
Byzantine Fault Detection in Swarm-SLAM using
Blockchain and Geometric Constraints

Angelo Moroncelli1,2,3, Alexandre Pacheco1, Volker Strobel1, Pierre-Yves
Lajoie4, Marco Dorigo1, and Andreagiovanni Reina1,5,6

1 IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
2 DEIB, Politecnico di Milano, Milan, Italy

3 IDSIA, USI-SUPSI, Lugano, Switzerland, angelo.moroncelli@idsia.ch
4 Dept. of Software and Computer Eng., Polytechnique Montréal, Montreal, Canada

5 CASCB, Universität Konstanz, Konstanz, Germany
6 Department of Collective Behaviour, Max Planck Institute of Animal Behavior,

Konstanz, Germany, andreagiovanni.reina@gmail.com

Abstract. Effective methods for Simultaneous Localisation And Map-
ping (SLAM) are key to enabling autonomous robots to navigate un-
known environments. Multi-robot collaborative SLAM (C-SLAM) offers
the opportunity for higher performance thanks to parallel execution of
mapping and localisation by a distributed team of robots but it also
introduces challenges in system scalability and consistent data aggre-
gation, exposing the system to potential security risks. In particular,
we show that the state-of-the-art decentralised C-SLAM framework for
swarm robotics is vulnerable to Byzantine robots, which are robots that
behave incorrectly, possibly due to malfunctioning or hacking. We pro-
pose a solution that uses a blockchain to achieve data consistency and
a smart contract that manages robots’ reputations to identify and neu-
tralise Byzantine robots. Each robot’s contribution to collaborative map-
ping is peer-reviewed by other robots by verifying its correctness through
geometric constraints. Our multi-robot simulation results show the exis-
tence of a trade-off between fault tolerance and efficiency in terms of map
generation speed. With this work, we also release open-source research
software that interfaces a custom blockchain with the ROS 2 framework.

1 Introduction

Autonomous robotic systems face the challenge of navigating unknown environ-
ments without relying on external localisation systems. To address this challenge,
robots employ Simultaneous Localisation And Mapping (SLAM) algorithms [46,
12]. Through SLAM, robots build a map of the environment and determine their
positions within this map [39]. Several efficient solutions to single-robot SLAM
have been proposed thanks to decades of research that focused on this crucial
topic [3, 9, 30, 36, 14, 33, 54]. More recently, research has started to investigate
multi-robot collaborative SLAM (C-SLAM) [28], where groups of robots collab-
orate to build maps. Thanks to parallelisation, C-SLAM offers opportunities for
increased efficiency, localisation accuracy, and robustness to errors.



2 A. Moroncelli et al.

A particularly promising type of multi-robot system is a robot swarm, which
comprises typically a large number of autonomous robots. A key characteris-
tic of robot swarms is decentralisation as robots only interact with their near
neighbours and lack a centralised controller that orchestrates the actions of ev-
ery robot [11]. To allow robot swarms to perform their operations, they must be
able to navigate their environment, therefore implementing C-SLAM algorithms
for robot swarms can be particularly useful [22, 23].

However, robot swarms introduce new challenges to C-SLAM due to the large
number of robots participating in the process, and the lack of a central server that
aggregates potentially conflicting data generated by different robots. Addition-
ally, although robustness is often indicated as an intrinsic characteristic of swarm
robotics, recent research [49, 48] has shown that robot redundancy and paralleli-
sation of operations are not sufficient to achieve system robustness against misbe-
having robots. In fact, a small proportion of misbehaving robots—called Byzan-
tine robots—is often sufficient to disrupt the entire swarm system [47, 55, 2, 52].
Because it is reasonable to assume that a subset of robots may misbehave—for
example, due to internal errors or external malicious tampering—implementing
robust and secure algorithms is of utmost importance [21, 19, 40, 29, 13, 42].

This paper studies the potential security vulnerabilities of Swarm-SLAM [25],
the state-of-the-art framework for C-SLAM with decentralised robot swarms
(Sec. 2). We first discuss and characterise security issues that Swarm-SLAM, in
particular, and C-SLAM, in general, face (Sec. 3). We show that Swarm-SLAM is
highly vulnerable to the presence of different types of Byzantine robots. Inspired
by recent research successes on protecting robot swarms via blockchain technol-
ogy [49, 48, 37, 55, 47, 49, 41, 4, 17, 10], we build a security layer for Swarm-SLAM
through a blockchain-based smart contract, which is a distributed tamper-proof
algorithm running on data stored in the blockchain (Sec. 4). We test our so-
lution with physics-based simulations of groups of eight robots using ROS 2
and a custom blockchain framework (Sec. 5). The results show that the pro-
posed blockchain-based solution makes Swarm-SLAM tolerant to a relatively
large number of Byzantine robots. However, this comes at the cost of a de-
crease in the map construction speed (i.e., lower system efficiency). In Sec. 6,
we conclude the paper by discussing such a robustness-efficiency trade-off and
suggesting potential future research in blockchain-based swarm robotics.

