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Abstract

In this study, we investigate the emergence of naming conventions
within a swarm of robots that collectively forage, that is, collect re-
sources from multiple sources in the environment. While foraging,
the swarm explores the environment and makes a collective decision
on how to exploit the available resources, either by selecting a sin-
gle source or concurrently exploiting more than one. At the same
time, the robots locally exchange messages in order to agree on how
to name each source. Here, we study the correlation between the task-
induced interaction network and the emergent naming conventions. In
particular, our goal is to determine whether the dynamics of the in-
teraction network are sufficient to determine an emergent vocabulary
that is potentially useful to the robot swarm. To be useful, linguistic
conventions need to be compact and meaningful, that is, to be the
minimal description of the relevant features of the environment and of
the made collective decision. We show that, in order to obtain a useful
vocabulary, the task-dependent interaction network alone is not suf-
ficient but it must be combined with a correlation between language
and foraging dynamics. On the basis of these results, we propose a
decentralised algorithm for collective categorisation which enables the
swarm to achieve a useful—compact and meaningful—naming of all
the available sources. Understanding how useful linguistic conventions
emerge contributes to the design of robot swarms with potentially im-
proved autonomy, flexibility, and self-awareness.
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1 Introduction

The development of advanced forms of communication—i.e., a primitive
form of language—can help robots in a swarm to share relevant information
about the task execution, adapting it to the current activities and envi-
ronmental contingencies experienced by the robots (Cambier et al., 2020).
Indeed, linguistic conventions can be useful to describe the environment
and the task execution progress in a compact way, supporting the coordi-
nation within the swarm. Among the tasks relevant for swarm robotics,
foraging—a task often observed in natural self-organising systems (Bailis
et al., 2010; Saleh and Chittka, 2007)—is certainly one among the most
studied (Ducatelle et al., 2014; Ferrante et al., 2015; Miletitch et al., 2018;
Talamali et al., 2020), as it lends itself to represent multiple realistic applica-
tions like mining, search-and-rescue or logistics. While foraging, the swarm
needs to explore an environment and decide which source to exploit among
several available. In such context, linguistic conventions can provide com-
pact ways of uniquely identifying relevant aspects of the environment (e.g.,
different terms to identify different sources from which to forage), which can
evolve to adapt to a changing landscape (e.g., assigning new terms to newly
discovered sources, or dropping terms associated with depleted sources),
hence maximising the communication efficiency. Moreover, an evolving lan-
guage can contain sequences of terms, providing swarms the ability to decide
on the most useful course of action (e.g., a sequence of sources from which
to forage).

To make language evolution possible, however, robots in a swarm need
to interact and agree on the terms to be used and their meaning. This
is the realm of language games, that is, computational models developed
to understand the emergence of language through communication and self-
organisation (Steels, 2001; Baronchelli et al., 2010; Spranger, 2013). As in
swarm robotics communication is often local and intermittent, complex and
dynamical interaction networks among robots emerge. A language game
played in these conditions would have its dynamics largely affected by the
network topology resulting from the task execution (Loreto et al., 2011). In
this paper, we study the correlation between the task-induced interaction
network and the evolving language. Indeed, the outcome of the language
game can be correlated with both the intrinsic dynamics and outcome of
the task itself, and the features of the environment in which the task is
carried out. When such correlations are present, the linguistic conventions
resulting from the language game are semantically grounded onto the task
and its environment, and can therefore be exploited for the accomplishment
of the task itself. Some experiments have explored semantic connections
between language games and the physical spaces in which they are played
(Steels, 1995; Spranger, 2013). However, applications in swarm robotics
are still limited (Cambier et al., 2020), and only a few experiments with a
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self-organised aggregation problem can be reported to date (Cambier et al.,
2018).

In this paper, we demonstrate how language games can be grounded onto
the execution of a foraging task. Specifically, we show that the task-induced
interaction network is not sufficient per se in determining the conditions for
semantically grounding the emergent linguistic conventions onto the task.
However, we show that such grounding is possible when the language game
is played by robots actually exploiting a source. The understanding of the
language dynamics leads us to define a category game tailored to better
represent the different sources distributed in space, as long as these are
relevant to the foraging task.

The paper is organised as follows. In Section 2, we discuss how language
games can be meaningfully played by a robot swarm engaged in a source
exploitation task. In Section 3, we present the experimental setup. In Sec-
tion 4, we show how the dynamics of the interaction network can lead to
emergent linguistic conventions. Then, in Section 5, we analyse the proper-
ties of the interaction network, suggesting that it meaningfully supports the
evolution of useful linguistic conventions. Finally, in Section 6 we present the
category game introduced to better support self-organised foraging. Finally,
Section 7 concludes the paper.

2 Language games in foraging robot swarm

In swarm robotics, coordination and self-organisation allow groups of robots
to be more efficient than isolated robots in performing a given task (Dorigo
et al., 2014, 2020). The collaborative processes designed for robot swarms
are often inspired by social insects and other group-living animals (Brambilla
et al., 2013; Trianni and Campo, 2015). Communication is one fundamental
aspect for self-organisation, and can be either indirect (e.g., stigmergy) or
direct. Both types of communication are encountered in animal societies,
such as the pheromone trails used by ants (Beekman et al., 2001) or the
waggle dance used by honey bees (Biesmeijer and de Vries, 2001). These
communication mechanisms have been implemented with success in swarm
robotics systems, for example using indirect stigmergic interactions (Holland
and Melhuish, 1999; Beckers et al., 2000; Allwright et al., 2014), pheromones
(Fujisawa et al., 2014; Talamali et al., 2020) and direct communication
(Gutiérrez et al., 2010; Miletitch et al., 2018). While efficient, these commu-
nication mechanisms are usually designed for a specific task/environment
(e.g., application in warehouses, see Stiefelhagen et al., 2004) and convey
specific pieces of information, hence limiting the system flexibility.

