
Byzantine Fault Detection in Swarm-SLAM using
Blockchain and Geometric Constraints

Angelo Moroncelli1,2,3, Alexandre Pacheco1, Volker Strobel1, Pierre-Yves
Lajoie4, Marco Dorigo1, and Andreagiovanni Reina1,5,6

1 IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
2 DEIB, Politecnico di Milano, Milan, Italy

3 IDSIA, USI-SUPSI, Lugano, Switzerland, angelo.moroncelli@idsia.ch
4 Dept. of Software and Computer Eng., Polytechnique Montréal, Montreal, Canada

5 CASCB, Universität Konstanz, Konstanz, Germany
6 Department of Collective Behaviour, Max Planck Institute of Animal Behavior,

Konstanz, Germany, andreagiovanni.reina@gmail.com

Abstract. Effective methods for Simultaneous Localisation And Map-
ping (SLAM) are key to enabling autonomous robots to navigate un-
known environments. Multi-robot collaborative SLAM (C-SLAM) offers
the opportunity for higher performance thanks to parallel execution of
mapping and localisation by a distributed team of robots but it also
introduces challenges in system scalability and consistent data aggre-
gation, exposing the system to potential security risks. In particular,
we show that the state-of-the-art decentralised C-SLAM framework for
swarm robotics is vulnerable to Byzantine robots, which are robots that
behave incorrectly, possibly due to malfunctioning or hacking. We pro-
pose a solution that uses a blockchain to achieve data consistency and
a smart contract that manages robots’ reputations to identify and neu-
tralise Byzantine robots. Each robot’s contribution to collaborative map-
ping is peer-reviewed by other robots by verifying its correctness through
geometric constraints. Our multi-robot simulation results show the exis-
tence of a trade-off between fault tolerance and efficiency in terms of map
generation speed. With this work, we also release open-source research
software that interfaces a custom blockchain with the ROS 2 framework.

1 Introduction

Autonomous robotic systems face the challenge of navigating unknown environ-
ments without relying on external localisation systems. To address this challenge,
robots employ Simultaneous Localisation And Mapping (SLAM) algorithms [46,
12]. Through SLAM, robots build a map of the environment and determine their
positions within this map [39]. Several efficient solutions to single-robot SLAM
have been proposed thanks to decades of research that focused on this crucial
topic [3, 9, 30, 36, 14, 33, 54]. More recently, research has started to investigate
multi-robot collaborative SLAM (C-SLAM) [28], where groups of robots collab-
orate to build maps. Thanks to parallelisation, C-SLAM offers opportunities for
increased efficiency, localisation accuracy, and robustness to errors.



2 A. Moroncelli et al.

A particularly promising type of multi-robot system is a robot swarm, which
comprises typically a large number of autonomous robots. A key characteris-
tic of robot swarms is decentralisation as robots only interact with their near
neighbours and lack a centralised controller that orchestrates the actions of ev-
ery robot [11]. To allow robot swarms to perform their operations, they must be
able to navigate their environment, therefore implementing C-SLAM algorithms
for robot swarms can be particularly useful [22, 23].

However, robot swarms introduce new challenges to C-SLAM due to the large
number of robots participating in the process, and the lack of a central server that
aggregates potentially conflicting data generated by different robots. Addition-
ally, although robustness is often indicated as an intrinsic characteristic of swarm
robotics, recent research [49, 48] has shown that robot redundancy and paralleli-
sation of operations are not sufficient to achieve system robustness against misbe-
having robots. In fact, a small proportion of misbehaving robots—called Byzan-
tine robots—is often sufficient to disrupt the entire swarm system [47, 55, 2, 52].
Because it is reasonable to assume that a subset of robots may misbehave—for
example, due to internal errors or external malicious tampering—implementing
robust and secure algorithms is of utmost importance [21, 19, 40, 29, 13, 42].

This paper studies the potential security vulnerabilities of Swarm-SLAM [25],
the state-of-the-art framework for C-SLAM with decentralised robot swarms
(Sec. 2). We first discuss and characterise security issues that Swarm-SLAM, in
particular, and C-SLAM, in general, face (Sec. 3). We show that Swarm-SLAM is
highly vulnerable to the presence of different types of Byzantine robots. Inspired
by recent research successes on protecting robot swarms via blockchain technol-
ogy [49, 48, 37, 55, 47, 49, 41, 4, 17, 10], we build a security layer for Swarm-SLAM
through a blockchain-based smart contract, which is a distributed tamper-proof
algorithm running on data stored in the blockchain (Sec. 4). We test our so-
lution with physics-based simulations of groups of eight robots using ROS 2
and a custom blockchain framework (Sec. 5). The results show that the pro-
posed blockchain-based solution makes Swarm-SLAM tolerant to a relatively
large number of Byzantine robots. However, this comes at the cost of a de-
crease in the map construction speed (i.e., lower system efficiency). In Sec. 6,
we conclude the paper by discussing such a robustness-efficiency trade-off and
suggesting potential future research in blockchain-based swarm robotics.