2 Background and Related Work

Multi-Robot Collaborative SLAM. Individual robots use SLAM to au-
tonomously explore and map unknown environments, but through collaboration,
multiple robots can more effectively navigate large spaces to create comprehen-
sive maps. This multi-robot collaborative SLAM (C-SLAM) approach may mit-
igate exploration costs, map error, computational load, and single-point failure
risks; but achieving this coordination is a complex task [6, 23]. Initially, single-
robot SLAM algorithms were adapted for multi-robot use (e.g., by employing
Kalman filters [43], or cooperative localisation algorithms [35]). Methods that



Blockchain-Based Byzantine Fault Tolerant Swarm-SLAM 3

formulate C-SLAM as a mathematical optimisation problem have become preva-
lent due to their higher performance than traditional C-SLAM methods that use
filters to estimate the robots’ poses and the map [44]. While recent research has
shown great progress in C-SLAM methods (e.g., through advanced multi-source
data fusion and deep learning to enhance adaptability and reduce the likeli-
hood of failures [6]), most applications remain limited to small robot teams,
and addressing the problems of perceptual aliasing [50], heterogeneous robot
teams [5], and real-time distributed multi-robot coordination remain open chal-
lenges. Existing open-source frameworks for C-SLAM [7, 27, 45, 50, 20, 5, 8, 25, 56,
15] produce accurate results in the tested configurations but still have limitations
in efficient data management, scalability to larger robot teams, and robustness
against single points of failure, either because they use a centralised component
to aggregate the maps and coordinate robots’ movements or because the de-
centralised approach requires onboard computation by robots with computation
and communication limits.

When we consider swarm robotics systems, Swarm-SLAM [25] stands out as
a unique framework (based on the ROS 2 libraries [31]) to perform C-SLAM
with a decentralised swarm of resource-limited robots. Swarm-SLAM outper-
forms other methods by allowing robots to use diverse sensors and operate with
sporadic connectivity and significantly reduced communication demands. While
Swarm-SLAM is a promising framework, there are still pending research ques-
tions on how to improve system scalability, achieve consistent data aggregation,
and mitigate security risks. In this paper, we address the relatively unexplored
problem of security in C-SLAM in general and Swarm-SLAM in particular. In-
deed, when authors refer to Swarm-SLAM’s robustness, they indicate the prob-
lem of perceptual aliasing [26]. However, in robotic systems operating in the real
world, robots that exhibit non-ideal behaviour—e.g., due to faults or malicious
intentions—may compromise the reliability of the entire system.

Securing Robot Swarms using Blockchains. Swarm robotics, originally
inspired by natural collectives, aims to create decentralised, robust, and scal-
able behaviour for groups of robots [11, 18]. However, recent research has shown
that protecting the swarm against Byzantine robots can be difficult and requires
dedicated strategies [49, 21]. A new and promising line of research suggests that
blockchain-based smart contracts [53] can increase the Byzantine fault tolerance
of robot swarms [10]. This research has shown that a solution to prevent the
spreading of erroneous information is implementing a reputation management
system where only information from high-reputation robots is used [47, 49, 52,
55]. Reputation management is implemented using a blockchain to record all
robots’ information exchanges and a smart contract to implement outlier detec-
tion algorithms and assign reputation to robots whose actions align with the
majority. We build on these promising results to design a smart contract that
exploits geometric constraints in the collectively constructed map to identify and
neutralise Byzantine robots.



4 A. Moroncelli et al.

3 Vulnerability of Swarm-SLAM to Byzantine Robots

Swarm-SLAM can be compromised by Byzantine robots in three ways: two in-
volve the corruption of loop closures and one consists of tampering with the
creation of the pose graph, an optimisation process that creates a collective map
based on existing loop closures. In single-robot SLAM, loop closures enhance
map and self-localisation accuracy by detecting when a robot revisits the same
location. In multi-robot C-SLAM, this process can become more accurate and
faster when two different robots that visit the same location generate inter-robot
loop closures. However, this exchanging of information makes the system vul-
nerable to incorrect data sent by Byzantine robots. Current C-SLAM systems
are not resilient to incorrect data points that significantly deviate from the over-
all map being constructed. Although some systems incorporate techniques to
negate the effects of perceptual outliers [27, 50, 20, 5, 8, 25, 15], these systems re-
main vulnerable to Byzantine robots that conspire to overcome the rejection
of these outliers, or to Sybil attacks, in which a single Byzantine robot forges
many identities to gain control of the system. Protecting against these attacks
is crucial, yet research on Byzantine fault tolerance in C-SLAM is lacking.

In C-SLAM, an inter-robot loop closure happens when robot A recognises a
scene that another robot B saw previously. When they meet, B shares an image of
the scene, which is then used by A to calculate a geometric loop closure. We found
that a loop closure can have two main sources of error: (1) incorrect calculation
by A (using correct information sent by B), or (2) incorrect information sent by
B (while A makes the correct computation based on the received information).

The third security issue concerns the pose graph optimisation (PGO) man-
agement, which is a crucial step in merging the partial maps acquired by each
robot. The pose graph is the mathematical representation of the relationships
between robot poses during their trajectories and the scenes in the map. The con-
figuration of this graph that best satisfies all the constraints can subsequently be
used for building a map and simultaneously correcting the location of the robot
poses inside the map. Always assigning the task of performing PGO to the same
robot creates a single point of failure where a Byzantine robot in this role could
compromise the entire SLAM operation, while on the opposite end, having all
the robots perform the PGO could be unnecessarily costly. Figure 1 illustrates
a comparison between a correct Swarm-SLAM process and the three scenarios
where the actions of a Byzantine robot can lead to a wrong outcome.

