of the optimal resource
collection behaviour based on principles of optimal foraging theory [98, 93]. The model
describes the utility gained by the collection of resource items discounted by the cost incurred
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in transporting these items to the depot. The main components of our model are the items’
qualities, the allocation of robots to various source areas, and the source-depot travel time.
We model the robot allocation as ρ j (with j ∈ {1, . . . ,n}) which is the fraction of robots on
the trail between the central depot and source area A j. All robots that are actively involved
in the transportation of items from the n sources are called workers; their fraction is denoted
by ρw = ∑

n
j=1 ρ j. The remaining robots that explore the landscape are called explorers, their

fraction is denoted by ρe = 1−ρw. The travel time is a function of the source-depot distance
and of the traffic congestion on the path. In fact, crowded paths lead to frequent collisions
between robots and result in longer travel times. The full details of the model and its derivation
are given in [197]; here we report the main quantity which is the swarm yield R, defined as

R =
n

∑
j=1

q j β j ρ j S
d̃2

j
, with d̃ j = d j + vo TC, j(ρ j S) . (6.4)

where S is the swarm size, q j = Q j/Qmax is the normalised quality of source area A j, ρ j is the
fraction of robots on the trail between the central depot and source area A j.

The parameter β j in Equation (6.4) is a fitting parameter characterising the proportionality
relationship between the number of collected items from source A j and the number of robots
on the trail to A j at equilibrium given as

∆U j = ϕ j (T2 −T1)β j ρ j S , (6.5)

where T2 and T1 (with T2 > T1) are times at which the swarm is already in a steady-state, and ϕ j

is a foraging rate, which is approximated by the inverse of the round-trip travel time between
central depot and source A j (for details see [197]).

The term d j in Equation (6.4) is the distance between source area A j and depot, v0 = 1 cm/s

is the Kilobot’s speed, and the function TC, j(ρ j S) models the additional travel time arising from
traffic congestion. The Equation (6.4) models traffic congestion as an increase of the travel
distance d j by accumulating the additional length of vo TC, j(ρ j S). The function TC, j(ρ j S) is
defined as

TC, j(ρ j S) = T0, j

(
exp

[
κ j

ρ j S
Ncrit,j

]
−1

)
, (6.6)

where T0, j is a constant which sets the time scale of the additional travel time, κ j is a constant
included to fine-tune the nonlinear effect of overcrowding on the path to A j, and Ncrit,j is the
critical number at which traffic congestion may have a significant effect. This means that
TC, j(ρ j S) is negligible if κ j ρ j S ≪ Ncrit,j.
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6.3.1 Estimation of model parameters from simulation data

As for the model proposed in [197] and introduced by Equations (6.4)-(6.6), three free param-
eters per source area (T0, j, β j, and κ j, with j ∈ {1, . . . ,n}) need to be estimated from data.
To do so, we use the relationship between the number of robots on a path and the number of
collected items given in Equation (6.5) (with T2 = 60min and T1 = 30min). For the case of two
source areas, the results of fitting are depicted in Figure 6.3 and summarised in Table 6.1. As
shown in Figure 6.3, for small-to-medium numbers of robots on a trail, the number of collected
items per time interval increases linearly with the number of robots on a trail; whereas for
medium-to-large numbers of robots on a trail, we observe a nonlinear decay. This type of curve
is widespread in several natural and artificial systems and is often indicated as the Universal
Scalability Law [70, 104, 78, 74, 75].

task condition β1 β2 T0,1 (s) T0,2 (s) κ1 κ2 R2
GoF,1 R2

GoF,2
q1 = 1, q2 = 0.5, 1.035 1.009 0.180 0.150 1.483 1.586 0.985 0.991
d1 = d2 = 0.6m (0.004) (0.004) (0.019) (0.015) (0.027) (0.026)

q1 = q2 = 1, 0.951 1.091 0.0004 0.805 3.692 0.991 0.968 0.990
d1 = 1m, d2 = 0.5m (0.004) (0.004) (0.0001) (0.046) (0.110) (0.012)

q1 = q2 = 1, 0.961 0.968 0.026 0.032 2.327 2.315 0.984 0.985
d1 = d2 = 1m (0.003) (0.003) (0.004) (0.005) (0.042) (0.039)

Table 6.1 Overview of estimated model parameters. The goodness-of-fit is quantified by
R2

GoF,j = 1−∑i(yi − yfit
i )

2/∑i(yi − ȳ)2, where yi = ∆Ui/min, the yfit
i correspond to the fitted

values, and ȳ represents the mean value of all yi. The index j corresponds to the trail. Mean
model parameter values, including one standard deviation errors (values in brackets), are given.