Researchers aimed to add more plasticity to the communication process,
for instance by exploiting an evolutionary process to design at the same time
signals and adapted responses (Marocco and Nolfi, 2007; Floreano et al.,
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2007). The resulting communication mechanisms are very well adapted to
the tasks and environmental conditions encountered during training, and
also show some generalisation abilities. However, the characteristics of the
obtained communication mechanisms remain very simple, with few signals
and responses to signals that cannot easily scale up to more complex envi-
ronments and/or tasks. A possibility to provide more complex communi-
cation abilities to a robotic system comes from models of natural language
evolution (Wang and Minett, 2005; Solé et al., 2010).

A popular approach to the study of language dynamics is represented by
language games played by a population of agents/robots, with the purpose
of mimicking real-world linguistic interactions leading to the emergence of a
structured language. Various kinds of language games have been proposed
to date, from imitation games (Billard and Hayes, 1997) to guessing games
(Steels, 2001) and category games (Puglisi et al., 2008; Baronchelli et al.,
2010). One game in particular has received a lot of attention: the naming
game (Steels, 1995, 2003). In this game, two or more robots interact to assign
a unique name to a set of objects. At each interaction, one robot is chosen as
a speaker and another as a listener. The speaker chooses a referring object
and an associated word from its vocabulary—or invents one when no word
is available—and then transmits it to the listener. If the listener knows
the word, then the game is a success, and both agents remove all other
words associated to the chosen object from their vocabulary, keeping only
the shared word. If instead the listener does not know the received word,
then the game fails, and the listener adds this new word to its vocabulary.
We use in our study a specific version of this game: the minimal naming
game (MNG, see Baronchelli et al., 2006b). Here, focus is given only to
reaching consensus on a single world within a population of communicating
agents. Specifically, we consider an implementation in which the speaker
broadcasts its word to all agents in his neighbourhood, while the listener
is the only agent that updates the vocabulary upon success or failure of a
game (Baronchelli, 2011).

As naming games are based on interactions between pairs of speaker and
listener agents, the time to achieve consensus and the underlying dynam-
ics are directly linked to the topology of the interaction network. In non-
embodied implementations, the link between topology and language dynam-
ics have been extensively studied (e.g., fully-connected regular, small-world
or random geometric networks, see Baronchelli et al., 2007; Lu et al., 2008).
Embodied implementations can be divided in two cases. On the one hand,
a population of virtual agents can use a small number of robots (sometimes
reduced to two, as in Spranger, 2013) to play the naming game, so that at
each iteration, agents are selected and assigned to robots in order to record
physical interactions among them. On the other hand, the naming game
can be played among a population of embodied mobile agents (Baronchelli
and Dı́az-Guilera, 2012; Trianni et al., 2016) that interact locally with each
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other according to a topology of interactions that is the direct result of the
mobility pattern of the agents induced from the task being executed.

In this study, the MNG is played on top of a self-organised foraging task.
When foraging, a swarm needs to explore the environment, identify and
evaluate the available sources and make decisions on which source to exploit,
going through different transitory states before reaching an equilibrium (e.g.,
convergence on one single source to exploit or split/load-balance among
many, as in Miletitch et al., 2018). Similar behaviours provide a complex
and time varying interaction network among robots, which can be exploited
to support linguistic interactions among agents. Our main goal is to study
whether the dynamics of the interaction network are sufficient to determine
language dynamics that represent features of the task execution (e.g., choice
of one or the other source), of the environment (e.g., the presence of more
than one sources, each associated to a different word), or both. To this end,
we run experiments with two versions of the MNG. Beside the classic MNG,
we play a version where the creation of words is linked with the discovery
of sources by exploring robots. In this setup, we study how well the robots
manage to have an accurate description of their surroundings, that is both
complete (a word for each source) and correct (no misnomer) for as long
as each source is relevant to the swarm, where relevance is measured as the
number of robots actively foraging from the source (see Section 3). Our
goal is to understand how the swarm interaction topology influences the
language dynamics, and how the creation of words is correlated with the
robots foraging from a source.

3 Experimental setup

In this study, the goal of the swarm is to play a MNG while identifying
and exploiting either of two sources (referred to as source A and source B)
placed at the opposite side of a home area (referred to as nest, see Figure 1).
The environment is a 2D infinite plane without obstacles, and both nest and
sources have circular shape with radius R = 0.3 m. Each source is located
at the same distance d = 2.5 m from the nest.

3.1 Robots and simulations

Experiments are run in simulation using ARGoS (Pinciroli et al., 2012). In
our study, we use this simulator to model a swarm of 50 e-puck robots (Mon-
dada et al., 2009). E-pucks have a differential drive motion with a maximum
linear speed of v = 0.1 m/s, and the wheels’ rotation is measured by an en-
coder. Avoidance of other robots is done at short range (≈ 10 cm) using
infrared proximity sensors and at longer range (≈ 1 m) using the infrared
range and bearing system (Gutierrez et al., 2009). The obstacle avoidance
behaviour has been optimised to minimise the effects of robot density and
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congestion and to support the ability to navigate back and forth between
sources, as detailed in a previous study (Miletitch et al., 2013). Robots per-
ceive nest and sources only when they are located in the corresponding areas
by means of infrared ground sensors, that robots use to differentiate between
the white colour of the floor, the grey colour of the sources and the black
colour of the nest. We assume here that robots start from the nest without
any knowledge about sources, which need to be located through exploration.
Robots can locally broadcast short messages through the infrared range and
bearing system within a range that is limited to dI = 0.2 m (indicated by
the dotted circle around the robot in Figure 1). Robots can broadcast a
message at regular intervals of 0.1 s with no re-broadcast of information re-
ceived (no multi-hop communication). They keep track of the position of
nest and known sources through odometry. The error on positioning pro-
duced through this tracking method can be efficiently compensated through
social odometry (Gutiérrez et al., 2010; Miletitch et al., 2013). Owing to
this, in this study we neglect odometry errors and focus on the interplay
between motion and language dynamics.