4 Securing Swarm-SLAM through Blockchain Technology

We employ blockchain technology to enhance the Byzantine fault tolerance and
reliability of Swarm-SLAM. Blockchain is a shared, tamper-proof ledger that
enables secure information storage and decentralised transaction validation [34].
This removes the need for a central authority, thus offering the opportunity to
manage robots’ permissions and reputation in swarm robotics [10]. Blockchain
technology offers several benefits that are key to improving Swarm-SLAM’s re-
liability and Byzantine fault tolerance: decentralisation eliminates single points



Blockchain-Based Byzantine Fault Tolerant Swarm-SLAM 5

c. Byzantine robot shares perception data d. Byzantine robot optimizes pose graph

a. Correct Swarm-SLAM workflow

scene perception

pose graph sharing

correct image sharing

incorrect image sharing

correct LC

incorrect LC

correct LC calculation

incorrect LC calculation

scene

PGO

b. Byzantine robot creates loop closure

Fig. 1. Panel a represents the ideal workflow in a Swarm-SLAM application with reli-
able (green, non-Byzantine) robots, where robots acquire information about the same
scene (purple triangle). When two of these robots meet, they have two matching de-
scriptors for the scene and thus one of the robots (the receiver robot) shares its image
(blue square) that has the matching descriptor with the sender robot, which calculates
an inter-robot loop closure towards the receiver. These loop closures are then used by
one robot (top right) to perform pose graph optimisation (PGO). Panels b-d depict
three possible scenarios where the action of a Byzantine robot leads to incorrect global
pose graph results. In panel b the sender is a Byzantine (red robot) which generates an
incorrect loop closure (pointing to a wrong position) from itself to the receiver (green
robot), while the image is shared correctly from the receiver. Panel c represents the
construction of an incorrect loop closure due to false information shared by the Byzan-
tine receiver robot (red robot): it shares an incorrect image with the sender, which
calculates a wrong loop closure although being a reliable robot. Panel d depicts the
action of PGO, which, in Swarm-SLAM, is performed by one single elected robot (in
this case the optimiser is the red Byzantine robot). A Byzantine robot performing the
PGO can introduce significant errors in the pose graph which is then shared through-
out the robot swarm. Once an incorrect loop closure is introduced in the PGO, this
error cannot be recovered nor verified by other robots.

of failure, tamper-resistance protects data integrity, and smart contracts enable
the execution of algorithms among untrusting agents. Blockchain technology
can have a limited computational overhead, making it also suitable for resource-
constrained devices such as robots, as demonstrated in previous studies [49, 37,
38].

The integration of blockchain with Swarm-SLAM consists of a smart con-
tract that validates loop closures and manages robots’ reputations based on the
correctness of the contributed loop closures. This smart contract uses geometric



6 A. Moroncelli et al.

relationships to identify and reject incorrect loop closures, preventing the injec-
tion of faulty data in the construction of the collaborative map, whether they
are intentionally wrong or by mistake. While this step introduces some latency,
validating loop closures before they are utilised in the PGO can dramatically
improve map accuracy in the presence of Byzantine robots.

An important aspect of Swarm-SLAM is that it minimises communication
costs by requiring only one robot to share its (usually large) raw data [25]. The
receiving robot then uses this data to compute the loop closure, which is di-
rectly used for PGO, making it difficult to assess the correctness of both the
data and the loop closure. With our solution, loop closures are first stored in the
blockchain, and only used in PGO once they are validated by other robots (see
below). As the blockchain stores loop closures, which are lightweight geomet-
ric transformations, the system’s scalability is improved by avoiding redundant
sharing of raw image data. Storage requirements can also be reduced by letting
robots delete the raw data once a corresponding loop closure is stored in the
blockchain.

Our main contribution is a blockchain-based smart contract that leverages
geometric constraints to validate loop closures in Swarm-SLAM and address
the threat of Byzantine robots generating incorrect loop closures (Figs. 1b-c).
To validate a loop closure, a second and a third loop closure are required to
establish a triangle, as shown in Fig. 2. The triangle identity can then be used
as a geometric constraint to validate the loop closures. The presence of more
inter-robot loop closures from different robots leads to the formation of multiple
triangles, thus increasing the confidence in the correctness of the loop closures.

By creating blockchain transactions, robots can store their loop closures in
the blockchain, triggering the smart contract to evaluate whether the new loop
closure formed any new validation triangle. The triangle identity constraint is
validated when: lix + ljx + lkx < ϵ and liy + ljy + lky < ϵ, where lix is robot i’s loop
closure on the x coordinate and ϵ is a sensitivity threshold. The threshold ϵ is
a parameter to set the maximum Euclidean distance between the transforma-
tion head and tail—which should ideally match at each vertex—controlling the
smart contract’s sensitivity to errors in loop closure calculations. This thresh-
old defines what the smart contract labels as Byzantine (above ϵ) and what it
labels as noise (below ϵ and accepted as triangle identity). The best threshold
largely depends on the application in which the algorithm is used. The three loop
closures involved in a validation triangle must be submitted by three different
robots (possibly at different times) and follow a cyclic orientation of transfor-
mations where each robot is only once a receiver and once a sender (see Fig. 2c).
In this way, we promote peer-to-peer validation and prevent a single Byzantine
robot from inputting multiple incorrect (but consistent) loop closures that pass
the geometric test. However, two colluding Byzantine robots could bypass this
protection mechanism. For this reason, we introduce a parameter called secu-
rity level (discussed below) to increase security against collusion. During PGO,
only the individual robots’ maps linked by validated inter-robot loop closures
are merged into a global map. Hence, our framework also prevents the use of