6.4 Results

Through physics-based simulations, we systematically tested a variety of experimental condi-
tions to study the performance of the proposed system. We validated some of the simulation
results through experiments with up to 200 physical Kilobots. In Section 6.4.1 we present a
set of simulation results that highlight the benefits of having introduced a virtual wall sensor,
adaptability to unknown environmental scenarios, and behaviour modulation to balance the
distance-quality trade-off. In Section 6.4.2 we compare the model predictions against robot
swarm simulations for different swarm sizes.

The physics-based simulations were conducted with ARGoS [139, 138] which is a state-
of-the-art swarm robotics simulator that accurately and efficiently simulates the Kilobots
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Fig. 6.3 Fits of Equation (6.5) to data generated by physics-based simulations in order to
obtain the model parameters reported in Table 6.1. Fitting is performed in the case of n = 2
source areas with different quality and equal distance in panel (a), equal quality and different
distance in panel (b), and equal quality and distance in panel (c). Data points are represented
using symbols and fits are represented using lines (circles and solid grey lines show collection
from source A1 while triangles and dash-dotted blue lines show collection from source A2).
Error bars represent 95% confidence intervals. There is a linear growth for small-to-medium
numbers of robots on a path, and a nonlinear decay for medium-to-large numbers of robots on
a path. This type of growth-decay curve on population size is widespread in nature [104] as in
engineering [70].

and the ARK system via a dedicated plug-in [138]. The physical robot experiments were
run with fully charged Kilobots whose motors have been automatically calibrated through
ARK [160]. The videos of these experiments are augmented by superimposing the virtual
environment information (see a sample image in Figure 6.4) and available as online sup-
plementary material (Online Resource 1-9) and at https://www.youtube.com/playlist?list=
PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a. The robot simulation code is open source
and available online at https://github.com/DiODeProject/PheromoneKilobotSwarmIntell.

https://www.youtube.com/playlist?list=PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a
https://www.youtube.com/playlist?list=PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a
https://github.com/DiODeProject/PheromoneKilobotSwarmIntell
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Fig. 6.4 (Colours online) A picture of a 50 real Kilobots experiment with the virtual environment
superimposed on the image. The red (bottom-left) source area A1 has quality Q1 = 10, while
the yellow (top-right) source area A2 has quality Q2 = 4. The sources are placed at d1 = 1m
and d2 = 0.6m from the central (blue) depot. The (light-blue) shades represent the pheromone
trails that the robots deposit and follow. Full videos are available at https://www.youtube.com/
playlist?list=PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a.

6.4.1 Results show tuneable and adaptive swarm responses

We report here the simulation and physical robot results to show evidence of the behaviours
obtained through obstacle avoidance, adaptivity, and individual function modulation.

Obstacle avoidance Figure 6.5(b) shows a screenshot of an experiment inspired by the
well-known study of Goss et al. [66] which showed that ants are able to exploit the shorter
path in double bridge experiments with branching paths of different lengths. In our system,
the individual robots have lower cognitive capabilities than the individual ants. In fact, the
Kilobots cannot distinguish pheromone intensity, follow its gradient, nor make decisions with
respect to differences in pheromone concentration. Nevertheless, the robot swarm was able to
preferentially exploit the shorter path. This outcome was not limited to conditions where the
pheromone evaporation was too high to exploit the longer path while sufficient to establish a
path on the shorter, but it also applied to scenarios in which both paths were viable. In fact,
we tested the swarm in an environment where we blocked the shorter path and only the longer
path was active (see Figure 6.5(a)) and the robots exploited the longer path, as illustrated in
the plot of Figure 6.5(c). Similar double-bridge experimental setups have been emulated and
investigated in previous swarm robotics studies such as [122, 177], in which, however, the
swarm’s behaviour and goal were different.

https://www.youtube.com/playlist?list=PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a
https://www.youtube.com/playlist?list=PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a
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Fig. 6.5 A 50 simulated Kilobot swarm experiment inspired by the ants’ double-bridge experi-
ment by [66] in which two paths, a longer path (1.8 m long) and a shorter path (1.4 m long),
connected source to depot. When the simulated swarm had access to only the longer path,
panel (a), the Kilobots reinforced pheromone on that path and used it for their collections.
Instead, when both paths were available, panel (b), the Kilobots disregarded the longer path
and (almost exclusively) used the shorter for their collections. Panel (c) shows the number of
robots on the two paths at the end of one simulated hour (boxes range from 1st to 3rd quartile
of the data from 100 simulations and indicate the median with a horizontal line, the whiskers
extends to 1.5 IQR). The individual Kilobots cannot follow a pheromone gradient nor detect
any difference in pheromone concentration. Despite their limited individual capabilities, the
robot swarm shows (in certain experimental conditions) behaviour similar to ants’ colonies,
which instead rely on much higher cognitive abilities at the individual level.