At the beginning of the experiment, robots are uniformly distributed
within a 0.8 m side square centered on the nest. During the first 200 s,
robots perform a blind random walk during which they do not communicate
or search for sources. This allows us to neglect the initial transitory phase
in which robots are too densely distributed around the nest, allowing us
to study the system dynamics after the robots spread out in the environ-
ment according to their search pattern. This assures that—whatever the
experimental condition—the initial distribution of robots does not severely
impact the final outcome. In the following experiments, unless mentioned
otherwise, we perform 100 runs for each experimental setup. These runs
last until language convergence, which, depending on internal parameters,
can take up to 12000 s.

Source A   Source BNest

R

d d

Robot

V

dI

Figure 1: Graphical representation of the environment. sources A and B are
each located at the same distance d = 2.5 m from the nest. All the three
areas have radius R = 0.3 m. Robots move at constant speed v = 0.1 ms−1

and can communicate with neighbours within a range dI = 0.2 m.
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3.2 Individual and collective behaviour

3.2.1 Source exploitation

The desired swarm behaviour (localization and exploitation of sources) takes
inspiration from the decision-making process displayed by house-hunting
honeybees—also know as nest-site selection (NSS, see Pais et al., 2013; See-
ley et al., 2012; Reina et al., 2017). The spatial dynamics during foraging
resulting from the NSS process have been studied by Reina et al. (2015a)
and Miletitch et al. (2018). Here, we make use of the individual robot be-
haviour from the former (Reina et al., 2015a), which was designed for the
e-puck robots following a design pattern based on the NSS process (Reina
et al., 2015b). According to this design pattern, a robot is considered to be
committed to a source when it knows its location, and hence moves back
and forth between the source and the nest. Otherwise, a robot is considered
uncommitted and explores the arena searching for a source. Robots com-
mitted to source A (B) are considered to belong to the population PA (PB),
while uncommitted robots belong to the population PU , all summing up to
N robots: |PA|+ |PB|+ |PU | = N .

Four concurrent processes determine the individual behaviour, two for
transitions between uncommitted and committed states, and two for the op-
posite. An uncommitted robot turns committed either through discovery
or through recruitment. The former takes place when the robot enters
the area of a source. The latter takes place with probability Pρ when a
robot receives the information about a source known by a committed neigh-
bour. Conversely, a committed robot turns uncommitted either through
abandonment or through cross-inhibition. The former takes place any-
time with a fixed probability Pα per time-step. The latter takes place with
probability Pσ upon iteraction with a neighbouring robot committed to a
different source. Cross-inhibition introduces a negative feedback loop that
helps the system break the symmetry and leads to a choice between two iden-
tical sources (see Reina et al., 2015a,b, for more details). In our study, re-
cruitment and cross-inhibition happen only upon communication with other
robots when located into the nest. Differently from Reina et al. (2015a), we
set the probability of abandonment Pα to zero, so that the only way for
robots to become uncommitted is through cross-inhibition. This favours the
attainment of a consensus state in which all robots within the swarm are
committed to the one or the other source (Reina et al., 2015b).

The actual movements of the robot are governed by the following basic
behaviours. When uncommitted, the robots explore the arena, performing
a correlated random walk (Dimidov et al., 2016), and have a fixed and small
probability at every control step to return to the nest. When committed,
the robots enter an exploitation loop where they move back and forth be-
tween the known source and the nest (see Reina et al., 2015a, for a detailed
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Figure 2: Distribution of robots in a swarm as a percentage of robots com-
mitted to source A (y axis) and B (x axis) for 100 independent runs. Each
column displays the distribution at different time steps. The insets show
the histogram of the frequencies of runs with respect to the percentage of
robots committed to A. Top row: strong cross-inhibition with Pρ = 0.7
and Pσ = 0.7, robots can change commitment and eventually the swarm con-
verges toward either source A or B. Bottom row: weak cross-inhibition
with Pρ = 0.7 and Pσ = 0.1, the dynamic is much slower. Over the duration
of our experiments, each run ends up with a different distribution of robots
among sources, with points close to the diagonal representing low number
of uncommitted robots.

description).
Depending on the value of Pρ and Pσ, the swarm displays different dy-

namics and different final distributions of robots among the populations PU ,
PA and PB. In this study, we focus on two specific cases: strong cross-
inhibition and weak cross-inhibition. In the strong case (Pσ = 0.7,
Figure 2 top row) the swarm rapidly converges to a consensus for the one or
the other source, whereas the weak case (Pσ = 0.1, see Figure 2 bottom row)
leads to slower dynamics (Reina et al., 2018). Given enough time the swarm
would end up converging to a consensus for a single source. However, over
the duration of our experiments, the swarm did not break the symmetry
but splits between the two sources (see Figure 2, bottom row). At any time,
with or without consensus, we define the source with the highest number
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of committed robots (relative majority) as the “selected” source. We de-
fine O ∈ {A,B} as the selected source and X ∈ {A,B} as the non-selected
source, and PO and PX as the respective populations, with PO ≥ PX .

3.2.2 Minimal naming game

The language game played by the robots in our study is an implementation
of the minimal naming game (MNG) for mobile agents/robots (Baronchelli
et al., 2006b; Baronchelli and Dı́az-Guilera, 2012; Trianni et al., 2016).
Each robot starts with an empty inventory. At each time step (of length
τc = 100 ms), each robot has a probability Ps of becoming a speaker (here,
Ps ∈ {0.0003, 0.0006, 0.001, 0.002}). These values of Ps were selected so that
foraging dynamics and language dynamics would share comparable time
scales. The language game is played as follows: the speaker robot selects a
word from its inventory and broadcasts it to its neighbours. At each time
step, if a robot receives at least one message, it becomes a hearer robot. The
hearer selects one (and only one) word at random among those received and
checks it against its own inventory. If the hearer finds the selected word in
its inventory, the hearer keeps only that word in the inventory while deleting
all the others. If instead the hearer does not find the selected word in its
inventory, it updates its inventory by adding the word (see Trianni et al.,
2016, for more details).