Blockchain-Based Byzantine Fault Tolerant Swarm-SLAM 7

a. 1st loop closure transaction

Robot i Robot j

Robot k

b. 2nd loop closure transaction c. 3rd loop closure transaction

d.                   Blockchain-based smart contract: geometric constraints verification 

d.1 d.2

Robot i Robot j

Robot k

Robot i Robot j

s s s

Fig. 2. The figure depicts the process by which our smart contract validates loop
closures (LC). The blue arrows correspond to correct LCs proposed by reliable robots
(green robots), while the red arrow illustrates an incorrect inter-robot LC created by a
Byzantine robot (red robot). (a-c) The robots j, k, and i make blockchain transactions
(TS

j , TS
k , and TS

i , respectively) which contain the proposed LC (blue arrow) for the
purple scene S and some authorisation tokens that the robots must deposit along with
every transaction. (d) There are two possible outcomes of a LC validation. (d.1) The
triangle identity is validated and the robots receive back their authorisation tokens
and one reputation token. (d.2) The triangle is rejected and none of the robots receives
back their reputation tokens, since it is not possible to infer which robot is Byzantine.

unreliable Byzantine robot’s trajectories for map generation because our trian-
gle validation mechanism ensures that Byzantine-generated loop closures remain
invalidated, thus preventing their inclusion in the PGO and the global map.

Reputation Management Mechanism. Besides protecting the process from
the injection of incorrect loop closures, our smart contract is also designed to
identify and neutralise Byzantine robots. It does so through a reputation man-
agement mechanism based on crypto tokens which are scarce digital tokens stored
in the blockchain. Each robot starts with a given amount of crypto tokens loaded
in its blockchain wallet (accessed with standard public-key encryption). The
blockchain stores the history of every token transaction between any wallet. As
every robot maintains a synchronised copy of this ledger, the reputation (crypto
tokens) of every robot is publicly known. In our implementation, we employ two
types of crypto tokens: authorisation tokens and reputation tokens. The former
are tokens that each robot needs to deposit to make a transaction through which
a new loop closure is proposed (Fig. 2a-c). The deposited authorisation tokens



8 A. Moroncelli et al.

are withheld by the smart contract and returned to the robot only once the
loop closure is validated (Fig. 2d). This mechanism fixes the maximum number
of unvalidated loop closures that a robot can have, preventing Byzantine robots
from flooding the blockchain with incorrect loop closures as they will eventually
deplete their authorisation tokens. In this way, robots submitting incorrect in-
formation are neutralised as they run out of authorisation tokens. Because only
a set of designated wallets (one per robot) can receive authorisation tokens, the
system is protected from Sybil attacks, in which a single robot could validate its
own loop closures by using different identities.

The identification of Byzantine robots can be achieved through reputation
tokens which are emitted by the smart contract every time a triangle identity
validates three loop closures. Each of the three robots that submitted these loop
closures receives one reputation token, which is publicly stored in the blockchain.
Robots that do not increase their reputation for a long period may be identified
as Byzantine.

Security Level Parameter. The security level indicates how many times an
inter-robot loop closure has been validated by a different triplet of robots and
hence, how secure it is. When a new loop closure is proposed, its security level is
zero. When the loop closure becomes part of a validation triangle with other two
loop closures proposed by two different robots, its security level is set to one.
Each time the loop closure is included in other validation triangles involving
different robot pairs, its security level increases by one. In our work, as soon
as a loop closure reaches the security level one, it is included in the PGO and
the smart contract returns the deposited authorisation tokens to the robot. This
means that we secured the system from individual Byzantine robots, but not
from colluding ones. However, the minimum security level can be increased to
protect the system against potential collusion of Byzantine robots, albeit at the
cost of a higher latency. The smart contract also gives a reputation token to the
robots each time their loop closures lead to a security level increment. Therefore,
robots that submit valid loop closures increase their reputation over time as more
peers validate the loop closures, increasing their security level.

5 Results

We test our approach through a series of 40-minute-long simulation experi-
ments. The simulations are run in the Gazebo simulator [24], with teams of
8 TurtleBots3-Waffle robots [1] collaboratively mapping an environment sized
20 × 22m2 with various walls separating the space and 9 scenes used for inter-
robot loop closures (see Fig. 3a). Robots move through a random walk consisting
of straight motion interrupted by random turns when an obstacle is detected
at a distance smaller than 0.5 m; two robots can communicate within a maxi-
mum range of 5m. Each robot acts as a blockchain node which maintains the
blockchain and generates new blocks following the Proof-of-Authority consen-
sus protocol. We employ the Toy-Chain blockchain [51], a simple Python-based



Blockchain-Based Byzantine Fault Tolerant Swarm-SLAM 9

Fig. 3. (a) The tested environment with size 20×22m2 and 9 scenes (purple triangles).
The walls are depicted as black lines and the 8 TurtleBots3 robots as black dots.
(b-c) Comparison between the ground truth (dashed grey lines) and the aggregated
robot trajectories resulting from PGO of a representative run with 3 Byzantine robots
that introduce loop closures with a constant error of 10m. The trajectories are colour-
coded (see right colour bar) indicating the error (APE) of each point. Swarm-SLAM
without our blockchain-based protection layer produces trajectories with high error,
whereas the error is close to zero when loop closures are validated by the smart contract.

blockchain designed for scientific research. We integrated Swarm-SLAM using a
smart contract that handles the security checks and crypto token distribution.
The complete simulation software is open-source and available in two packages
that are accessible from our project repository7.