Our results indicate that, for certain types of experimental conditions, cognitively simpler
individuals would suffice to reproduce the collective level behaviour observed in colonies
of more complex ants. However, we believe that the ants, exploiting gradient sensing, are
more flexible and can optimise path lengths in a larger range of environments than our robotic
system. In fact our results may vary if we would increase the robots density and/or vary the
paths’ lengths. However, we cannot ascribe the observed behaviour to the manually tuned
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maximum travel time tmax = 100s of Equation (6.3) because our experiments were conducted
with α = 10 which flattens Equation (6.3) to zero for every path length. Therefore, the observed
dynamics emerged from a more complex interplay between the Kilobots’ behaviour and the
virtual pheromone dynamics, and resulted in an efficient swarm selection of the shortest path.

Adaptivity As described in Section 6.2.1, the swarm is able to adapt to any quality range and
have a response that only considers the ratio between qualities rather than the absolute quality
values. Figure 6.6 shows the system’s response to three scenarios with n = 2 sources with the
same quality ratio (i.e. Q2/Q1 = 0.4) but different absolute quality values (i.e. Q1 = 15, Q2 = 6
on the left, Q1 = 10, Q2 = 4 in the centre, and Q1 = 5, Q2 = 2 on the right of the x-axes of
Figs. 6.6(a)-(b)). The results show that the adaptive strategy (white boxplots) adapted to any
condition and, as the quality ratio remained the same, also the swarm response remained the
same. Instead, the constant range strategy (dark boxplots) reckoned with absolute quantities
and led to the desired outcome only when the prior knowledge on the quality range matched
the environment’s range (central experimental scenario of Figure 6.6). The ability to respond to
the relative quality of food sources, rather than to an absolute quality range, has been recently
documented also in foraging ants [216].

Behaviour modulation Via Eqs. (6.2) and (6.3), the individual robots can modulate their
behaviour to give priority to closer (low α) or better-quality (high α) source areas. This
modulation at the individual level translates to different collective responses at the swarm level.
We investigated such dynamics in swarms of S = 50 Kilobots operating in an n = 2 sources
scenario environment with a superior source area A1 at distance d1 = 1m with Q1 = 10 and an
inferior source area A2 with Q2 = 4 and varying distance d2 ∈ [0.5,1]m. The relatively small
swarm size was motivated by preliminary results that we reported in [49] which showed that
large swarms do not discriminate between sources as there are enough robots to maximally
exploit any area. Figure 6.7 shows the effect of the three tested values of α ∈ {0,0.85,10} on
the swarm dynamics. Using α = 0 promoted distance selectivity, in fact, the simulated swarm
had the highest item collection per minute (panel (a)) from the closest source (A2) to which the
majority of the workers was deployed (panel (b)). Using α = 10 promoted quality selectivity,
in fact the simulated swarm had the highest item collection per minute from the highest-quality
source (A1) to which the majority of the robots was deployed. Finally, intermediate values of
α , e.g. α = 0.85, led to a distance-quality trade-off where the swarm exploited the nearest
inferior-quality source only if it was much closer than the farther superior-quality source.

We ran three experiments with 50 physical robots for each of the two limit cases of
quality-selective α = 10 (solid black symbols) and of distance-selective α = 0 (solid light-grey



6.4 Results 107

Fig. 6.6 Simulation results showing the adaptivity of the system. We measured the number
of collected items in panel (a) and the number of robots on each path in panel (b) for the
two source areas, the superior A1 and inferior A2, both at equal distance d1 = d2 = 1m. We
kept the same quality ratio, i.e. Q2/Q1 = 0.4, but varied the absolute value of the objects
(indicated on the x-axis). All experiments were conducted with swarms of S = 50 Kilobots and
an intermediate value of α = 0.85 in Equation (6.2) and Equation (6.3). Boxes range from 1st

to 3rd quartile of the data from 100 simulations and indicate the median with a horizontal line;
the whiskers extend to 1.5 IQR. Having a constant range (dark boxplots) shows good results
only if the predefined range matches the actual range of the environment (central experiment).
Instead, an adaptive strategy allows the swarm to exploit resources as a function of their relative
qualities in a range adapted to the environment.

symbols). The videos of these six experiments are available at https://www.youtube.com/
playlist?list=PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a. Physical robots showed a
resource collection less efficient than simulation; despite this, in both cases, the two strategies
favoured either the best-quality or the nearest source area, as shown by the simulations. We
explain the observed difference between reality and simulation (the reality gap) as a motion
speed difference between robots and simulation. In fact, the simulation was accurately tuned
on the movement of fully charged Kilobots [138], but did not take into account that the robot’s
speed was reduced over time due to the decrease of its battery level.