2 Background and Related Work

Multi-Robot Collaborative SLAM. Individual robots use SLAM to au-
tonomously explore and map unknown environments, but through collaboration,
multiple robots can more effectively navigate large spaces to create comprehen-
sive maps. This multi-robot collaborative SLAM (C-SLAM) approach may mit-
igate exploration costs, map error, computational load, and single-point failure
risks; but achieving this coordination is a complex task [6, 23]. Initially, single-
robot SLAM algorithms were adapted for multi-robot use (e.g., by employing
Kalman filters [43], or cooperative localisation algorithms [35]). Methods that



Blockchain-Based Byzantine Fault Tolerant Swarm-SLAM 3

formulate C-SLAM as a mathematical optimisation problem have become preva-
lent due to their higher performance than traditional C-SLAM methods that use
filters to estimate the robots’ poses and the map [44]. While recent research has
shown great progress in C-SLAM methods (e.g., through advanced multi-source
data fusion and deep learning to enhance adaptability and reduce the likeli-
hood of failures [6]), most applications remain limited to small robot teams,
and addressing the problems of perceptual aliasing [50], heterogeneous robot
teams [5], and real-time distributed multi-robot coordination remain open chal-
lenges. Existing open-source frameworks for C-SLAM [7, 27, 45, 50, 20, 5, 8, 25, 56,
15] produce accurate results in the tested configurations but still have limitations
in efficient data management, scalability to larger robot teams, and robustness
against single points of failure, either because they use a centralised component
to aggregate the maps and coordinate robots’ movements or because the de-
centralised approach requires onboard computation by robots with computation
and communication limits.

When we consider swarm robotics systems, Swarm-SLAM [25] stands out as
a unique framework (based on the ROS 2 libraries [31]) to perform C-SLAM
with a decentralised swarm of resource-limited robots. Swarm-SLAM outper-
forms other methods by allowing robots to use diverse sensors and operate with
sporadic connectivity and significantly reduced communication demands. While
Swarm-SLAM is a promising framework, there are still pending research ques-
tions on how to improve system scalability, achieve consistent data aggregation,
and mitigate security risks. In this paper, we address the relatively unexplored
problem of security in C-SLAM in general and Swarm-SLAM in particular. In-
deed, when authors refer to Swarm-SLAM’s robustness, they indicate the prob-
lem of perceptual aliasing [26]. However, in robotic systems operating in the real
world, robots that exhibit non-ideal behaviour—e.g., due to faults or malicious
intentions—may compromise the reliability of the entire system.

Securing Robot Swarms using Blockchains. Swarm robotics, originally
inspired by natural collectives, aims to create decentralised, robust, and scal-
able behaviour for groups of robots [11, 18]. However, recent research has shown
that protecting the swarm against Byzantine robots can be difficult and requires
dedicated strategies [49, 21]. A new and promising line of research suggests that
blockchain-based smart contracts [53] can increase the Byzantine fault tolerance
of robot swarms [10]. This research has shown that a solution to prevent the
spreading of erroneous information is implementing a reputation management
system where only information from high-reputation robots is used [47, 49, 52,
55]. Reputation management is implemented using a blockchain to record all
robots’ information exchanges and a smart contract to implement outlier detec-
tion algorithms and assign reputation to robots whose actions align with the
majority. We build on these promising results to design a smart contract that
exploits geometric constraints in the collectively constructed map to identify and
neutralise Byzantine robots.



4 A. Moroncelli et al.

3 Vulnerability of Swarm-SLAM to Byzantine Robots

Swarm-SLAM can be compromised by Byzantine robots in three ways: two in-
volve the corruption of loop closures and one consists of tampering with the
creation of the pose graph, an optimisation process that creates a collective map
based on existing loop closures. In single-robot SLAM, loop closures enhance
map and self-localisation accuracy by detecting when a robot revisits the same
location. In multi-robot C-SLAM, this process can become more accurate and
faster when two different robots that visit the same location generate inter-robot
loop closures. However, this exchanging of information makes the system vul-
nerable to incorrect data sent by Byzantine robots. Current C-SLAM systems
are not resilient to incorrect data points that significantly deviate from the over-
all map being constructed. Although some systems incorporate techniques to
negate the effects of perceptual outliers [27, 50, 20, 5, 8, 25, 15], these systems re-
main vulnerable to Byzantine robots that conspire to overcome the rejection
of these outliers, or to Sybil attacks, in which a single Byzantine robot forges
many identities to gain control of the system. Protecting against these attacks
is crucial, yet research on Byzantine fault tolerance in C-SLAM is lacking.