In this study, we consider two variants of the MNG, which differ in
the way in which words are generated. In one case (referred to as classic
game), the robots create a new word when becoming speaker with an empty
vocabulary. In the other (referred to as spatial game), the robots create a
new word when encountering a source with an empty vocabulary. In both
cases, we associate each word with the closest source to the robot at the time
of the word creation, and we defineWA (WB) the set of words associated with
source A (B). Note that, by construction, WA ∩WB = ∅. Robots having in
their inventory any word w ∈WA (WB) constitute population PWA

(PWB
).

Robots with no words constitute population PWO
. In Figure 3, we depict a

possible partition of robots among different populations, both with respect
to the commitment state and to their vocabulary. Since a robot can have
at a given time an inventory with words originating in both source A and
B, the propriety PWA

∩ PWB
= ∅ is not always verified. Similarly, through

exchanges of words and robots between the different populations, at a given
time the inventory of robots committed to one source might contain a word
associated with the other source (resulting in PA 6= PWA

). At any time, we
can look at the population of robots that know words associated with the
source they are committed to, that is:

PM = (PWA
∩ PA) ∪ (PWB

∩ PB). (1)

Conversely, we can define the population of committed robots that know
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words from a non-matching source:

PS = (PA ∩ PWB
) ∪ (PB ∩ PWA

). (2)

Corresponding to the collectively selected source O (see definition above),
we define the set of matching words WO and non-matching words WX as
follows:

WO = {w|(w ∈WA ∧ PA > PB) ∨ (w ∈WB ∧ PB > PA)} (3)

WX = {w|(w ∈WA ∧ PB > PA) ∨ (w ∈WB ∧ PA > PB)} (4)

We define:

• polarisation, the condition in which committed robots know only
words associated with the source they are committed to, that is, when
PS = ∅;

• vocabulary matching, the condition in which only words associated
with the selected source are retained within the swarm vocabulary,
that is WX = ∅ and WO 6= ∅;

• vocabulary completeness, the condition in which exactly one word
associated with each source is retained within the swarm vocabulary,
that is |WO| = 1 and |WX | = 1.

Given a sufficiently connected swarm, the MNG dynamics ensure that
the swarm will eventually converge to a final single-word vocabulary, al-
beit after a very long time (Baronchelli et al., 2006b; Baronchelli and Dı́az-
Guilera, 2012; Trianni et al., 2016). According to the previous definitions,
the final vocabulary can be matching or not the selected source.

4 Correctness and completeness of the swarm vo-
cabulary

In this section, we focus on the evolution of the swarm’s vocabulary, looking
in particular to the provenance of the last words and their relation to the
selected source. As already discussed (see Figure 2), the foraging dynamics
lead to either the quick selection of a single source, or to the swarm being
split between the two sources, possibly for a long time. This means that,
apart for a few cases and random fluctuations, there will always be a source
that is selected—albeit temporarily—by the swarm. In certain settings, the
swarm may forage from both sources for a long time, hence vocabulary com-
pleteness may be observed. In other cases, the swarm will quickly converge
to exploit a single source, and vocabulary matching is expected. In any case,
interactions between different populations of robots are frequent, ensuring
that the language dynamics always converge to a single-word vocabulary.
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Exchange of words & robots

Exchange of words

Figure 3: Diagram representing how the swarm can be split in different
sub-populations with respect to the robots’ commitment state and the word
distribution. The circles represents the three populations with respect to
the commitment state: (PU , PA and PB). The fill patterns represent pop-
ulations with respect to the robots’ inventory (PWO

, PWA
and PWB

). Note
that, in general, PWA

∩ PWB
6= ∅. Depending on the experimental setup,

populations can exchange robots and words among themselves.

Here, we first focus on the patterns observed when the vocabulary con-
verges to one or two words, to determine if matching and completeness are
achieved. First, we analyse the provenance of the final word wf to determine
if it matches the selected source or not (i.e., wf ∈WO). As the distribution
of robots among sub-populations may sometimes change even after conver-
gence to a single-word dictionary (e.g., if the language dynamics are much
faster than the source selection dynamics), the final selected source may also
change. Hence, we consider the source selected at the time of convergence
to the final word wf , no matter what happens later to the population dis-
tribution. Similarly, we consider also the second-last word we, to determine
whether it was also matching the selected source or not at the time in which
only two words remained within the whole swarm. Given such definitions,
every run can end up in one of the following four possibilities:

OO : wf ∈WO ∧ we ∈WO (5)

OX : wf ∈WO ∧ we ∈WX (6)

XO : wf ∈WX ∧ we ∈WO (7)

XX : wf ∈WX ∧ we ∈WX (8)

In case OO or OX is observed, the swarm has identified a final word that
matches the currently-selected source, although in the OX case the second-
last word was associated with the non-selected source. The XO case repre-
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Figure 4: Empirical distribution over 100 runs of the occurrences of the last
two words in the vocabulary within the four identified classes (OO, OX,
XO and XX) representing words matching or not the selected source. The
graph refers to the case with Ps = 0.001. All other tested values of Ps
produce similar results (see supplementary Figure S1). Top row: classic
game. Bottom row: spatial game.

sents a missed opportunity of matching, as a matching word was still existing
in the vocabulary and could have been chosen. The XX case instead suggests
that the association of words to source does not reflect the current state of
the source selection. Both middle cases (OX and XO) indicate a complete
vocabulary up until convergence on one word.