Figure 6.7(c) shows the rate per minute of collected items weighted by their normalised
qualities (q1 = 1.0 and q2 = 0.5). We did not include any cost because in our experiments
every robot moved constantly and continuously (either as worker or as explorer). Therefore the
swarm incurred a constant cost independent of the collections (this would be different if, as
ants do, some individuals would stop exploration to save energy [23], or to avoid overcrowding

https://www.youtube.com/playlist?list=PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a
https://www.youtube.com/playlist?list=PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a
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Fig. 6.7 Effect of the modulation of the parameter α from Eqs. (6.2) and (6.3) to favour nearer
source areas (α = 0), to favour the best-quality sources (α = 10), or to balance the distance-
quality trade-off (0 < α < 10). Results of α = 0 are shown in light-grey, α = 0.85 in dark-grey,
and α = 10 in black. We report the results for simulations and physical robots experiments
of one hour each in scenarios with n = 2 sources. We excluded the initial exploration phase
and indicate mean values for the last 30 minutes. Physical robots results are indicated as
solid symbols with vertical bars indicating the 95% confidence intervals of 3 runs for each
condition (the symbols are slightly shifted to avoid bar overlaps but all represent results for
d2 = 0.6m). Lines represent the mean of 100 simulations (shaded areas are 95% confidence
intervals). Source A1 had quality Q1 = 10 and was located at distance d1 = 1m; source A2
had quality Q2 = 4 and varying distance d2 ∈ [0.5,1.0]m. We report the rate of collected items
per minute in panel (a), the mean number of robots on each path in panel (b), and the rate per
minute of collected items weighted by the normalised quality q1 = 1.0 and q2 = 0.5 in panel (c).
Individual robots can locally modulate the decentralised parameter α to lead the swarm to a
range of different collective responses, e.g. selecting almost exclusively the best-quality source
(high α) or balancing the distance-quality trade-off (low α). Physical robots are less efficient
than simulations, however ordering between sources is preserved; this confirms the effects of
α-modulation observed in simulation.
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as discussed above). Interestingly, the results show that there was not one α-value that was
better than all others; rather the best strategy varied in relation to the environment. For large
distance difference, i.e. d2 ≪ d1, the distance-selective strategy (α = 0) displayed the highest
weighted collection. Conversely, for similar distances, the best strategy consisted of favouring
the best-quality source (α = 10), analogously to what has been observed in some species of ants
which focused their foraging efforts on the richer of two equally-distant sugar sources [9, 182].

6.4.2 Comparison of model and simulation data

Here we compare the performance of binary resource collections for varying swarm sizes S and
varying α which regulates the swarm strategy (as from pheromone deposition in Equation (6.2)
and trail abandonment in Equation (6.3)). The plot in Figure 6.8 shows the yield R as a function
of the fraction of workers allocated to source A1 (with ρ1 = ρ) divided by the fraction of
total workers involved in resource collection ρw, and of the number of worker robots ρw S (i.e.
involved in collecting resource items).

Best performing swarms have an intermediate size (i.e. S = 200). Relatively small swarms
allocate robots more selectively depending on the implemented strategy. For instance, in
Figure 6.8(a), the quality selective strategy (α = 10 indicated as triangles) shows an allocation
of workers predominantly to the best-quality source (ρ/ρw > 0.8) when S ≤ 200. Instead, large
swarms of S = 500 do not discriminate between sources and equally exploit both. The distance
selective strategy (α = 0 indicated as circles) in Figure 6.8(b) has a much smaller deviation
and is visible only for the smallest swarm. Observing such a change in the swarm response is
not an obvious result because robots cannot perceive each other. The observed change is an
emergent property.

In general, simulations and the model show differences especially for swarms of size
S = 500. In fact, for large swarms, the model predicts that the best strategy would be to allocate
only a limited number of robots to the best path, in order to avoid overcrowding. We suggest
that it would be possible to implement such a strategy by allowing the robots to sense and
perceive peers (whilst they do not in this study). In the current strategy, we tried to overcome
overcrowding by including the trail abandonment function of Equation (6.3), although this did
not demonstrate sufficient ability to deviate from a symmetric exploitation for large swarms.
The resulting dynamics for S = 500 are an equal split between the two paths (Figure 6.8(a)),
which could be caused by physical ‘pushing’ between individuals, similarly to what is observed
in some experiments of ants’ traffic organisation [43, 42, 50].