In C-SLAM, an inter-robot loop closure happens when robot A recognises a
scene that another robot B saw previously. When they meet, B shares an image of
the scene, which is then used by A to calculate a geometric loop closure. We found
that a loop closure can have two main sources of error: (1) incorrect calculation
by A (using correct information sent by B), or (2) incorrect information sent by
B (while A makes the correct computation based on the received information).

The third security issue concerns the pose graph optimisation (PGO) man-
agement, which is a crucial step in merging the partial maps acquired by each
robot. The pose graph is the mathematical representation of the relationships
between robot poses during their trajectories and the scenes in the map. The con-
figuration of this graph that best satisfies all the constraints can subsequently be
used for building a map and simultaneously correcting the location of the robot
poses inside the map. Always assigning the task of performing PGO to the same
robot creates a single point of failure where a Byzantine robot in this role could
compromise the entire SLAM operation, while on the opposite end, having all
the robots perform the PGO could be unnecessarily costly. Figure 1 illustrates
a comparison between a correct Swarm-SLAM process and the three scenarios
where the actions of a Byzantine robot can lead to a wrong outcome.

4 Securing Swarm-SLAM through Blockchain Technology

We employ blockchain technology to enhance the Byzantine fault tolerance and
reliability of Swarm-SLAM. Blockchain is a shared, tamper-proof ledger that
enables secure information storage and decentralised transaction validation [34].
This removes the need for a central authority, thus offering the opportunity to
manage robots’ permissions and reputation in swarm robotics [10]. Blockchain
technology offers several benefits that are key to improving Swarm-SLAM’s re-
liability and Byzantine fault tolerance: decentralisation eliminates single points



Blockchain-Based Byzantine Fault Tolerant Swarm-SLAM 5

c. Byzantine robot shares perception data d. Byzantine robot optimizes pose graph

a. Correct Swarm-SLAM workflow

scene perception

pose graph sharing

correct image sharing

incorrect image sharing

correct LC

incorrect LC

correct LC calculation

incorrect LC calculation

scene

PGO

b. Byzantine robot creates loop closure

Fig. 1. Panel a represents the ideal workflow in a Swarm-SLAM application with reli-
able (green, non-Byzantine) robots, where robots acquire information about the same
scene (purple triangle). When two of these robots meet, they have two matching de-
scriptors for the scene and thus one of the robots (the receiver robot) shares its image
(blue square) that has the matching descriptor with the sender robot, which calculates
an inter-robot loop closure towards the receiver. These loop closures are then used by
one robot (top right) to perform pose graph optimisation (PGO). Panels b-d depict
three possible scenarios where the action of a Byzantine robot leads to incorrect global
pose graph results. In panel b the sender is a Byzantine (red robot) which generates an
incorrect loop closure (pointing to a wrong position) from itself to the receiver (green
robot), while the image is shared correctly from the receiver. Panel c represents the
construction of an incorrect loop closure due to false information shared by the Byzan-
tine receiver robot (red robot): it shares an incorrect image with the sender, which
calculates a wrong loop closure although being a reliable robot. Panel d depicts the
action of PGO, which, in Swarm-SLAM, is performed by one single elected robot (in
this case the optimiser is the red Byzantine robot). A Byzantine robot performing the
PGO can introduce significant errors in the pose graph which is then shared through-
out the robot swarm. Once an incorrect loop closure is introduced in the PGO, this
error cannot be recovered nor verified by other robots.

of failure, tamper-resistance protects data integrity, and smart contracts enable
the execution of algorithms among untrusting agents. Blockchain technology
can have a limited computational overhead, making it also suitable for resource-
constrained devices such as robots, as demonstrated in previous studies [49, 37,
38].

The integration of blockchain with Swarm-SLAM consists of a smart con-
tract that validates loop closures and manages robots’ reputations based on the
correctness of the contributed loop closures. This smart contract uses geometric



6 A. Moroncelli et al.

relationships to identify and reject incorrect loop closures, preventing the injec-
tion of faulty data in the construction of the collaborative map, whether they
are intentionally wrong or by mistake. While this step introduces some latency,
validating loop closures before they are utilised in the PGO can dramatically
improve map accuracy in the presence of Byzantine robots.