To measure the system’s robustness, we compute two metrics using the evo
software [16]: the Absolute Positional Error (APE) as the Euclidean distance
between each point in the robot trajectories and the ground truth, and the Root
Mean Square Error (RMSE) of these distances. We consider two types of Byzan-
tine robots that differ in the error they apply to the loop closures. In both cases,
Byzantine robots add a value—represented by a vector (ℓx, ℓy)—to the correct
loop closure before broadcasting it to the other robots. In Fig. 4, we report the
results for the case when Byzantine robots add a constant value +10m to each
vector component. In the supplementary material [32], we report the results for
Byzantine robots that add a random value drawn from a uniform distribution
U [−9, 9]m to each vector component (ℓx, ℓy). In both cases, the system without
our protection layer suffers large errors as soon as one Byzantine robot is intro-
duced in the swarm, and the error increases with the number of Byzantine robots
(Figs. 4a-b). Instead, when our blockchain-based smart contract secures the sys-
tem, the error remains close to zero even when 5 of the 8 robots are Byzantine.
The error is, however, never exactly zero because robots are subject to odometry
noise. This odometry noise is smaller when there are more non-Byzantine robots
(which compensate for each other’s noise). Figures 3b-c show two examples of
the accumulated APE on the aggregated robot trajectories with 3 Byzantine
robots.

7 https://github.com/clmoro/Blockchain-Based-BFT-Swarm-SLAM.git



10 A. Moroncelli et al.

Fig. 4. (a-b) Comparison of the error in the aggregated robot trajectories after PGO for
different numbers of Byzantine robots (x-axis) in a swarm of 8 robots using the original
Swarm-SLAM (unsecured) or the Byzantine fault tolerant Swarm-SLAM (secured with
smart contract). The boxplots in (a) show the APE for one representative simulation
experiment while in (b) the RMSE is computed over 10 simulation runs (in the same
environment but with different starting conditions). (c) Reputation tokens at the end
(minute 40) of one representative experiment for Byzantines and non-Byzantine robots.
The red boxes (on the left of each green box) are always flat at zero. (d) Proportion
of validated loop closures that are used in the Swarm-SLAM’s PGO (results for 10
simulation runs for each condition). The red line indicates that 100% of the proposed
loop closures are used in PGO in the original Swarm-SLAM. In all panels, we show
both the raw data (individual points) and the aggregated data distribution as boxplots
(with interquartile range IQR box, median line, and whiskers to data within 1.5 IQR).
The inset in d shows the proportion of loop closures reaching security level 1, 2, or 3 in
the absence of Byzantine robots. The data for the inset are collected from one 45-min
long run, independent from the main figure.

We also measure how the reputation tokens are distributed between Byzan-
tine and non-Byzantine robots. Figure 4c shows that the number of reputation
tokens at the end of the simulation allows distinguishing between the two types
of robots as the Byzantine robots never receive any reputation token (red box-
plot is flat at zero) because, in our experiments, they always submit incorrect
loop closures that never get validated. Figure 4d shows that our security layer
comes at the cost of reduced speed as the number of loop closures processed by
the PGO is lower than half even in the absence of any Byzantine robots. We
recall that the PGO only processes loop closures validated by the smart con-
tract (y-axis of Fig. 4d). After 40 minutes, only a portion of loop closures are



Blockchain-Based Byzantine Fault Tolerant Swarm-SLAM 11

validated (and thus processed by the PGO), meaning that the other pending
loop closures will be validated at a later time (thus adding some latency be-
tween the creation of an inter-robot loop closure and its use in the PGO). As
the number of Byzantine robots increases, the number of validated loop closures
decreases because fewer non-Byzantine robots contribute with correct data and
forming loop-closure triangles becomes slower. Increasing the security level (i.e.,
number of validations before using the loop closure in the PGO) is another fac-
tor negatively impacting the system efficiency, yet protecting the system against
Byzantine robot collusion. Fig. 4d’s inset shows that most loop closures achieve
security level 1, however reaching levels 2 and 3 is less frequent in a swarm of 8
robots as each loop closure must be validated by more than half of the swarm.

6 Discussion and Conclusion

Swarm-SLAM [25] is a promising framework to enable robot swarms to perform
decentralised collaborative mapping of unknown environments. However, our
analysis shows that Swarm-SLAM is highly vulnerable to the presence of even a
single Byzantine robot that shares incorrect loop closures or tampers with the
pose graph optimisation (PGO) process. Through a blockchain-based smart con-
tract that uses geometric constraints among loop closures to check their validity
before using them to build the collective map (PGO step), we considerably im-
prove Swarm-SLAM’s security against Byzantine robots. However, this increased
security comes at the cost of an increased latency between the computation of a
loop closure and its use in the PGO, reducing the system’s mapping speed. The
proposed method allows both the identification and the neutralisation of Byzan-
tine robots through the use of two types of crypto tokens that assign reputation
(for identification) and rights to participate (for neutralisation).

Future research should investigate situations in which (i) Byzantine robots
collude with each other to validate incorrect loop closures and (ii) Byzantine
robots dynamically change their behaviour, proposing a mix of correct and in-
correct loop closures. While we expect that dynamic Byzantines are harder to
identify and neutralise, we expect that our solution will still prevent them from
corrupting the map generation. Future research should also extend the smart
contract to protect the system against PGO tampering through peer-reviewing
of each other contributions, similar to our proposed loop closure peer validation.