To investigate how collisions between individuals affect the collective dynamics, we re-
produced the results of Figure 6.8 in the collision-free case in which we removed any effect
of physical interactions between robots. Figure 6.9 reports the model results with null traffic
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Fig. 6.8 (Colours online) Comparison of model with simulations and experiments: Total yield
R as a function of the normalised swarm allocation ρ/ρw and the number of worker robots ρw S.
We report the predicted yield R from the model of Equation (6.4) as a colour heatmap and we
overlay robot simulations for three strategies: distance-selective α = 0 (circles), distance-quality
trade-off α = 0.85 (diamonds), and quality-selective α = 10 (triangles). We report simulations
for swarm sizes S = 50 (cyan), S = 100 (green), S = 200 (purple) and S = 500 (white). Under
the model’s assumptions, the simulated robot swarm performs best for S = 200 and α = 0.85
(R = 150.6m−2) in (a), α = 10 (R = 177.1m−2) in (b) and α = 10 (R = 120.4m−2) in (c).
Swarms of large size (S = 500) do not achieve good performance as they equally exploit
both sources and do not avoid overcrowding. The star symbol in (c) was obtained from three
experiments with 200 Kilobots assuming α = 0.85 (see online videos). Error bars represent
95% confidence intervals. Parameters: β j, T0, j and κ j are given in Table 6.1.

congestion contribution, i.e. Equation (6.6) becomes TC, j(ρ j S) = 0. We overlay the simulation
results with deactivated collisions, i.e. the Kilobots’ physical body is not simulated and robots
can move through each other.

As expected, the model predicts that for every workers size, ρw S the best strategy is always
to allocate all workers to the best quality source (Figure 6.9(a)), or to the closest source
(Figure 6.9(b)). Some of the simulations approximate such an optimal behaviour. In the case
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of asymmetric qualities (Figure 6.9(a)), the quality-selective strategy (α = 10 represented as
triangles) has high values of ρ . Similarly, the closer area in Figure 6.9(b) is largely exploited
by distance-selective strategies (α = 0 represented as circles and α = 0.85 represented as
diamonds).

Fig. 6.9 (Colours online) Total yield R as a function of the normalised swarm allocation ρ/ρw
and the number of worker robots ρw S in the collision-free condition. We removed the effect of
physical interactions (i.e. collisions between robots) that may cause traffic congestions and we
report the predicted yield R from the model (6.4) as a colour heatmap and we overlay robot
simulations for three strategies: distance-selective α = 0 (circle), distance-quality trade-off
α = 0.85 (diamond), and quality-selective α = 10 (triangle). We report simulations for swarm
sizes S = 50 (cyan), S = 100 (green), S = 200 (purple) and S = 500 (white). Without collision,
the predicted best strategy is allocation of all workers to the best-quality or closest source
area. The collision-free simulations approximate such result when the corresponding strategy is
activated, e.g. quality-selective α = 10 (triangle) in panel (a) and the distance-selective α = 0
(circle) in panel (b). Error bars represent 95% confidence intervals. Parameters: β j, T0, j and κ j
are given in Table 6.1.
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6.5 Discussion

Our results show how simple individual agents can collectively forage in a sophisticated manner.
We assumed a minimal cognitive architecture including maintenance of a home vector (well
evidenced in ants [28, 86]), and simple binary detection of pheromone trails and obstacles; our
agents are thus much simpler than real ants. Combined with a simple pheromone deposition
rule with a single tuneable parameter, however, we are able to qualitatively reproduce classical
results such as the shortest path exploitation observed in lab ant colonies [66], and able to
manage the classical distance-quality trade-off of foraging. To assess the performance of
swarms using our proposed behaviour, we employed an optimality model accounting for
congestion costs in foraging and examined the effect of resource distribution and colony size
on the optimal distribution of foragers over forage patches. While others have previously
considered the effect of colony size on recruitment strategy [145, 131, 119], our analysis
instead assumes the recruitment strategy, and considers the optimal distribution. Our simple
heuristic agent controllers are able to approximate the optimal distribution for relatively small
swarm sizes, although large swarms depart from optimality. Large swarms cause crowded
environments which require strategies to clear paths in order to reduce traffic congestion.
We identify two possible strategies to limit traffic congestion: modifying the abandonment
strategy or enriching the individual behaviour with collision-reactive states. In this work, after
abandonment, the robots simply resumed exploration. The effects of this abandonment strategy
are limited as robots quickly rediscover a path (which may be already congested). We believe
that a better abandonment strategy (e.g. to stay at the depot for some time before resuming
exploration, similar to ants [131]) could improve the results of the abandonment behaviour
introduced in this work. Complementarily, traffic flow can be maintained undisrupted even
in relatively crowded conditions by individual ants changing their behaviour as a function of
collisions with other ants [43, 146]. Inspired by these results, the robot behaviour could be
enriched with new collision-dependent states.