Given these definitions, we study the influence of the language game
and the foraging dynamics over the provenance of the last two words of
the vocabulary. Figure 4 shows the frequency of each case out of the 100
runs performed for each different experimental condition. When playing
the classic game (top row in Figure 4), the swarm shows no tendency to
favor a specific provenance for the final two words, and a distribution close
to uniform across the four possible cases is observed. On the other hand,
when playing the spatial game (bottom row in Figure 4), the swarm favours
words that match the selected source, both for the last and second-last word.
In particular, the OO state is strongly favoured for both weak and strong
cross-inhibition, and the XX state is especially disfavoured when the weak
cross-inhibition leads to slower decision dynamics. In conclusion, we clearly
find that the spatial game, by making the creation of words conditional to
the discovery of sources, determines a strong tendency to converge towards
words that represent the source that is ultimately selected. The naming pro-
cess is “correct” as it best represents the source that is the most relevant for
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the swarm. In about 40% of the cases (OX+XO), the naming is “complete”
as the last two words represent “names” for both the available sources. This
remains valid for different values of the probability of speaking Ps, as shown
in the supplementary Figure S1, suggesting that the spatial game is resilient
to variations in the timescale of the language game.

To better understand the relationship between source selection and nam-
ing dynamics, in Figure 5 we show how the distribution of agents between
sources relates with the provenance of the last two words in the swarm vocab-
ulary. Indeed, there is a large difference between a swarm that forages from
a single source and one that instead is evenly split between the two sources.
In the former, we expect vocabulary matching, that is, only words from the
selected source are retained (hence, case OO and to some extent OX). In
the latter, we instead expect vocabulary completeness, that is, words com-
ing from both sources are present (hence, cases OX and XO) because both
sources are still exploited by the swarm and the selected source can change
over time. Indeed, the swarm does not clearly favor the exploitation of any
source, to the point of possibly changing its selected source overtime, and
multiple times.1

When the classic game is played, the distribution of robots across sources
has little to no impact on the provenance of the last two words (top row of
Figure 5, see also the supplementary Figure S2 for other values of Ps). For
the spatial game, instead, vocabulary matching is observed when the swarm
has clearly selected one of the sources. Conversely, vocabulary completeness
is more often observed with swarms that are still exploiting two sources.
This is evident in case of weak cross-inhibition that entails slower dynam-
ics in the source selection process. With strong cross-inhibition, the swarm
quickly converges to exploiting a single source, and the cases in which the
swarm is exploiting both sources at the time of convergence are very rare.
Only when the language dynamics are particularly fast we can observe cases
of vocabulary completion for strong cross-inhibition, as shown in supple-
mentary Figure S2 for Ps = 0.002.

From this analysis we can conclude that the spatial game leads to lan-
guage dynamics that correctly represent the sources relevant to the swarm,
that is, those from which the swarm is currently foraging. This is obtained
solely by the creation of words, which is strongly correlated with the source
discovery. The interplay between language and foraging dynamics preserves
such correlation despite the high number of interactions between robots from

1Recall that the distribution of robots can change over time, and always converges to
the selection of one source, although after a very long time as discussed in Section 3.2.
Here, we consider the distribution at the time of convergence of the naming dynamics,
which is determined by the probability of speaking Ps. Hence, an even distribution of
robots among the sources is observable not only with weak cross-inhibition (Pρ = 0.1,
see Figure 2), but also for strong cross-inhibition when high values of Ps cause a quick
convergence of the vocabulary.
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Figure 5: Empirical distribution over 100 runs of the occurrence of the last
two words in the vocabulary (see Figure 4) detailed for different distribution
of the foraging swarm across the two sources, computed at the time of vo-
cabulary convergence with Ps = 0.001. Each stacked histogram corresponds
to a specific distribution of robots over the non-selected source ( PX

PO+PX ).
Bars are colour-coded as in Figure 4. Over each histogram, the number of
runs that resulted in the specified range is displayed. All tested values of Ps
present similar results, shown in Figure S2. In the rare case of an equally
split swarm (PO = PX), there is no notion of matching an non-matching
words. In that case, we redistribute AA and BB equally between OO and
XX (one half each). Similarly, AB and BA are redistributed equally to OX
and XO. Top row: classic game. Bottom row: spatial game.

different populations and with different vocabularies. In the next section,
we study how this is possible by looking at the interaction patterns between
robots.

5 A study of the swarm’s spatial characteristics

There are two extremes for the swarm to reach convergence on a final word.
Either the swarm converges as a whole—homogeneously—on this final word,
or sub-populations foraging from different sources first converge toward a
word representing their source, and then a competition between these two
words determines the final outcome. In this section, we look at how robots
create and share their words, and how they exchange words within and
across foraging sub-populations.
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Figure 6: Evolution over time of the origin of each robot’s first word (weak
cross-inhibition). The value of the y axis correspond to the ratio of robots
having a word in their vocabulary. This word can be either created inde-
pendently by a robot (Cr) or received from another robot (Re); and either
while the robot is uncommitted (Un) or committed (Co). Similar dynamics
are displayed in the case of strong cross-inhibition (see Figure S3 in supple-
mentary material). Top row: classic game. Bottom row: spatial game.

5.1 Impact of spatial word creation

First of all, we look at the initial phases of the naming game, when robots
create and share new words. Indeed, the difference between the classic and
the spatial game is solely related to this phase. Besides word creation, robots
can fill their vocabulary with words shared by others. To better understand
how robots obtain their first word, we plot in Figure 6 the cumulative number
of robots with at least one word in their vocabulary for the case of weak cross-
inhibition.2 We highlight whether the first word was created by the robot
itself or received from other robots upon playing the naming game. Finally,
we distinguish between robots being uncommitted and exploring, or robots
committed and exploiting one source. Uncommitted robots are particularly
relevant, as they can get committed to any source, despite having a word
associated with one or the other: they do carry a naming information that
may not correspond to the source they will become committed to.