Acknowledgements. We thank Miquel Kegeleirs, David Garzón Ramos, and
Guillermo Legarda Herranz for the helpful discussions. V.S. and M.D. acknowl-
edge support from the Belgian F.R.S.-FNRS. A.R. acknowledges support from
DFG under Germany’s Excellence Strategy - EXC 2117 - 422037984.

References

1. Amsters, R., Slaets, P.: Turtlebot 3 as a robotics education platform. In: Robotics in
Education. Advances in Intelligent Systems and Computing, vol. 1023, pp. 170–181.



12 A. Moroncelli et al.

Springer, Cham, Switzerland (2020). https://doi.org/https://doi.org/10.1007/978-
3-030-26945-6_16

2. Aswale, A., López, A., Ammartayakun, A., Pinciroli, C.: Hacking the colony: on
the disruptive effect of misleading pheromone and how to defend against it. In:
AAMAS ’22: Proceedings of the 21st International Conference on Autonomous
Agents and Multiagent Systems. pp. 27–34. IFAAMAS, Richland, SC (2022)

3. Ayache, N., Faugeras, O.: Building, registrating and fusing noisy visual maps. The
International Journal of Robotics Research 7(6), 45–65 (1988)

4. Campos, M., Chanel, C., Chauffaut, C., Lacan, J.: Towards a blockchain-based
multi-UAV surveillance system. Frontiers in Robotics and AI 8, 557692 (2021).
https://doi.org/10.3389/frobt.2021.557692

5. Chang, Y., Ebadi, K., Denniston, C.E., Ginting, M.F., Rosinol, A., Reinke, A.,
Palieri, M., Shi, J., Chatterjee, A., Morrell, B., Agha-mohammadi, A., Carlone,
L.: LAMP 2.0: A robust multi-robot SLAM system for operation in challenging
large-scale underground environments. IEEE Robotics and Automation Letters
pp. 9175–9182 (2022). https://doi.org/10.1109/LRA.2022.3191204

6. Chen, W., Wang, X., Gao, S., Shang, G., Zhou, C., Li, Z., Xu, C., Hu, K.: Overview
of multi-robot collaborative SLAM from the perspective of data fusion. Machines
11(6), 653 (2023). https://doi.org/10.3390/machines11060653

7. Cieslewski, T., Choudhary, S., Scaramuzza, D.: Data-efficient decentralized
visual SLAM. In: Proceedings of the 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA). pp. 2466–2473. IEEE (2018).
https://doi.org/10.1109/ICRA.2018.8461155

8. Cramariuc, A., Bernreiter, L., Tschopp, F., Fehr, M., Reijgwart, V., Nieto, J.,
Siegwart, R., Cadena, C.: maplab 2.0 – A Modular and Multi-Modal Map-
ping Framework. IEEE Robotics and Automation Letters 8(2), 520–527 (2023).
https://doi.org/10.1109/lra.2022.3227865

9. Crowley, J.L.: World modeling and position estimation for a mobile robot
using ultrasonic ranging. In: Proceedings of the 1989 International Con-
ference on Robotics and Automation (ICRA). vol. 2, pp. 674–680 (1989).
https://doi.org/10.1109/ROBOT.1989.100062

10. Dorigo, M., Pacheco, A., Reina, A., Strobel, V.: Blockchain technology for mobile
multi-robot systems. Nature Reviews Electrical Engineering 1(4), 264–274 (2024).
https://doi.org/https://doi.org/10.1038/s44287-024-00034-9

11. Dorigo, M., Theraulaz, G., Trianni, V.: Swarm robotics: Past, present, and
future [point of view]. Proceedings of the IEEE 109(7), 1152–1165 (2021).
https://doi.org/10.1109/JPROC.2021.3072740

12. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping:
part i. IEEE Robotics & Automation Magazine 13(2), 99–110 (2006).
https://doi.org/10.1109/MRA.2006.1638022

13. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence
of partial synchrony. Journal of the ACM 35(2), 288–323 (1988).
https://doi.org/10.1145/42282.42283

14. Engel, J.J., Schöps, T., Cremers, D.: LSD-SLAM: Large-scale direct monocular
SLAM. In: European Conference on Computer Vision. LNCS, vol. 8690, pp. 834–
849 (2014). https://doi.org/https://doi.org/10.1007/978-3-319-10605-2_54

15. Fernandez-Cortizas, M., Bavle, H., Perez-Saura, D., Sanchez-Lopez, J.L., Campoy,
P., Voos, H.: Multi S-Graphs: An efficient distributed semantic-relational collab-
orative SLAM. IEEE Robotics and Automation Letters 9(6), 6004–6011 (2024).
https://doi.org/10.1109/LRA.2024.3399997



Blockchain-Based Byzantine Fault Tolerant Swarm-SLAM 13

16. Grupp, M.: evo: Python package for the evaluation of odometry and SLAM.
https://github.com/MichaelGrupp/evo (2017)

17. Guerrero-Bonilla, L., Prorok, A., Kumar, V.: Formations for resilient
robot teams. IEEE Robotics and Automation Letters 2, 841–848 (2017).
https://doi.org/10.1109/LRA.2017.2654550

18. Hamann, H.: Swarm Robotics: A Formal Approach. Springer, Cham, Switzerland
(2018). https://doi.org/10.1007/978-3-319-74528-2