Our results are complementary to other approaches to minimal controllers necessary for
collective behaviour in the swarm robotics field [61, 130]. Simple controllers increase the
transferability to various robotics platforms thanks to their limited hardware requirements.
Additionally, simple behaviours generally reduce the impact of the reality gap and preserve
consistent dynamics in reality and simulations, as shown in our experiments where the same
control software produced qualitatively similar results.

Our results illustrate the sophisticated collective dynamics that can be generated even by
simple agents, which should be of interest to biologists and of practical utility to engineers.
Similarly, our study of swarm size, and the scaleability of foraging success, should interest
both biologists and engineers, although it is worth noting that at least in some species of ants
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congestion is much less of a problem compared to robots [92, 146]. In Section 6.4.2, we
investigated a case closer to biology in which congestions did not impact the travel time; with
model and simulations adapted accordingly. Nevertheless, we argue that taking a unifying
perspective on the biology and engineering of collective foraging is illuminating, both through
their similarities, and their differences.





Chapter 7

Conclusion and future work

Swarm robotics systems consist of a large number of simple and autonomous robots that locally
interact with each other and with the environment via simple behavioural rules. The aggregate of
these local interactions enable the swarm as a whole to exhibit interesting collective behaviours
and to accomplish tasks that are not achievable by the single robots. A major challenge in
designing robot swarms is to determine the behavioural rules through which the individual
robots should interact to allow the swarm to perform specific tasks. The performance of the
swarm in a specific task depends on the choice of the individual behavioural rules followed by
the robots. To this end, the work presented in this thesis aimed at finding individual behavioural
rules for improving the performance of robot swarms in two important collective behaviours.

The first collective behaviour we addressed in this thesis is known as the best-of-n decision
problem where the swarm is required to reach a consensus for the best option among n available
alternatives. Solving the best-of-n decision problem is considered to be an elementary ability
that a swarm need to master to accomplish other collective tasks [209]. Previous research
studies introduced several individual behaviours that allow robot swarms to solve the best-of-n
problem [218, 134, 122, 123, 177, 211, 212, 210, 165, 167, 159, 209]. However, most of
these behaviours were only tested in the case of n = 2 options. A recent theoretical work
demonstrated a qualitative change in the dynamics of the decision process for n > 2 options
[164]. That is, for n > 2 options, the swarm may be unable to reach a consensus, especially
for challenging decision problems where the difference between options’ qualities is small [7].
The study has also shown the existence of a dilemma. For the swarm to reach a consensus in
case of n > 2 options, the individual robots must mainly rely on socially acquired information
when updating their beliefs about the possible best option. However, the high usage of social
information allows the initially randomly discovered options to quickly spread within the
swarm even when having low quality and thus leads to a drop in the decision accuracy. On
the other hand, if the individual robots rely mainly on individually acquired information for
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updating their beliefs, the swarm makes accurate decisions when the difference between the
qualities of the option is large. However, for small differences between the options’ qualities,
the swarm will be unable to reach a consensus due to insufficient interactions between the
robots.

In our work, we confirmed the existence of the above dilemma through stochastic sim-
ulations and proposed individual behavioural rules to solve it. The individual behavioural
rules require each robot to increase the strength of interaction with others progressively over
time to limit the quick spread of first randomly discovered low-quality options that may occur
when using initially strong interactions. Besides, the robots increase their interactions with
others at a speed that is proportional to the quality of their preferred options. This results in
a quicker spread of better options and hence a higher chance for the swarm to select the best
option. Using stochastic analysis and swarm robotics simulations, we compared the decision
accuracy of swarms implementing the Collective Decision through Cross-Inhibition decision
strategy (CDCI) [181, 159] in best-of-n problem with n > 2, both with and without using
the proposed individual behavioural rules. Using our individual behavioural rules resulted in
a considerable improvement in the decision accuracy. The individual behavioural rule with
the highest accuracy splits the decision-process into an exploration phase and exploitation
phase. In the exploration phase, the robots survey the environment to accumulate information
about the available options without interacting with others. This eliminates the premature
spread of low-quality options. In the exploration phase, the robots interact with others to
exchange the information they acquired about the available options and reach a consensus, via a
quality-proportional interaction strength. Moreover, in this two-phases behavioural rule, robots
committed to high-quality options switch to the exploration phase (i.e. start interacting) earlier
than those committed to low-quality options.