For the classic game (top row in Figure 6), we note that the word creation
dynamics is rather fast and solely depends on the probability of speaking
Ps. Additionally, uncommitted robots represent the large majority, mean-
ing that word creation is strongly uncorrelated from source selection: even
if a word is created closer to a source, it is generally associated to an un-
committed robot that may eventually get committed to any source, due to

2Results for strong cross-inhibition are very similar and are displayed in Figure S3.
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recruitment or discovery.3

In the spatial game instead (see bottom row in Figure 6), the dynamics
of word creation is independent of Ps because it is determined by robots en-
countering a source. Specifically, Ps does not impact the number of robots
that create a word when uncommitted, as these robots individually dis-
cover a source following the foraging dynamics. However, Ps determines the
share of robots that create a word when committed or that receive a word
when uncommitted. The former is higher when Ps is small, as the foraging
dynamics are faster than the language game dynamics, meaning that sev-
eral robots get recruited first and encounter a source while still having an
empty vocabulary. These robots have a naming information that is strongly
correlated with the source they are exploiting. Conversely, with high Ps
the number of uncommitted robots that receive a word from other robots
grows. These robots potentially have a naming information that differs from
the source they will exploit, leading to lower spatial correlation. As a matter
of fact, matching and completeness are slightly worse for this case, as can
be observed in supplementary Figures S1 and S2.

5.2 Communication topology and interactions within the
swarm

Once words have been generated, the MNG imposes a selection process
until a single one is selected. This process takes place through speaker-
hearer interactions, and can be strongly influenced by the communication
topology (Baronchelli et al., 2006a; Moretti et al., 2013). The latter is
determined by the distribution of robots in space, which is a result of the
foraging task the robots carry out. To understand how the different sub-
populations of the swarm interact, we performed an experiment with locked-
size populations, forcing all robots in a pre-defined committed state. We
measure the size of the neighbourhood N with which robots can potentially
interact anytime, and we further distinguish between neighbours belonging
to the same or to a different population. In Figure 7, the probability of
observing a neighbourhood of a given size is displayed for each possible
partition Ps between sub-populations, where Ps = p indicates that |PA| = p
and |PB| = N−p (in these tests, PU = ∅). Additionally, we also consider the
case in which |PU | = N , where robots are forced in the random exploration
state. Given a population of agents P, the probability of observing a given
neighbourhood of size n exclusively composed of agents from population P ′

3Recall that robots periodically return to the home location, where they can get re-
cruited by any other robot, or they can start a new exploration trip in a totally different
direction from the previous one. Hence, an uncommitted robot that creates a word near
one source may get recruited to the other source or discover it in the following exploration
trip.
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Figure 7: Top row: the heatmaps represent the probability distribution PΣ

of each robot’s neighbourhood’s size (|N |, y axis) for each possible partition
in sub-populations (|Ps|, x axis), limited to interactions occurring within a
sub-population (top left) or between sub-populations (top right). Vertical
lines indicate the cross-sections displayed in the bottom panels. Bottom row:
probability of occurrence of each robot’s neighbourhood’s size for |Ps| = 3
(bottom left) and |Ps| = 22 (bottom right). The plots represent the proba-
bility PΣ of observing a neighbourhood size considering interactions within
the whole swarm (blue), within sub-populations (purple), and between sub-
populations (green). The dotted-blue line represents the case of the whole
swarm forced to remain in the exploring state (sub-population PU ).

is computed as follows:

PΣ(|N | = n|P) =
1

T |P|
∑
t

∑
r∈P ′

Hr(n, t,P ′), (9)

where Hr(n, t,P ′) counts the timesteps t ≤ T in which robot r has neigh-
bourhood of size n limited to robots belonging to population P ′. Hence,
this probability is strictly dependent on the size of the populations P and
P ′ that are being considered.

For small values of |Ps|, one of the sub-populations is large and interac-
tions within sub-population dominate (see Figure 7, left panels). The neigh-
bourhood size can take large values (e.g., more than 5 robots), even larger
than the case of randomly exploring robots (see Figure 7, bottom-left panel).
Contrarily, interactions between sub-populations are practically absent, the

17



typical neighbourhood size being |N | = 0 (see Figure 7, top-right panel).
The more the partition among sub-populations is even, the more frequent
the interactions among sub-populations become. Still, robots more likely
interact within the same population, and only few cross-population interac-
tions are recorded (see Figure 7, bottom-right panel). This confirms that,
if the swarm leans towards selecting a single source, the language dynamics
are played mostly within the same population, reinforcing the correlation
between words and sources in favour of matching. At the same time, the
small number of interactions between sub-populations also favour complete-
ness, with each sub-population having the chance to converge on its own
word.

It is worth recalling that, besides communications between sub-
populations, a mismatching word can enter a sub-population also when it
is physically carried by a robot changing from one to the other population.
In order to understand how relevant the movements of robots between sub-
populations are for the spreading of words, we measured the rate at which
these movements take place, and compared it with the rates of interactions
within and between populations during a standard experiment (see Fig-
ure 8). The results indicate that movements between sub-populations are
not as frequent as the interactions via message exchange, especially when
the probability of speaking Ps is high (see also Figure S4). Indeed, the rate
at which messages are exchanged within and between populations increases
with Ps, and is generally larger for intra-population interactions, confirm-
ing our previous analysis. Conversely, the rate at which robots move from
one population to the other does not depend on Ps, and is higher when
cross-inhibition is strong. We infer that the movements of robots between
sub-populations do not have a relevant impact on the language dynamics in
this specific experimental setup.

In the light of the presented results, we can conclude that the pat-
tern of interactions between robots favours the segregation between sub-
populations. This means that different words are likely selected within each
sub-population, resulting in the vocabulary completeness. At the same time,
vocabulary matching is possible thanks to the strong correlation between
word creation and source exploitation by committed robots, as discussed
above. While the vocabularies well represent the environmental features
and their relevance for the swarm, we note that completeness is a transient
property. Indeed, the MNG dynamics determine the convergence towards
a single word shared by the swarm, loosing information about previously
exploited sources. To avoid this, we present in the next section a proof of
concept of a language game to preserve matching and complete vocabularies.
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Figure 8: Evolution over time of the rate of communications within and be-
tween sub-populations exploiting different sources, and of the rate of robot
movements between sub-populations. Each graph has been plotted for the
spatial game. Similar dynamics are displayed by the classic game (see sup-
plementary Figure S4). Top row: strong cross-inhibition. Bottom row: weak
cross-inhibition.