19. Higgins, F., Tomlinson, A., Martin, K.M.: Survey on security challenges for swarm
robotics. In: 2009 Fifth International Conference on Autonomic and Autonomous
Systems. pp. 307–312. IEEE (2009). https://doi.org/10.1109/ICAS.2009.62

20. Huang, Y., Shan, T., Chen, F., Englot, B.: DiSCo-SLAM: Distributed scan
context-enabled multi-robot LiDAR SLAM with two-stage global-local graph
optimization. IEEE Robotics and Automation Letters 7(2), 1150–1157 (2022).
https://doi.org/10.1109/LRA.2021.3138156

21. Hunt, E., Hauert, S.: A checklist for safe robot swarms. Nature Machine Intelligence
2, 420––422 (2020). https://doi.org/10.1038/s42256-020-0213-2

22. Kegeleirs, M., Garzón Ramos, D., Birattari, M.: Random walk exploration for
swarm mapping. In: Towards Autonomous Robotic Systems: 20th Annual Con-
ference (TAROS 2019). LNCS, vol. 11650, p. 211–222. Springer, Berlin, Germany
(2019). https://doi.org/10.1007/978-3-030-25332-5_19

23. Kegeleirs, M., Grisetti, G., Birattari, M.: Swarm SLAM: Challenges
and perspectives. Frontiers in Robotics and AI 8, 618268 (2021).
https://doi.org/10.3389/frobt.2021.618268

24. Koenig, N., Howard, A.: Design and use paradigms for Gazebo, an open-
source multi-robot simulator. In: 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). vol. 3, pp. 2149–2154 (2004).
https://doi.org/10.1109/IROS.2004.1389727

25. Lajoie, P.Y., Beltrame, G.: Swarm-slam: Sparse decentralized collabora-
tive simultaneous localization and mapping framework for multi-robot
systems. IEEE Robotics and Automation Letters 9(1), 475–482 (2024).
https://doi.org/10.1109/LRA.2023.3333742

26. Lajoie, P.Y., Hu, S., Beltrame, G., Carlone, L.: Modeling perceptual aliasing in
SLAM via discrete–continuous graphical models. IEEE Robotics and Automation
Letters 4(2), 1232–1239 (2019). https://doi.org/10.1109/lra.2019.2894852

27. Lajoie, P.Y., Ramtoula, B., Chang, Y., Carlone, L., Beltrame, G.:
DOOR-SLAM: Distributed, online, and outlier resilient SLAM for robotic
teams. IEEE Robotics and Automation Letters 5(2), 1656–1663 (2020).
https://doi.org/10.1109/lra.2020.2967681

28. Lajoie, P.Y., Ramtoula, B., Wu, F., Beltrame, G.: Towards collaborative simulta-
neous localization and mapping: A survey of the current research landscape. Field
Robotics 2(1), 971–1000 (2022). https://doi.org/10.55417/fr.2022032

29. Lamport, L., Shostak, R., Pease, M.: The Byzantine Generals Problem. ACM
Transactions on Programming Langanguages and Systems 4(3), 382–401 (1982).
https://doi.org/10.1145/357172.357176

30. Lourakis, M., Argyros, A.: SBA: A software package for generic sparse bundle
adjustment. ACM Transactions on Mathematical Software 36(1), 1–30 (2009)

31. Macenski, S., Foote, T., Gerkey, B., Lalancette, C., Woodall, W.: Robot Operat-
ing System 2: Design, architecture, and uses in the wild. Science Robotics 7(66),
eabm6074 (2022). https://doi.org/10.1126/scirobotics.abm6074



14 A. Moroncelli et al.

32. Moroncelli, A., Pacheco, A., Strobel, V., Lajoie, P.Y., Dorigo, M., Reina,
A.: Supplementary material for the paper: ‘Byzantine Fault Detection
in Swarm-SLAM using Blockchain and Geometric Constraints’ (2024),
https://sites.google.com/view/bft-swarm-slam

33. Mur-Artal, R., Montiel, J., Tardos, J.: ORB-SLAM: A versatile and accurate
monocular SLAM system. IEEE Transactions on Robotics 31(5), 1147–1163
(2015). https://doi.org/10.1109/TRO.2015.2463671

34. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Electronic document
available at http://www.bitcoin.org (2008)

35. Nerurkar, E.D., Roumeliotis, S.I., Martinelli, A.: Distributed maximum a posteriori
estimation for multi-robot cooperative localization. In: Proceedings of the 2009
IEEE International Conference on Robotics and Automation (ICRA). pp. 1402–
1409. IEEE (2009). https://doi.org/10.1109/ROBOT.2009.5152398

36. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: Dense tracking and map-
ping in real-time. In: 2011 International Conference on Computer Vision. pp. 2320–
2327 (2011). https://doi.org/10.1109/ICCV.2011.6126513

37. Pacheco, A., Strobel, V., Dorigo, M.: A blockchain-controlled physical robot swarm
communicating via an ad-hoc network. In: Swarm Intelligence – Proceedings
of ANTS 2020 – Twelfth International Conference. LNCS, vol. 12421, pp. 3–
15. Springer, Cham, Switzerland (2020). https://doi.org/10.1007/978-3-030-60376-
2_1

38. Pacheco, A., Strobel, V., Reina, A., Dorigo, M.: Real-time coordination of a for-
aging robot swarm using blockchain smart contracts. In: International Conference
on Swarm Intelligence. pp. 196–208. Springer (2022)