Although the two-phases behavioural rule allows reaching high decision accuracies, its
performance is dependent on the correct tuning of the minimum time for switching to the
exploration phase. Setting this time to very low values (i.e. not giving the swarm enough time
to explore the environment) nullifies the benefit of the strategy while setting it to very high
values leads to unnecessary delays and hence a drop in the decision speed. This is an important
issue for future research. Preliminary results have shown that the optimal minimum time for
switching to the exploration phase depends on environmental and robots’ parameters such
as the environment size, the robot’s sensing and communication range, the decision problem
difficulty, and the noise level of the robots’ quality estimators. Therefore, tuning the robots’
behaviour in advance is not possible as these parameters are not known to the designer in
advance. However, it might be possible to allow the robots to autonomously decide about the
best time to switch based on the information they gather during the exploration phase. As
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future work, we aim at achieving this through the formulation of the switching decision as an
optimal-stopping problem, which is a well-known class of mathematical problems [25, 11]. It
is important to note that solving optimal stopping problems requires a minimum level of prior
knowledge such as the distribution from where the qualities of the option are drawn from and
the frequency of options in the operating environment.

In our first study, we demonstrated the benefit of splitting the collective decision process
in swarm robotics into an exploration phase where individuals gather information and an
exploitation phases where they interact to reach consensus. It will be interesting to investigate
if such a strategy is adopted by biological organisms such as social insects and humans when
making collective decisions. Reflecting on how we, humans, make a collective decision, it
seems that we may be adopting such a strategy in a certain way. For instance, when deciding
about a holiday destination for the family, each member spends some time searching for holiday
packages alone (i.e. exploration phase). Then the most convinced and excited members start
sharing their findings with the whole family (i.e. exploitation phase) to reach an agreement
on the best holiday destination. The two-phases decision process might also be adopted by
socials insects such as honeybees. Scout honeybees go into an exploration trip to find the
available nest sites before returning to disseminate their findings to other members in their
colony. This process resembles the two-phases decision strategy studied in this. It might be
interesting for biologists to investigate the extent to which the honeybees decision process can
be considered a two-phase decision process and analyse the implication of this process on the
colony’s decisions.

In some scenarios of the best-of-n decision problem, making accurate decisions is not the
only requirement. The swarm needs to be able to adapt its decision to environmental changes.
For instance, in these scenarios, if a better option appears in the environment, the swarm should
switch its decision to this option. In our second work on the best-of-n decision problem, we
aimed at giving the swarm the ability to adapt its decision to environmental changes such as
the appearance of a better option, the disappearance of the swarm’s option, and a sudden swap
in the qualities of the two best options. We introduced two simple individual behavioural rules
that, each of them, allows robot swarms to adapt their decisions to environmental changes. The
first rule requires the robot to continuously compare its current option to other encountered
options and to switch its opinion to any option it estimates to be better than its current one. In
the second rule, because only uncommitted robots consider committing to encountered options,
committed robots forget their options at a constant rate to reconsider their opinions. In addition
to using the above behavioural rules, to allow the swarm to adapt its decision in case of the
considered environmental changes, each robot must continually monitor the quality and the
presence of its option. We tested the effectiveness of the proposed individual behavioural rules
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in allowing adaptation by integrating them into the weighted voter decision-making model
[211] which does not allow adaptation in its original form [148]. Then, we tested the resulting
decision-making models using both multi-agent and physics-based swarm robotics simulations.
Our tests have shown that both individual behavioural rules enable adaptation, but the swarm’s
response to environmental changes is faster when using the compare-based rule. Moreover, the
compare-based rule allows setting the minimum quality improvement that must be presented
by the environmental change for the swarm to adapt its decision. This can be used to avoid
unnecessary switching to similar or nearly similar options. On the other hand, when using the
forget-based rule, controlling adaptation is less straightforward. If the forgetting rate is too
high, the swarm will be unable to reach consensus, and if it is too low, the swarm will be unable
to adapt to changes. However, it is important to note that the forget-based rule is cognitively
less demanding than the compare-based rule as it only requires the robot to spontaneously
abandon its choice. Instead, the compare-based rule requires the robot to be able to store and
compare two values.