6 Emergence of spatial categories for foraging
swarms

Keeping a complete description of the environment with all its sources re-
quires the ability to distinguish between different regions in space, leading
to the construction of spatial categories. We consider a spatial category as
a set of possible words, associated to an area representing the region cov-
ered by the category (here, a circle defined by its radius and its center, the
latter determining the prototype location of the spatial category). Speak-
ing in general terms, any location in space can belong to one category, to

19



multiple ones (in case of overlapping categories) or to none (in the case of
a non exhaustive partition of the space). The same robot can potentially
hold multiple words (synonyms) referring to a given category. As a conse-
quence, the set of the categories known to a robot—and, by extension, to
the swarm—results in a kind of thesaurus. In this section, we propose a
language game based on word-location pairs with the goal of representing
the landscape of available sources. The language game is now first played
on categories and then on words, making it more similar to a category game
(Baronchelli et al., 2010).

6.1 Experimental Setup

Similarly to the spatial game discussed above, categories—and associated
names—are spontaneously created when a robot encounters a source at a
location that is not represented by any available category. Even if a category
exists for the same source, a robot may enter from a location that is not
covered by the current category description. This leads to an initial prolifer-
ation of categories, which are subsequently pruned by a merging mechanism
(see below).

With probability Ps, a robot knowing at least one category takes the
speaker role: it first selects one of its known categories, followed by a word
belonging to this category’s inventory. The speaker will share with the neigh-
bours the selected word paired with the category prototype’s location. In
order to maintain a correspondence between the foraging behaviour and the
language game, the selection of the category is determined by the commit-
ment status: the speaker always selects the category corresponding to the
sources it is foraging from. For uncommitted robots, the category is selected
randomly. On the hearer side, first a match of the received word-location
pair must be found with the known categories. If the location does not be-
long to any known category, the hearer creates a category centered on that
location, with a default starting radius of r0 ∈ {0.2, 0.3, 0.4}, and add the
received word to this category. If the location belongs to only one category,
the MNG is played as previously described (see Section 3.2) with respect to
the matching category’s inventory. If the word is fitting multiple categories,
these are merged into one, and then the MNG is played with respect to the
resulting category’s inventory. Categories are merged two by two, with the
resulting category being the smallest possible circle containing each original
category’s circle. The merged vocabulary is the union of each category’s
vocabulary.

To evaluate the ability of the swarm to generate shared spatial categories
that correctly represent the available source landscape, we performed a series
of experiments varying both the probability of speaking Ps and the value
of the initial category radius r0. We introduce no change in the physical
layout of the arena (see Figure 1). Experiments are run for longer times, and
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Figure 9: Average number of different words (solid lines) and different cat-
egories (dotted lines) present within the swarm. The dynamics over time
are plotted for different values of r0, and for a fixed probability of speaking
Ps = 0.001. Plots for other values of Ps are available in the supplementary
Figure S6.

are stopped once convergence is reached on both categories and number of
words in each category. The additional complexity introduced by categories
entails a slower language dynamics with respect to the simple naming game
described before. To study the ability of the foraging swarm to correctly
represent both sources, we prevent the selection of a single one by forcing
Pσ = 0. In this way, the robots will find and exploit both sources (possibly
with an uneven distribution across the two), and no robot will ever change
source. As we observed in Section 5, the effects on the language dynamics of
robots physically moving from one to the other source are anyway negligible.

6.2 Results

The evolution over time of the number of words and of categories is shown
in Figure 9 for Ps = 0.001 (see Figure S6 for other values). Both words and
categories follow a similar pattern, with an initial fast proliferation and a
following convergence toward the minimum number of elements: one single
category for each source, and one single word per category. The radius r0

determines the likelihood that a new category is created: when the radius is
large enough, the initial category easily covers the whole source, and creation
of new categories for the same source is unlikely. As a consequence, also the
number of words generated is lower, because different words are generated
for different categories, and the vocabularies are preserved by the category
merging. In any case, the system tends to converge to the minimum number
of words/categories for each value of r0. We note that the actual convergence
on two categories (and hence two words) is not always permanent, as new
categories can emerge after convergence on two categories. These rare events
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are unlikely to have long lasting impact as the swarm can recover quickly.
Under these conditions, we define as time of convergence (over two categories
or two words) the first time the whole swarm reaches the minimum number
of words/categories.

Both category and word convergence times depends heavily on r0, but
also on the probability of speaking Ps (see the top-left panel in Figure 10).
When r0 is intermediate-small, the large proliferation of categories requires
several merging operations, and having more variability in each category
does not give an advantage. On the other hand, for large r0 few categories
are formed, and a high Ps helps in quickly converging. These dynamics are
confirmed also by the time of convergence to a single word per category
(Figure 10 top right), which always decreases when Ps increases, with a
larger effect for larger r0.

Apart from the speed of convergence, another relevant aspect concerns
the accuracy with which the emerging categories describe the sources to
which they are associated. To measure this, we consider the position error as
the distance between the center of the category and the center of the source
(see Figure 10 bottom left) and the average radius of the final category
(Figure 10 bottom right). When the initial radius is smaller, the error in
the position of the prototype is very small, as it results from the average of
many categories defined all around the source. With larger r0, the position
error increases because fewer categories are generated. Large values of the
probability of speaking Ps result in even fewer generated categories: as
robots receive their initial category from other robots, larger errors are made.
For what concerns the final radius of the emergent categories, smaller values
are observed for small r0. However, the relative increase of the final radius
with respect to the initial r0 is much larger for small r0 than for large r0

because many different categories are merged together.