39. Placed, J.A., Strader, J., Carrillo, H., Atanasov, N., Indelman, V., Carlone, L.,
Castellanos, J.A.: A survey on active simultaneous localization and mapping: State
of the art and new frontiers. IEEE Transactions on Robotics 39(3), 1686–1705
(2023). https://doi.org/10.1109/TRO.2023.3248510

40. Prorok, A., Malencia, M., Carlone, L., Sukhatme, G.S., Sadler, B.M., Kumar, V.:
Beyond robustness: A taxonomy of approaches towards resilient multi-robot sys-
tems (2021), arXiv preprint:2109.12343 [cs.RO]

41. Queralta Peña, J., Qingqing, L., Zou, Z., Westerlund, T.: Enhanc-
ing autonomy with blockchain and multi-access edge computing in dis-
tributed robotic systems. In: 2020 Fifth International Conference on
Fog and Mobile Edge Computing (FMEC). pp. 180–187. IEEE (2020).
https://doi.org/10.1109/FMEC49853.2020.9144809

42. Reina, A.: Robot teams stay safe with blockchains. Nature Machine Intelligence 2,
240–241 (2020). https://doi.org/10.1038/s42256-020-0178-1

43. Rodriguez-Losada, D., Matia, F., Jimenez, A.: Local maps fusion for real time
multirobot indoor simultaneous localization and mapping. In: Proceedings of the
2024 IEEE International Conference on Robotics and Automation (ICRA). vol. 2,
pp. 1308–1313. IEEE (2004). https://doi.org/10.1109/ROBOT.2004.1308005

44. Saeedi, S., Trentini, M., Seto, M., Li, H.: Multiple-robot simultaneous local-
ization and mapping: A review. Journal of Field Robotics 33(1), 3–46 (2016).
https://doi.org/10.1002/rob.21620

45. Schmuck, P., Ziegler, T., Karrer, M., Perraudin, J., Chli, M.: COVINS:
Visual-inertial SLAM for centralized collaboration. In: 2021 IEEE Inter-
national Symposium on Mixed and Augmented Reality Adjunct (ISMAR-
Adjunct). pp. 171–176. IEEE Computer Society, Los Alamitos, CA, USA (2021).
https://doi.org/10.1109/ISMAR-Adjunct54149.2021.00043



Blockchain-Based Byzantine Fault Tolerant Swarm-SLAM 15

46. Smith, R.C., Cheeseman, P.: On the representation and estimation of spatial un-
certainty. The International Journal of Robotics Research 5(4), 56–68 (1986).
https://doi.org/10.1177/027836498600500404

47. Strobel, V., Castelló Ferrer, E., Dorigo, M.: Managing Byzantine robots via
blockchain technology in a swarm robotics collective decision making scenario.
In: Proceedings of 17th International Conference on Autonomous Agents and Mul-
tiAgent Systems. pp. 541–549. AAMAS ’18, IFAAMAS, Richland, SC (2018)

48. Strobel, V., Castelló Ferrer, E., Dorigo, M.: Blockchain technology se-
cures robot swarms: A comparison of consensus protocols and their re-
silience to Byzantine robots. Frontiers in Robotics and AI 7, 54 (2020).
https://doi.org/10.3389/frobt.2020.00054

49. Strobel, V., Pacheco, A., Dorigo, M.: Robot swarms neutralize harmful Byzantine
robots using a blockchain-based token economy. Science Robotics 8(79), eabm4636
(2023). https://doi.org/10.1126/scirobotics.abm4636

50. Tian, Y., Chang, Y., Herrera Arias, F., Nieto-Granda, C., How, J.P., Car-
lone, L.: Kimera-Multi: Robust, distributed, dense metric-semantic SLAM for
multi-robot systems. IEEE Transactions on Robotics 38(4), 2022–2038 (2022).
https://doi.org/10.1109/TRO.2021.3137751

51. Ulysse, D., Alexandre, P., Volker, S., Reina, A., Marco, D.: Toy-Chain, IRIDIA –
Technical Report Series. Tech. Rep. 9, IRIDIA, the Artificial Intelligence Labora-
tory at the Univerité Libre de Bruxelles (2023)

52. Van Calck, L., Pacheco, A., Strobel, V., Dorigo, M., Reina, A.: A blockchain-based
information market to incentivise cooperation in swarms of self-interested robots.
Scientific Reports 13, 20417 (2023). https://doi.org/10.1038/s41598-023-46238-1

53. Wood, G.: Ethereum: A secure decentralized generalised transaction ledger.
Ethereum Foundation pp. 1–41 (2014)

54. Zhang, Y., Wu, Y., Tong, K., Chen, H., Yuan, Y.: Review of visual simultaneous
localization and mapping based on deep learning. Remote Sensing 15(11), 2740
(2023). https://doi.org/10.3390/rs15112740

55. Zhao, H., Pacheco, A., Strobel, V., Reina, A., Liu, X., Dudek, G., Dorigo,
M.: A generic framework for Byzantine-tolerant consensus achievement in
robot swarms. In: Proceedings of the 2023 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). pp. 8839–8846. IEEE (2023).
https://doi.org/10.1109/IROS55552.2023.10341423

56. Zhong, S., Qi, Y., Chen, Z., Wu, J., Chen, H., Liu, M.: DCL-SLAM: A distributed
collaborative LiDAR SLAM framework for a robotic swarm. IEEE Sensors Journal
24(4), 4786–4797 (2024). https://doi.org/10.1109/JSEN.2023.3345541