An important aspect of Swarm-SLAM is that it minimises communication
costs by requiring only one robot to share its (usually large) raw data [25]. The
receiving robot then uses this data to compute the loop closure, which is di-
rectly used for PGO, making it difficult to assess the correctness of both the
data and the loop closure. With our solution, loop closures are first stored in the
blockchain, and only used in PGO once they are validated by other robots (see
below). As the blockchain stores loop closures, which are lightweight geomet-
ric transformations, the system’s scalability is improved by avoiding redundant
sharing of raw image data. Storage requirements can also be reduced by letting
robots delete the raw data once a corresponding loop closure is stored in the
blockchain.

Our main contribution is a blockchain-based smart contract that leverages
geometric constraints to validate loop closures in Swarm-SLAM and address
the threat of Byzantine robots generating incorrect loop closures (Figs. 1b-c).
To validate a loop closure, a second and a third loop closure are required to
establish a triangle, as shown in Fig. 2. The triangle identity can then be used
as a geometric constraint to validate the loop closures. The presence of more
inter-robot loop closures from different robots leads to the formation of multiple
triangles, thus increasing the confidence in the correctness of the loop closures.

By creating blockchain transactions, robots can store their loop closures in
the blockchain, triggering the smart contract to evaluate whether the new loop
closure formed any new validation triangle. The triangle identity constraint is
validated when: lix + ljx + lkx < � and liy + ljy + lky < �, where lix is robot i’s loop
closure on the x coordinate and � is a sensitivity threshold. The threshold � is
a parameter to set the maximum Euclidean distance between the transforma-
tion head and tail—which should ideally match at each vertex—controlling the
smart contract’s sensitivity to errors in loop closure calculations. This thresh-
old defines what the smart contract labels as Byzantine (above �) and what it
labels as noise (below � and accepted as triangle identity). The best threshold
largely depends on the application in which the algorithm is used. The three loop
closures involved in a validation triangle must be submitted by three different
robots (possibly at different times) and follow a cyclic orientation of transfor-
mations where each robot is only once a receiver and once a sender (see Fig. 2c).
In this way, we promote peer-to-peer validation and prevent a single Byzantine
robot from inputting multiple incorrect (but consistent) loop closures that pass
the geometric test. However, two colluding Byzantine robots could bypass this
protection mechanism. For this reason, we introduce a parameter called secu-
rity level (discussed below) to increase security against collusion. During PGO,
only the individual robots’ maps linked by validated inter-robot loop closures
are merged into a global map. Hence, our framework also prevents the use of



Blockchain-Based Byzantine Fault Tolerant Swarm-SLAM 7

Fig. 2. The �gure depicts the process by which our smart contract validates loop
closures (LC). The blue arrows correspond to correct LCs proposed by reliable robots
(green robots), while the red arrow illustrates an incorrect inter-robot LC created by a
Byzantine robot (red robot). (a-c) The robots j , k, and i make blockchain transactions
(T S

j , T S
k , and T S

i , respectively) which contain the proposed LC (blue arrow) for the
purple sceneS and some authorisation tokens that the robots must deposit along with
every transaction. (d) There are two possible outcomes of a LC validation. (d.1) The
triangle identity is validated and the robots receive back their authorisation tokens
and one reputation token. (d.2) The triangle is rejected and none of the robots receives
back their reputation tokens, since it is not possible to infer which robot is Byzantine.

unreliable Byzantine robot's trajectories for map generation because our trian-
gle validation mechanism ensures that Byzantine-generated loop closures remain
invalidated, thus preventing their inclusion in the PGO and the global map.

Reputation Management Mechanism. Besides protecting the process from
the injection of incorrect loop closures, our smart contract is also designed to
identify and neutralise Byzantine robots. It does so through a reputation man-
agement mechanism based on crypto tokens which are scarce digital tokens stored
in the blockchain. Each robot starts with a given amount of crypto tokens loaded
in its blockchain wallet (accessed with standard public-key encryption). The
blockchain stores the history of every token transaction between any wallet. As
every robot maintains a synchronised copy of this ledger, the reputation (crypto
tokens) of every robot is publicly known. In our implementation, we employ two
types of crypto tokens: authorisation tokens and reputation tokens. The former
are tokens that each robot needs to deposit to make a transaction through which
a new loop closure is proposed (Fig. 2a-c). The deposited authorisation tokens