7 Conclusion

In this article, we studied how the language game dynamics are influenced
by the evolving topology of a swarm engaged in a decision-making and for-
aging task. In particular, we studied how well the swarm could maintain
a description of its whole environment that is at the same time correct
and complete, with the vocabulary containing only words that are relevant
to the swarm, that is, those associated to sources under exploitation. We
focused on such a compelling research question, without questioning prop-
erties commonly studied in swarm robotics such as robustness or scalability.
Such properties have been largely studied for foraging, language dynamics
and decision-making in previous studies and in conditions very close to the
ones discussed here (Trianni and Campo, 2015; Reina et al., 2015a). Hence,
they are no further debated, allowing us to focus on the interplay between
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Figure 10: Effects of the initial category radius r0 and of the probability
of speaking Ps. Top left: categories’ convergence time. Top right: words’
convergence time. Bottom left: average error of the final category prototype
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final radius of each category compared with the initial value of r0 (dotted
line).

language and decision dynamics.
We began by comparing two variations of the MNG. One that binds

the creation of words with the sources available in the environment (spa-
tial game), the other without such spatial correlation (classic game), where
words are used as simple tokens. Note that a mild spatial correlation is
available between words and sources also in the classic game, given that
words are created by robots at locations that are always closer to one of
the sources. However, this was not sufficient to guarantee the emergence
of a correct and complete language as in the spatial game. Indeed, the
stronger correlation between creation of words and source location granted
by the spatial game is not the only reason for the better matching and
completeness. We observed that a major difference is given by the role
of uncommitted, exploring robots into the creation and sharing of words.
These robots can end up choosing any source, bringing words created near
one source to the population exploiting the other. Additionally, we ob-
served that the topology of the robot’s interaction network—determined by
the robot’s movements during the foraging activity—consists of two almost
segregated sub-populations, with sporadic interactions constrained to the
central nest area. Such segregation creates the conditions for the mainte-
nance of one word for each source, supporting completeness of the evolving
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vocabulary. In order for the swarm to maintain a complete description of the
environment even when sources are not relevant any more, we proposed as a
proof of concept a simple version of a category game embedded in space. In
this setup, the swarm creates different categories for each source, and ends
up retaining an exhaustive description that can also be sufficiently precise
to potentially support the foraging activities.

One potential drawback of language evolution as observed in our ex-
periments is related to the time required for emergent conventions to settle,
which can be very large if interactions are sporadic, as well as the possibility
that new conventions enter the population and destabilize the language dy-
namics. In this respect, it is important to note that linguistic conventions do
not have an intrinsic value (e.g., every name can be equivalent as long as it
is understood), but are more valuable when they are largely shared within a
population, favouring coordination and avoiding misunderstandings. Hence,
it is possible to speed up convergence toward a shared convention within a
population by means of positive feedback mechanisms that favour the con-
ventions more commonly found within the population. For instance, the
simple rules of the naming game could be enhanced with estimates of the
frequency of words in the population, allowing to favour the selection of more
frequent words when speaking, hence speeding up convergence. Addition-
ally, decentralised quorum sensing approaches can be exploited to determine
a final convention, avoiding that noise is added by new alternatives when
a largely shared one is already present. These and similar mechanisms can
reduce the number of interactions required to achieve language convergence
within a population, making language games practicable in realistic settings
beyond the abstract scenario studied in this paper.

Overall, we believe that merging language dynamics with the self-
organising behaviour of robot swarms can have a high potential, as the
robot behaviour can exploit the emergent descriptions of the environment
in a way that is dependent on the features relevant for the swarm. Our ex-
periments demonstrate a possible way to obtain a meaningful link between
tasks and the evolving language, supporting future research activities. The
link between language and behaviour was relegated here to the creation of
words/categories. However, stronger links can be built if behavioural deci-
sions can be determined by the evolving language. This also allows to adapt
the language to the environmental contingencies encountered, possibly en-
abling more flexibility in the swarm behaviour with respect to changing
environmental conditions (Cambier et al., 2021).

In future studies, besides describing the relevant features of the envi-
ronment, linguistic conventions can be exploited also to agree on the best
course of action for the swarm. For instance, robots would share short term
plans described as a sequence of linguistic elements, creating and merging
them following shared compositional strategies. In this sense, the possi-
bilities offered by language evolution are vast, allowing robot swarms to
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autonomously find sentence-like solutions to complex tasks made of several
spatially-distributed and temporally-dependent sub-tasks.
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Figure S1: Frequency of occurrence of the last two words in the vocabulary
within the four identified classes with respect to the words matching (O)
or not (X) the selected resource (OO, OX, XO and XX). Top row: classic
game. Bottom row: spatial game.
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Figure S2: Frequency of occurrence of the last two words in the vocabu-
lary (see Figure S1) detailed for different distribution of the foraging swarm
across the two resources, computed at the time of vocabulary convergence.
In the rare case of an equally split swarm (PO = PX), there is no notion
of matching an non-matching words. In that case, we redistribute AA and
BB equally between OO and XX (one half each). Similarly, AB and BA are
redistributed equally to OX and XO. Each stacked histogram corresponds
to a specific distribution of robots over the non-selected resource ( PX

PO+PX ).
Bars are colour-coded as in Figure S1. Over each histogram, the number
of runs that resulted in the specified range is displayed. Top row: classic
game. Bottom row: spatial game.
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Figure S3: Study of the evolution over time of the origin of each robot’s
first word in the case of a weak cross-inhibition. The value of the Y axis
correspond to the overall ratio of robots having a word in their vocabulary.
This word can be either created upon a discovery (Cr) or received from
another robot (Re); and either while the robot is uncommitted (Un) or
committed (Co). Top row: classic game. Bottom row: spatial game.
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Figure S4: Evolution over time of the rate of communication within and
between subpopulations, and of the rate of robot movements between sub-
populations. Top row: classic game. Bottom row: spatial game.
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Figure S5: Average number of different words (solid lines) and different
categories (dotted lines) present within the swarm. The dynamics over time
are plotted for different values of r0.
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