Our analysis of the proposed adaptation behavioural rules revealed a counter-intuitive result,
that is, the higher is the density of the robots in the environment and the larger the robot’s
communication range, the less adaptive is the swarm, especially when the difference between
options’ qualities is small. The reason for this is that in dense environments and for a large
communication ranges, the individual robot interacts with a high number of peers at the same
time. As a result, when the swarm has already reached a consensus, it is difficult for a robot to
spread a newly discovered opinion as the robot gets quickly reverted to the previous choice by
its peers. Moreover, our analysis suggests that swarms better adapt when individuals rely on
constrained communication. This result is particularly interesting as it highlights the importance
of local communication in swarm robotics [76] and is in line with a recent biological study
that revealed the importance of limited cognitive and sensory capabilities for the emergence
of collective behaviours in animal groups [155]. It may also be interesting for biologists to
investigate if this effect of communication range and density on adaptation is present in living
organisms. One example can be to examine whether the increased communication between
humans enabled by social media platforms is influencing the humans’ ability to adapt their
choices in collective matters such as fashion trends and political ideologies. In future studies, we
plan to confirm the effect of density and communication range using real robots. Additionally,
we aim at investigating additional behavioural rules that might enable adaptation in the case
of high-density swarms. A possible rule can be that robots finding better options ignore the
recruitment messages of others for a time that is proportional to the quality improvement
presented by the new option. This might allows the robots to spread the new opinion within the
population and hence drive the swarm to adapt its decision.
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The second collective behaviour we addressed in this thesis is the collective resource
collection task where the robots are asked to retrieve objects spread in an unknown environment.
We addressed this task for its numerous prospective real-world applications including space
exploration, search and rescue, and the collection of natural resources [220, 16, 221]. In
line with the distribution of natural resources in the real world [168], we considered that the
objects to collect are distributed in the environment in the form of clusters (i.e. source areas).
To effectively collect clustered objects, robots need to rely on memory and communication
[85]. Therefore, similarly to a considerable amount of literature [65, 217, 136, 129, 19, 39,
90, 153, 60, 83, 82, 85, 111, 112], we focused our attention on stigmergy-based resource
collection where robots mark the environment as a way to remember the resources’ locations
(i.e. memory) and indicate them to other robots (i.e. communication). Previous research on
stigmergy-based resource collection assumed that the objects to collect are all identical and thus
aimed at finding individual behaviours that minimise the time to complete the collection of the
available objects [83, 82, 111, 112]. In contrast, in our work, we considered objects of different
values (i.e. quality). Value-based resource collection reflects a class of potential real-world
applications where the objects to retrieve have different importance or priority. For instance, in
human-performed search and rescue operations, firefighters are trained to rescue victims based
on their risk level, starting with those at a higher risk [38]. Value-based resource collection
has also been reported in biology where some species of foraging ants vary their collection
behaviour based on the nutritional value of the food present in their environment [9, 147, 182].

In our work, we introduced and ant-inspired stigmergy-based individual behaviour that
allows robot swarms to show suitable responses in scenarios where the objects have different
values. Our behaviour requires robots with minimal cognitive abilities that include a limited
memory for storing a home vector (similarly to some species of ants [28, 86]), binary sensors
for detecting pheromone trails and obstacles, and a binary pheromone deposition actuator.
Our proposed individual behaviour has a single parameter that controls the behavioural rules
of pheromone deposition and path abandonment. The value of this parameter controls the
collective response demonstrated by the swarm and allows to satisfy various objectives that
may be encountered during real-world applications, such as focusing the collection on the
highest-quality objects, the nearest objects, or balancing the distance-quality trade-off. We
assessed the performance of robot swarms implementing our proposed behaviour using an
optimality model that considers the costs of crowding. We employed this optimality model to
investigate how swarm size and resource distribution affect the collective behaviour exhibited by
the swarm. The results of our analysis have shown that for relatively small swarms, our simple
individual behaviour results in the optimal robot distribution over the source areas suggested by
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the optimality model. However, for large swarms, the resulting collective behaviour deviates
from optimality due to crowded paths caused by the high number of robots.

Our proposed individual behaviour contains an abandonment strategy that was intended
to limit the effect of crowding. Following this abandonment strategy, when robots abandon
crowded paths, they directly resume random exploration. The reason why the proposed
abandonment strategy failed to limit the effect of crowding in case of large swarms is that
resuming random exploration after abandonment quickly leads to other paths that are already
crowded nullifying the benefit of abandonment. As future work, we plan to implement an
improved version of our abandonment strategy in which the robots abandoning crowded paths
remain at the depot for some time before resuming exploration (similar to ants [131]). We
believe that this new abandonment strategy can be tuned to regulate the number of worker
robots and hence may allow achieving optimal resource collection in the case of large swarms.
Moreover, in future investigations, we intend to compare the performance of our proposed
resource collection behaviour to that of existing algorithms such as the Central Place Foraging
Algorithm (CPFA) [85].

As part of our collective resource collection study, we reproduced the well-know double-
bridge experiment that biologists used to demonstrate ants’ ability to select the shorter of
two branching paths of different lengths. Using the double bridge setup, we demonstrated
that our proposed ant-inspired behaviour allows simple robots to exhibit similar collective
behaviour as more complex real ants. This experiment highlights the potential of using robotics
to investigate biological assumptions, especially with the ease of tuning the experimental
conditions in robotics setups.

Although we addressed only the best-of-n decision problem and the collective resource
collection task, the individual behavioural rules introduced in this thesis can inspire swarm
robotics researchers working on other collective behaviours. Moreover, the results presented
here can be of interest to biologists investigating the individual behavioural rules behind the
collective behaviours observed in superorganisms.
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